首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
青藏高原湿地作为陆地生态系统的重要组成部分,在全球碳循环中发挥着重要作用.以青藏高原东缘尕海湿地植被不同退化程度样地(未退化CK、轻度退化SD、中度退化MD及重度退化HD)为研究对象,通过分析地上植物、凋落物、根系和土壤有机碳,研究湿地植被退化过程中植被-土壤系统有机碳储量变化特征.结果表明: 除HD外,不同退化程度湿地地上植被碳储量为99.58~205.64 g·m-2,根系(0~40 cm)碳储量为56.96~754.37 g·m-2,地上、根系碳储量随退化程度的加剧显著下降,土壤容重随退化程度加剧呈先增加后减少趋势,植被退化湿地各层土壤容重均大于对照样地,而凋落物碳储量为17.29~35.69 g·m-2,CK和MD均显著高于SD;不同退化程度湿地土壤0~40 cm碳储量为7265.06~9604.30 g·m-2,且MD>CK>SD>HD,土壤有机碳储量CK和MD显著高于SD、 HD;植被-土壤系统的碳储量为7265.06~10389.94 g·m-2,各样地大小顺序为CK>MD>SD>HD,有机碳主要储存于土壤中,占湿地总碳贮量的90%以上,说明适度干扰有利于发挥高寒湿地生态系统的碳汇功能.  相似文献   

2.
以青海省达日县高寒草甸原生高寒嵩草(Kobresia)草甸封育系统为对照,研究了土地退化对植被生产力的影响,检验了不同人工重建措施(两个人工种植处理:混播(HB)、翻耕单播(DBF)和1个退化草地封育自然恢复处理(NR)及1个退化草地自然状态(SDL))对植被生产力的相对影响程度。结果表明,原生植被封育处理(YF)地上总生物量为265.1 g·m-2,混播(HB)和翻耕单播(DBF)处理中地上总生物量分别为原生植被封育处理的116%和68%。退化草地封育自然恢复处理(NR)和重度退化自然状态下地上总生物量分别为原生植被封育的76%和53%。YF处理根系生物量远大于其它处理。原生植被封育系统中植被地上部分碳储量为 110.14 g·m-2,地下根系(0~30 cm)碳储量为2 957 g·m-2,植被总碳储量为 3 067.14 g·m-2;重度退化草地系统中植被地上部分碳储量为 57.07 g·m-2,地下根系(0~30 cm)碳储量为 357 g·m-2,植被总碳储量为 414.07 g·m-2。由此可见,高寒草甸严重退化后,通过植物组织流失的碳达到2 653.35 g·m-2,即86.5%的碳损失;原生植被封育系统植被总氮储量为 56.85 g·m-2,而重度退化草地植被总氮储量为 18.02 g·m-2,高寒草甸严重退化使植物组织68.30%氮损失。与重度退化地相比,由于恢复重建措施增加了植物的生物量输入和群落组成,除翻耕单播处理外,其它恢复重建措施均能恢复系统植被的碳氮储量。这些恢复重建措施将会逐步改善土壤的物理和化学特性,最终使这些生态系统逐步由碳源向碳汇方向的转变成为可能。  相似文献   

3.
以宁夏广泛分布的温性草甸草原、温性草原、温性草原化荒漠和温性荒漠草原为研究对象,采用实地调查采样的方法,研究了宁夏天然草地植被总碳储量。结果表明: 宁夏天然草地地上植被、地下根系及主要灌木平均含碳率为0.40,枯落物平均含碳率为0.39。草甸草原、温性草原、草原化荒漠和荒漠草原的植被总碳储量分别为470.26、192.23、117.17和83.36 g·m-2,其中,地上植被碳储量分别为87.35、68.50、59.32和40.05 g·m-2,地下根系碳储量分别为344.29、108.83、50.65和30.29 g·m-2,枯落物碳储量分别为38.62、14.91、7.19和13.03 g·m-2,且均表现为草甸草原>温性草原>草原化荒漠>荒漠草原。地下根系碳储量是构成草甸草原和温性草原植被总碳储量的主体,地上植被碳储量是构成草原化荒漠和荒漠草原植被总碳储量的主体,且地下根系碳储量均随土层深度加深而递减。宁夏天然草地植被总碳储量空间分布呈现草甸草原和温性草原分布的南部区域碳储量明显高于荒漠草原和草原化荒漠分布的中北部区域。  相似文献   

