首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The existence of paracrine control of steroidogenic activity by adrenochromaffin cells in Triturus carnifex was investigated by in vivo adrenaline (A) administration. The effects were evaluated by examination of the ultrastructural morphological and morphometrical features of the tissues as well as the serum levels of aldosterone, noradrenaline (NA), and adrenaline. In March and July, adrenaline administration reduced aldosterone release (from 187.23 +/- 2.93 pg/ml to 32.28 +/- 1.85 pg/ml in March; from 314.60 +/- 1.34 pg/ml to 87.51 +/- 2.57 pg/ml in July) from steroidogenic cells. The cells showed clear signs of lowered activity: they appeared full of lipid, forming large droplets. Moreover, adrenaline administration decreased the mean total number of secretory granules in the chromaffin cells in July (from 7.74 +/- 0.74 granules/microm(2) to 5.14 +/- 1.55 granules/microm(2)). In this period T. carnifex chromaffin cells contain almost exclusively NA granules (NA: 7.42 +/- 0.86 granules/microm(2); A: 0.32 +/- 0.13 granules/microm(2)). Adrenaline administration reduced noradrenaline content (4.36 +/- 1.40 granules/microm(2)) in the chromaffin cells, enhancing noradrenaline secretion (from 640.19 +/- 1.65 pg/ml to 1030.16 +/- 3.03 pg/ml). In March, adrenaline administration did not affect the mean total number of secretory vesicles (from 7.24 +/- 0.18 granules/microm(2) to 7.25 +/- 1.97 granules/microm(2)). In this period the chromaffin cells contain both catecholamines, noradrenaline (3.88 +/- 0.13 granules/microm(2)), and adrenaline (3.36 +/- 0.05 granules/microm(2)), in almost equal quantities; adrenaline administration reduced adrenaline content (1.74 +/- 0.84 granules/microm(2)), increasing adrenaline release (from 681.27 +/- 1.83 pg/ml to 951.77 +/- 4.11 pg/ml). The results of this study indicate that adrenaline influences the steroidogenic cells, inhibiting aldosterone release. Adrenaline effects on the chromaffin cells (increase of noradrenaline or adrenaline secretion) vary according to the period of chromaffin cell functional cycle. The existence of intraadrenal paracrine interactions in T. carnifex is discussed.  相似文献   

2.
The influence of adrenocorticotropic hormone (ACTH) on the interrenal gland of Triturus carnifex was investigated by in vivo administration of synthetic ACTH. The effects were evaluated by examination of the ultrastructural morphological and morphometrical features of the tissues as well as the circulating serum levels of aldosterone, noradrenaline (NA), and adrenaline (A). In June and November, ACTH administration increased aldosterone release (from 281.50 +/- 1.60 pg/ml in carrier-injected newts to 597.02 +/- 3.35 pg/ml in June; from 187.45 +/- 1.34 pg/ml in carrier-injected animals to 651.00 +/- 3.61 pg/ml in November). The steroidogenic cells showed clear signs of stimulation, together with a reduction of lipid content in June and an increase of lipid content in November. Moreover, ACTH administration decreased the mean total number of secretory vesicles in the chromaffin cells in June (from 7.73 +/- 0.60 granules/microm2 in carrier-injected animals to 5.91 +/- 0.40 granules/microm2) and November (from 7.78 +/- 0.75 granules/microm2 in carrier-injected newts to 4.87 +/- 0.40 granules/microm2). In June, however, when T. carnifex chromaffin cells contain almost exclusively NA granules (NA: 7.42 +/- 0.86 granules/microm2; A: 0.32 +/- 0.13 granules/microm2), ACTH decreased NA content (5.52 +/- 0.32 granules/microm2) increasing NA release (from 639.82 +/- 3.30 pg/ml in carrier-injected to 880.55 +/- 4.52 pg/ml). In November, when both catecholamines, NA (3.92 +/- 0.34 granules/microm2) and A (3.84 +/- 0.33 granules/microm2), are present in the chromaffin cells, ACTH administration reduced A content (1.02 +/- 0.20 granules/microm2), enhancing adrenaline secretion (from 681.30 +/- 3.62 pg/ml in carrier-injected newts to 1,335.73 +/- 9.03 pg/ml). The results of this study indicate that ACTH influences the steroidogenic tissue, eliciting aldosterone release. The effects on the chromaffin tissue, increase of NA or A secretion, according to the period of chromaffin cell functional cycle, may be direct and/or mediated through the increase of aldosterone release. Finally, the lack of an increase of A content in the chromaffin cells, or A serum level, following ACTH administration in June might suggest an independence of PNMT enzyme on corticosteroids.  相似文献   