4.
莱州湾南岸的柽柳林湿地是我国北方现存面积最大的柽柳林滨海湿地,也是我国“南红北柳”生态工程的重要组成部分.本文基于2014年8月在昌邑海洋生态特别保护区的调查资料,研究了该湿地植被生物量、碳储量的空间分布特征及其影响因素.结果表明: 该湿地植被生物量为949.0 g·m-2,植被碳储量为393.1 g·m-2,基本呈中部高、东西部低的分布特征;植被各部分生物量、碳储量均表现为:地上部>地下部>凋落物.该区域主要有柽柳、碱蓬2个单优群落和4个混生群落,植被碳储量以柽柳群落最高,混生群落居中,碱蓬群落最低.受北部潮间带防潮坝的影响,表层土壤的含水量和电导率均不高,土壤盐分不是植被碳储量的主控因子,植被碳储量主要受土壤的营养盐状况(全氮和全磷)和粒径结构(粉粒含量)的影响.土壤水文条件的改变造成了植被群落的演替,在由耐盐群落(盐地碱蓬群落)向轻耐盐群落(茵陈蒿群落、狗尾草群落等)的演替过程中,植被碳储量增大.  相似文献   

5.
崇明东滩湿地不同盐沼植物群落土壤碳储量分布   总被引:2,自引:0,他引:2  
海岸带盐沼植被的高生产力对湿地土壤碳库的形成具有重要意义.本文研究了长江口崇明东滩湿地3种主要盐沼植物(芦苇、互花米草和海三棱藨草)群落生物量差异、土壤碳储量时空动态和垂向分布特征.结果表明: 湿地盐沼植被总生物量表现为互花米草群落(5750.7 g·m-2)>芦苇群落(4655.1 g·m-2)>海三棱藨草群落(812.7 g·m-2),且地上生物量在夏、秋季最高,地下生物量在冬季最高.湿地土壤碳储量(0~50 cm)在春季最低,随后逐渐增加,至冬季达到最大值.土壤碳储量年增量从高潮滩向低潮滩递减,表现为芦苇群落(711.8 g·m-2)>互花米草群落(646.2 g·m-2)>海三棱藨草群落(185.3 g·m-2)>光滩(65.6 g·m-2).光滩土壤碳储量在25~30 cm处最高,海三棱藨草、互花米草和芦苇群落土壤碳储量分别在10~15、30~35和30~40 cm处达到最大值,且不同群落土壤碳储量与植被地下生物量具有显著的线性关系.  相似文献   

6.
湿地生态系统的固碳及其调节气候等生态系统服务十分重要,准确评估黄河流域自然保护地的碳储量有助于碳中和研究和区域生态保护与高质量发展。该研究基于野外采样和室内分析,并结合遥感数据,评估了陕西黄河湿地省级自然保护区光滩和典型自然植被区的地上植被和0–50 cm土壤碳储量。碳储量评估区总面积13 086.52 hm2,占保护区面积的23.87%。结果表明,高草植被的地上碳储量显著高于低草植被和矮灌丛植被,其碳密度分别为496.73、23.45和138.38g·m–2;土壤0–50 cm的碳密度为7.15–11.98 kg·m–2,高草植被区的土壤碳储量(5.02×105 t)显著高于光滩(2.09×105 t)、低草植被区(3.40×105t)和矮灌丛植被区(1.45×105t);最终核算出陕西黄河湿地省级自然保护区典型植被区的地上植被和0–50cm土壤总碳储量约为1.22×106 t,其中光滩区、低草植被区、矮灌丛植...  相似文献   

7.
宁夏典型温性天然草地固碳特征   总被引:1,自引:0,他引:1  
本文研究了宁夏草甸草原、温性草原、草原化荒漠和荒漠草原4种温性典型天然草地生态系统碳储量及其构成特征。结果表明: 草甸草原、温性草原、草原化荒漠和荒漠草原植被总生物量分别为1178.91、481.22、292.80和209.09 g·m-2。其中,地下根系生物量是构成草甸草原和温性草原植被总生物量的主体,分别占总生物量的73.1%和56.6%;地上植被生物量是构成草原化荒漠和荒漠草原植被总生物量的主体,分别占总生物量的50.3%和47.6%;枯落物生物量占比较低,分别仅为8.5%、8.0%、6.4%和16.2%。草甸草原、温性草原、草原化荒漠和荒漠草原4种天然草地生态系统碳储量分别为13.90、5.94、2.69和2.37 kg·m-2,其中植被碳储量分别为470.26、192.23、117.17、83.36 g·m-2,0~40 cm土层土壤有机碳储量分别为13.43、5.75、2.58和2.29 kg·m-2,土壤有机碳储量是构成宁夏典型天然草地碳储量的主体,分别占到了生态系统碳储量的96.6%、96.8%、95.6%和96.5%。4种草地类型植被总生物量、植被碳储量、土壤有机碳储量和生态系统碳储量均表现为:草甸草原>温性草原>草原化荒漠>荒漠草原。  相似文献   