3.
The present work was undertaken in order to investigate the influence of endocrine pancreas on the adrenal gland of Triturus carnifex. Our experiments aimed at studying the effects of intraperitoneal injections of glucagon on ultrastructural morphological and morphometrical features of steroidogenic and chromaffin tissues, as well as serum levels of aldosterone, corticosterone, norepinephrine (NE) and epinephrine (E). With regard to steroidogenic tissue, in January and November, glucagon decreased lipid droplet content in steroidogenic cells, that showed clear signs of increased activity. Moreover, increased corticosteroid serum levels were found. With regard to chromaffin tissue, in January glucagon played a stimulatory role on PNMT enzyme, eliciting an increase in the presence of E granules, and a decrease in the presence of NE granules, in the chromaffin cells. Moreover, increased E serum levels and decreased NE serum levels were found. In November, glucagon gave rise to a decrease in the presence of NE and E granules in the cells; E serum levels were strongly increased, whereas NE serum levels did not undergo any significant change. These findings suggest an involvement of the endocrine pancreas of the newt in the modulation of adrenal gland activity.  相似文献   

4.
The aim of the present study was to verify if human FSH influences the adrenal gland of the newt, Triturus carnifex. Newts were given intraperitoneal injections of human FSH throughout the periods of February-March, and December-January; periods in which newt FSH levels are normally very low. The effects of human FSH on adrenal gland activity were observed in the morphological features of the steroidogenic and chromaffin adrenal cells, and in the serum levels of aldosterone, corticosterone, norepinephrine and epinephrine. The effect of human FSH on the steroidogenic cells was significant during the February-March period; the quantity of cytoplasmic lipids decreased, and the corticosteroid serum levels increased. During the December-January period, the human FSH effects were negligible. The effect of human FSH on the chromaffin cells was significant during both the February-March, and the December-January periods. During February-March, the human FSH increased the numeric ratio of norepinephrine granules to epinephrine granules, and increased the epinephrine serum levels. During December-January, the human FSH decreased the numeric ratio of norepinephrine granules to epinephrine granules, and increased the norepinephrine serum levels. The results of the present study show that human follicle-stimulating hormone influences the activity of the newt adrenal gland, thus indicating a relationship between the annual sexual cycle and the annual adrenal cycle of the newt.  相似文献   

5.
The aim of our study was to verify whether environmental concentrations of nonylphenol influenced the adrenal gland of Triturus carnifex. Newts were exposed to 19 μg/L nominal concentration of nonylphenol throughout the periods of December-January and March-April, corresponding to different stages of the chromaffin cell functional cycle. The morphological features of the steroidogenic and chromaffin tissues, and the serum levels of ACTH, aldosterone, corticosterone, norepinephrine and epinephrine were evaluated. Nonylphenol did not influence ACTH serum levels. During the two periods examined, the steroidogenic tissue had the same reaction: the quantity of cytoplasmic lipids, and the corticosteroid serum levels, decreased, suggesting the inhibition of synthesis and release of corticosteroids. During the two periods examined, the chromaffin tissue reacted differently to nonylphenol. During December-January, the numeric ratio of norepinephrine granules to epinephrine granules, and the epinephrine serum levels, increased, suggesting the stimulation of epinephrine release. During March-April, the numeric ratio of norepinephrine granules to epinephrine granules did not change, and the norepinephrine serum levels decreased, suggesting the inhibition of norepinephrine release. Our results show that nonylphenol influences the activity of the newt adrenal gland; considering the physiological role of this gland, our results suggest that nonylphenol may contribute to amphibian decline.  相似文献   

6.
We have performed studies on blood hormone dynamics following intravenous administration of acebutolol, a newly synthesized beta-blocker, and its direct action on the adrenal medulla in vitro. Intravenous injection of acebutolol into anesthetized dogs almost doubled the plasma adrenaline and noradrenaline concentrations within 5 to 15 minutes, while renin activity was reduced to approximately two-thirds of the pre-administration level. When arrhythmia was induced in dogs with ouabain, the plasma adrenaline and noradrenaline levels increased to 220 +/- 109 and 392 +/- 84 pg/ml, respectively, from the basal levels of 44 +/- 24 and 140 +/- 43 pg/ml. The restoration of sinus rhythm following the administration of acebutolol was accompanied by a further increase in the plasma adrenaline and noradrenaline levels to 797 +/- 364 and 1226 +/- 263 pg/ml, respectively. A perifusion experiment indicated that acebutolol directly accelerated catecholamine release from the adrenal medulla in pigs.  相似文献   