8.
研究云雾山天然草地、灌草地、禁牧地、撂荒地4种恢复方式下草地各植物组分(植物地上部分、枯落物、根系)与土壤C、N、P化学计量特征及其相互关系.结果表明: 土壤与植物地上部分和根系的化学计量学特征显著相关,并且植物地上部分与根系之间P的联系比N紧密,土壤与植物地上部分和根系之间N的联系比P紧密,而土壤与枯落物、根系与枯落物的化学计量学特征相关性不显著.不同恢复方式间植物地上部分和根系总体的C、N储量无显著差异,P储量差异显著且以撂荒地最大(0.49 g·m-2),禁牧地最小(0.29 g·m-2).禁牧年限对植物和土壤的化学计量学特征影响较小;耕地撂荒恢复12年后土壤C、N(分别为9.98和1.07 g·kg-1)仍显著低于天然草地(分别为14.27和1.55 g·kg-1),两者植物化学计量特征的差异由撂荒地各植物组分P浓度高引起;由于根系生物量的稀释作用,天然草地根系N、P浓度最低(分别为6.25和0.57 g·kg-1);灌草地地上部分N、P浓度偏低(分别为12.77和 0.98 g·kg-1),但根系N、P浓度偏高(分别为9.30和0.77 g·kg-1).物种组成是影响植物生态化学计量学特征变化的主要因素,不同恢复方式间群落相似度高则整体化学计量特征差异小.  相似文献   

9.
以3种不同退化程度的温带典型草原(大针茅轻度退化、中度退化和重度退化)为研究对象,研究植被退化对温带典型草原土壤及根系碳氮含量及储量的影响。结果显示:(1)植被退化对地下根系碳含量影响不显著(P0.05),而对地下根系氮含量的影响显著(P0.05),中度退化样地根系氮含量显著高于轻度退化和重度退化样地(P0.05)。(2)植被退化对根系碳氮储量影响显著(P0.05),根系碳氮储量随着土层深度增加而减少,总根系碳氮储量随退化程度加剧而降低。(3)土壤有机碳、总碳和总氮含量及储量均受退化程度和采样深度的影响显著(P0.05),其含量随着土壤深度的增加而显著减少,随退化程度加剧而显著降低(P0.05)。(4)土壤是根系-土壤系统碳氮储存的最主要场所,储量占比90%以上。虽然土壤碳氮储量均存在表层聚集现象,但表层储量所占比例在各样地间差异显著(P0.05)。  相似文献   

10.
草地生态系统作为陆地生态系统的重要组成部分,在全球碳循环中发挥着重要作用。以内蒙古短花针茅荒漠草原不同放牧强度样地为研究对象,通过分析地上植物、凋落物、根系、土壤中有机碳和土壤轻组有机碳,研究草原植被-土壤系统有机碳组分储量的变化特征,从碳储量角度为合理利用草原提供指导。研究结果表明:(1)不同放牧强度荒漠草原地上植物碳储量为11.98—44.51 g/m~2,凋落物碳储量10.43—36.12 g/m~2,根系(0—40cm)碳储量502.30—804.31 g/m~2,且对照区(CK)均显著高于中度放牧区(MG)、重度放牧区(HG);(2)0—40cm土壤碳储量为7817.43—9694.16 g/m~2,其中轻度放牧区(LG)碳储量为9694.16 g/m~2,显著高于CK、HG(P0.05);(3)植被—土壤系统的碳储量为8342.14—10494.80 g/m~2,LGMGCKHG,有机碳主要储存于土壤当中,占比约90.54%—93.71%,适度放牧利用有利于发挥草地生态系统的碳汇功能;(4)土壤轻组有机碳储量为484.20—654.62 g/m~2,LG储量最高,表明适度放牧有助于草原土壤营养物质的循环和积累。  相似文献   

11.
林下植被抚育对樟人工林生态系统碳储量的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
以亚热带东部地区48年生樟(Cinnamomum camphora)人工林为研究对象, 探讨不同林下植被处理方式对植被和土壤碳储量的影响。研究结果表明: 1)林下植被抚育增加了植被的碳储量, 增幅为48.87%, 平均每年比未抚育林分增加了0.62 t·hm-2; 2)林下植被抚育降低了土壤有机碳含量, 降低幅度介于4.79%-34.13%之间, 其中0-10 cm、10-20 cm土层比未抚育林分分别降低了10.16 g·kg-1和8.58 g·kg-1, 差异达到显著水平(p < 0.05); 3)林下植被抚育降低了森林土壤碳储量, 降低幅度介于1.98%-43.45%之间, 其中0-10 cm和10-20 cm土层分别降低了15.39 t·hm-2和11.58 t·hm-2, 差异达到极显著水平(p < 0.01)和显著水平(p < 0.05); 4)林下植被抚育降低了森林生态系统总碳储量, 降低幅度为4.27%, 但差异不显著。因此, 林下植被抚育虽有利于植被碳储量的积累, 但降低了土壤有机碳含量和储量。  相似文献   

12.
彭娓  董利虎  李凤日 《生态学杂志》2016,27(12):3749-3758
基于大兴安岭东部地区主要林型的生物量调查数据,建立了3个主要树种的一元可加性生物量模型,探讨了不同林型森林群落和乔木层、灌木层、草本层、凋落物层的碳储量及其分配规律.结果表明: 杜鹃-兴安落叶松林乔、灌、草、凋落物层碳储量分别为71.00、0.34、0.05和11.97 t·hm-2,杜香-兴安落叶松林各层碳储量分别为47.82、0.88、0和5.04 t·hm-2,杜鹃-兴安落叶松-白桦混交林分别为56.56、0.44、0.04、8.72 t·hm-2,杜香-兴安落叶松-白桦混交林分别为46.21、0.66、0.07、6.16 t·hm-2,杜鹃-白桦林分别为40.90、1.37、0.04、3.67 t·hm-2,杜香-白桦林分别为36.28、1.12、0.18、4.35 t·hm-2.林下植被为杜鹃的林分群落碳储量大于林下植被为杜香的林分;林下植被相似的情况下,森林群落碳储量大小顺序为:兴安落叶松林>兴安落叶松-白桦混交林>白桦林;不同林型群落碳储量不同,大小顺序为:杜鹃-兴安落叶松林(83.36 t·hm-2)>杜鹃-兴安落叶松-白桦混交林(65.76 t·hm-2)>杜香-兴安落叶松林(53.74 t·hm-2)>杜香-兴安落叶松-白桦混交林(53.10 t·hm-2)>杜鹃-白桦林(45.98 t·hm-2)>杜香-白桦林(41.93 t·hm-2),且不同林型森林群落碳储量垂直分配规律为:乔木层(85.2%~89.0%)>凋落物层(8.0%~14.4%)>灌木层(0.4%~2.7%)>草本层(0~0.4%).  相似文献   

13.
通过野外调查取样与室内分析,研究了河南两种气候区内分布的典型草地(豫西北的暖性草丛和暖性灌草丛,豫南的暖性草丛、暖性灌草丛、热性草丛和热性灌草丛)植被与土壤碳密度特征及碳分布差异.结果表明: 豫西北与豫南地区草地植被地上平均生物量分别为327.4和221.4 g·m-2,呈北高南低趋势,差异显著;而根系平均生物量分别为1.58×103和1.94×103 g·m-2,呈南高北低趋势,且差异显著.豫西北和豫南地区地上平均碳密度分别为113.75和77.35 g C·m-2.豫西北地区暖性草丛植被地上碳密度大于暖性灌草丛,但差异不显著;而豫南地区热性草丛活体碳密度显著低于其他3种类型草地.豫西北与豫南地区地下平均碳密度分别为6.35×103和5.14×103 g C·m-2.豫西北地区2种类型草地根系碳密度和土壤碳密度差异均不显著;豫南地区热性灌草丛根系碳密度显著低于其他3种类型草地,而热性草丛土壤碳密度显著大于其他3种类型草地.豫西北和豫南地区草地生态系统平均碳密度分别为6.46×103和5.22×103 g C·m-2,呈北高南低趋势,且土壤贡献最大(78%~90%).豫西北地区2种类型草地生态系统碳密度差异不显著;豫南地区热性草丛生态系统碳密度最高为9.70×103 g C·m-2,显著大于其他3种类型草地.本研究结果为准确计算河南不同类型草地生态系统碳储量及评估其固碳潜力提供基础数据.  相似文献   