7.
The ultrastructure of the membranes of noradrenaline (NA) and adrenaline (A) granules of the bovine adrenal medulla (Terland, O., T. Flatmark, and H. Kryvi, Biochim, Biophys. Acta 553, 460--468 (1979)) was analyzed by transmission, negative staining and freeze-etch electron microscopy. The two types of storage granules can be distinguished mainly by two morphological criteria: (a) The NA-granules have a more electron dense matrix core than the A-granules, (b) the NA-granules revealed less asymmetry in the distribution of intramembrane particles (nPF:nEF = 4,5:1) than the A-granules (nPF:nEF = 9:1). Thus, the trilaminar structure, negative staining pattern and size distribution of the intramembrane particles of the two fracture faces on freeze-etch electron microscopy were very similar for the two types of granules. Freeze-etching revealed a wide range of the particle size distribution for both fracture faces in both types of granules, with an average diameter of 12.6 +/- 2.7 nm (A-granules) and 10.2 +/- 2.8 nm (NA-granules) for the E-fracture faces and 11.4 +/- 2.7 nm (A-granules) and 9.8 +/- 2.4 nm (NA-granules) for the P-fracture faces. Some of the particles on the P-fracture face (outer surface of the membrane) revealed a subunit structure, most clearly seen in the specimens of NA-granules. Morhpometric analyses of sectioned bovine adrenal medulla revealed that the chromaffin granules on an average account for approx. 13.5% of the cytoplasmic volume in the total population of chromaffin cells.  相似文献   

8.
We obtained uterine and peripheral venous plasma, and samples of luteal and placental tissues from 2- to 7-year-old, Eurasian mountain reindeer (Rangifer tarandus tarandus) from a free-living, semi-domesticated herd in northern Norway in November 1995, and February and March 1996. In November, ovarian venous blood was also collected from four animals. Plasma samples were assayed for progesterone and oestradiol. The tissue samples were examined by light and electron microscopy, steroid dehydrogenase histochemistry, and northern blot analysis for RNAs for 3beta-hydroxy-steroid dehydrogenase (3beta-HSD) and P450 (side chain cleavage (scc)). Peripheral blood was taken from non-pregnant females in the same herd on the same dates. Peripheral progesterone concentrations in pregnant reindeer (3.4 +/- 0.5 ng/ml, n = 8) clearly exceeded those in non-pregnant animals (0.40 +/- 0.14 ng/ml; P < 0.0004 , n = 10) but oestradiol levels were only marginally higher in pregnant (6.0 +/- 0.7 pg/ml) than in non-pregnant (4.8 +/- 0.5 pg/ml; P = 0.35) reindeer at the stages examined. In pregnant animals, peripheral progesterone and oestradiol concentrations rose slightly between November and March but the differences did not reach significance (progesterone, P = 0.083; oestradiol, P = 0.061). In November, progesterone concentrations in the ovarian vein (79 +/- 15 ng/ml) greatly exceeded (P < 0.03) those in the uterine vein ( 10 +/- 4 ng/ml) which in turn exceeded the levels in the peripheral blood (2.8 +/- 0.4 ng/ml; P < 0.29). Oestradiol concentrations were slightly but significantly (P < 0.05) higher in the ovarian (20 +/- 3 pg/ml) than the uterine vein (13 +/- 1 pg/ml) and, in turn, greater (P < 0.03) than in peripheral blood (4.6 +/- 0.4 pg/ml). All samples of luteal tissue consisted exclusively of normal fully-differentiated cells and stained intensely for 3beta-HSD. Isolated groups of placental cells also stained strongly for 3beta-HSD. RNA for P450 (scc) and 3beta-HSD was abundant in all corpora lutea and lower concentrations of P450 (scc) were present in the placenta. 3beta-HSD RNA in the placenta was below the limit of detection. We conclude that the corpus luteum remains an important source of progesterone throughout pregnancy in reindeer but that the placenta is also steroidogenic.  相似文献   

9.
The ultrastructural organization of secretory granules, containing adrenaline (A) or noradrenaline (NA) was studied in chromaffin cells of the rat adrenal gland after 3-, 24- and 48-hour immobilization stress. Using cytochemical electron microscopic Tranzer's method and the method of morphometry, the number of normal dense cores, "empty" and "semiempty" vesicles was calculated. It was shown that the total content of vesicles and the ratio of investigated types of both adrenaline- and noradrenaline-accumulating granules were markedly changed during stress. The degree of such stress-induced reorganization depended on the stage of stress reaction and involved first A-cells and then NA-cells.  相似文献   