14.
科尔沁沙地不同生境植被凋落物年际及年内动态   总被引:1,自引:0,他引:1  
凋落物是植被土壤系统之间重要的物质和能量通道之一,在生态脆弱区植被和土壤修复过程中发挥着特殊的功能和作用.以科尔沁沙地流动沙丘、固定沙丘和草地为对象,通过连续测定9个生长季凋落物量,并结合气温与降水量数据,研究沙地生态系统不同生境的凋落物年际和年内动态及其调控因子.结果表明:不同生境植被年凋落物大小依次为:流动沙丘(9.01 g·m-2)<固定沙丘(67.46 g·m-2)<草地(119.55 g·m-2).凋落物总量年际动态波动明显,固定沙丘年际变化呈“双峰”曲线,草地年际变化呈“W”型曲线.凋落物量年内变化均表现为“U”型曲线,在4和9月出现高峰值.降水量和气温对固定沙丘和草地凋落物量月际动态影响显著,而对不同生境条件下凋落物量年际变化影响均不显著.气温是影响该沙地生态系统生长季(4—9月)凋落物量月动态的主要因素.  相似文献   

15.
三江平原土地利用/覆被变化对区域植被碳储量的影响   总被引:1,自引:0,他引:1  
通过历史时期地图数字化和遥感图像解译得到三江平原1954~2005年的6期土地利用/覆被数据。根据IPCC《2006指南》提供的方法,评估土地利用/覆被变化对三江平原植被碳储量的影响。结果表明:三江平原1954~2005年土地利用/覆被变化显著,农田大面积增加,沼泽湿地、林地、草地面积锐减;土地利用/覆被变化主要发生在农田、沼泽湿地、林地和草地之间;农田是沼泽湿地、林地、草地的主要转出对象,林地的主要转入来源为农田和草地,沼泽湿地的主要转入来源为农田和林地。1954~2005年共有1.07×103km2林地、5.73×103km2草地和2.59×104km2沼泽湿地转出为农田。土地利用/覆被变化导致三江平原植被碳储量不断减少,1954~2005年三江平原植被碳储量共减少57.48Tg。林地、沼泽湿地、草地向农田的转化及林地向草地、沼泽湿地的转化导致植被碳储量减少97.06Tg,农田向林地、沼泽湿地、草地的转化及草地、沼泽湿地向林地转化导致植被碳储量增加39.58Tg。  相似文献   

16.
为探究氮沉降增加背景下高寒草甸土壤呼吸干湿季变化及其与环境因子的耦合关系,选择纳帕海典型退化草甸疏花早熟禾群落,设置对照(0 g·m-2·a-1)、低氮(5 g·m-2·a-1)、中氮(10 g·m-2·a-1)和高氮(15 g·m-2·a-1)4个水平的氮沉降模拟试验,分析氮沉降引起的地上生物量、植物多样性及土壤理化性质变化对土壤呼吸的影响。结果表明:不同氮沉降处理均显著促进草甸土壤呼吸,干季和湿季土壤呼吸速率相较于对照分别增加了21.9%~53.9%和27.3%~51.2%,且在中氮处理下增幅最大。氮沉降显著提升草甸地上生物量(增幅达52.2%~66.4%);植物多样性随氮添加总体呈降低趋势,湿季最大降幅(13.5%~24.2%)出现在高氮处理。氮沉降显著增加土壤铵态氮、有机质、微生物生物量碳氮、温度和含水率(增幅为14.3%~333.5%),氮沉降显著降低土壤pH(减幅达9.0%~34.6%)。结构方程表明...  相似文献   

17.
中国主要灌丛植被碳储量   总被引:29,自引:0,他引:29       下载免费PDF全文
在广泛收集资料的基础上,利用植被平均碳密度方法,估算了我国6种主要灌丛植被的碳储量,并分析了其区域分布特征。主要结果如下:1) 6种灌丛植被总面积为15 462.64 ×104 hm2,总碳储量为1.68±0.12 Pg C (1 Pg=1015g),灌丛植被平均碳密度为10.88±0.77 Mg C·hm-2(1 Mg=106 g),不同植被类型差异较大,在5.92~17 Mg C·hm-2之间波动。2)从区域分布来看,西南3省(云南、贵州、四川)既是我国灌丛主要的分布地区之一,分布面积占6种灌丛总面积的23.5%,又是我国灌丛碳储量的主要储库,碳储量占整个6种灌丛碳储量的1/3(32.6%),适宜的水热条件决定了该地区的植被平均碳密度要高于全国平均水平。3) 与我国森林和草地的植被碳储量相比,这些灌丛碳储量相当于我国森林和草地碳储量的27%~40%和36%~55%。  相似文献   

18.
植被净初级生产力(NPP)是草原湿地生态系统碳收支平衡和气候变化的核心内容之一。本研究基于植被指数、气象数据(降水和气温)、植被类型数据,利用CASA模型对若尔盖草原湿地1999—2015年NPP进行估算,分析了若尔盖草原湿地NPP时空格局特征及其与气候因子的关系。结果表明: NPP实测值与模拟值之间显著相关,R2为0.78,均方根误差为120.3 g C·m-2·a-1;研究区年均和生长季(4—9月)NPP分别为329.0、229.4 g C·m-2·a-1,年际间波动明显,以2.3、1.6 g C·m-2·a-1的微弱趋势下降,不同植被类型的年均及生长季NPP的年际波动与整个研究区的波动趋势基本一致;年均和生长季NPP的变化斜率分别为-21.3~18.7、-31.5~23.1 g C·m-2·a-1,显著增加的面积分别占研究区总面积的0.3%和0.7%,主要分布于森林覆盖区和湿地生态补偿区;显著下降的面积分别占研究区总面积的1.4%和6.4%,主要分布于人类活动集中的地区;研究区不同植被的固碳能力存在差异,其中,森林最强,草地次之,湿地最弱;降水是影响草原湿地植被NPP的主导气候因子。  相似文献   

19.
以青海省果洛州藏族自治州甘德县青珍乡高山嵩草Kobresia pygmaea草甸轻度退化草地和重度退化草地为研究对象,通过植物地上部分主要功能群(禾草类、杂类草、莎草类)、植物根系和土壤碳、氮浓度及储量动态研究,结果表明:高寒小嵩草草甸轻度退化草地地上部分主要功能群碳、氮浓度和C ∶ N比值明显高于重度退化草地的浓度.同一草地类型主要功能群比较,碳、氮浓度依次为杂类草>禾草类>莎草类;植物地上部分的碳、氮浓度明显高于地下根系的碳、氮浓度.重度退化草地植物根系碳、氮浓度高于轻度退化草地植物根系碳、氮浓度.重度退化草地土壤总有机碳浓度显著低于轻度退化草地土壤总有机碳浓度,随着土层的加深碳、氮浓度有减少的趋势.江河源区高山嵩草草甸的土壤有机碳、氮储量最大,植物根系碳、氮储量居中,植物地上部分碳、氮储量最小.重度退化草地总有机碳储量(13554.3 g/m2)较轻度退化草地储量(14669.2 g/m2)下降7.60%.其中,0~40cm土壤层碳储量下降4.10%,植物根系碳储量下降59.97%,植物地上部分碳储量下降15.39%;重度退化草地总氮储量(3780.6 g/m2)较轻度退化草地储量(3352.7 g/m2)高12.76%,其中,0~40cm土壤中总氮储量高13.07%,植物根系全氮储量下降55.09%,植物地上部分全氮下降16.00%.由于草地退化损失有机碳11149 kg/hm2,而全氮增加4278 kg/hm2.  相似文献   

20.
为深入研究2008年初低温雨雪冰冻灾害对我国南方森林生态系统的影响, 实地调查了中国科学院千烟洲红壤丘陵综合开发试验站(简称千烟洲站)人工林受损状况, 并结合气象资料与空间数据进行了分析。在千烟洲站内主要的5种林型中, 受损林分多为湿地松(Pinus elliottii)林, 倒伏区面积为7.72 hm2, 占森林面积的6.12%, 地上植被碳储量损失1 462 g·m-2(范围在655-5 230 g·m-2之间)。持续低温、阴雨潮湿等气象条件是导致湿地松林受损的直接原因, 特别是2008年2月1日的低温、强降水和大风, 加剧了灾害程度。在吉泰盆地低山丘陵区(海拔60-140 m), 高程与局地地形、气象条件密切相关, 因而对冰雪灾害具有较强的指示作用。丘陵顶部土壤贫瘠、受风影响强烈, 林木易受损倒伏。阳坡的林木易偏冠, 这可能是其受损较为严重的原因之一。湿地松林受损的内因主要有冠型、材质、根系分布、叶片特征和年龄等;此外, 人为割脂也可能是造成湿地松大量倒伏的重要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号