10.
In this study, we investigated the effects of N(omega)-nitro-L-arginine (L-NNA) on arterial blood pressure (BP), plasma noradrenaline (NA) and adrenaline (A) levels and angiotensin-converting enzyme (ACE) activity. L-NNA was applied with tap water (1 mg/ml) from the 3rd to the 8th week of age (group L-NNA1). In Experiment 1, long-term L-NNA application increased BP compared to the control group (group C1) (L-NNA1 = 131.4 +/- 6.3, n = 6; C1 = 82.7 +/- 4.7 mm Hg, n = 7) but decreased plasma noradrenaline and adrenaline levels and ACE activity (NA levels: C1 = 15.5 +/- 0.8, n = 7; L-NNA1 = 8.6 +/- 0.5 ng/ml, n = 7; A levels: C1 = 15.5 +/- 0.8, n = 7; L-NNA1 = 6.0 +/- 0.5 ng/ml, n = 7; ACE activities: C1 = 87.3 +/- 3.1, n = 6; L-NNA1 = 46.2 +/- 1.9 U/l, n = 5). On the other hand, in Experiment 2 (carried out under the same conditions and in age-matched chickens), blood pressure, plasma noradrenaline levels and ACE activity were found to differ in the control group (C2) (BP = 141.4 +/- 15.5 mm Hg, n = 7; NA = 1.1 +/- 0.4 ng/ml, n = 7; ACE = 57.2 +/- 5.3 U/l, n = 7) as compared to C1, while plasma adrenaline levels were similar. In this series, long-term L-NNA application (group L-NNA2) did not change the BP, but surprisingly increased noradrenaline and ACE values (values of L-NNA2: BP = 165.7 +/- 15.6 mm Hg, n = 7; NA = 9.3 +/- 1.3 ng/ml, n = 8; ACE = 149.4 +/- 16 U/l, n = 8) while decreasing plasma adrenaline levels. L-arginine addition to L-NNA treatment completely reversed plasma noradrenaline and ACE activity values. These results indicate the modulatory activity of an L-arginine-NO pathway on adrenaline release as well as on the renin-angiotensin system in chickens.  相似文献   

11.
Abstract: Differential adrenaline (Ad) and noradrenaline (NA) secretions evoked by secretagogues were investigated using digitonin-permeabilized adrenal chromaffin cells, cultured adrenal chromaffin cells, and perfused adrenal glands of the ox. In digitonin-permeabilized cells, Ca2+ (0.8-160 μM) caused a concentration-dependent increase in catecholamine secretion, which was characterized by a predominance of NA over Ad secretion. Acetylcholine (10-1,000 μM), high K+ (14-56 μM), and bradykinin (0.1-1,000 μM) all were confirmed to induce the release of more NA than Ad at all concentrations used. There was no apparent difference in the ratios of NA/Ad between Ca2+-induced catecholamine secretion from digitonin-permeabilized cells and those induced by secretagogues from cultured cells. Qualitatively the same result was obtained in the secretory responses to acetylcholine and high K+ in perfused adrenal glands. These results indicate that the effectiveness of Ca2+ for catecholamine secretion is higher in the secretory apparatus of NA cells than in that of Ad cells of the bovine adrenal medulla. This may be one of the reasons why the secretagogues cause a predominance of NA secretion over Ad secretion in the bovine adrenal medulla.  相似文献   

12.
This study investigated whether adenosine mediates the decrease in plasma renin activity (PRA) during acute hypoxia. Eight chronically tracheotomized, conscious beagle dogs were kept under standardized environmental conditions and received a low-sodium diet (0.5 mmol.kg body wt(-1).day(-1)). During the experiments, the dogs were breathing spontaneously via a ventilator circuit: first hour, normoxia (21% inspiratory concentration of O(2)); second and third hours, hypoxia (10% inspiratory concentration of O(2)). Each of the eight dogs was studied twice in randomized order in control and theophylline experiments. In theophylline experiments, theophylline, an A(1)-receptor antagonist, was infused intravenously during hypoxia (loading dose: 3 mg/kg within 30 min, maintenance: 0.5 mg. kg(-1). h(-1)). In theophylline experiments, PRA (5.9 +/- 0.8 ng ANG I. ml(-1). h(-1)) and ANG II plasma concentration (15.9 +/- 2.3 pg/ml) did not decrease during hypoxia, whereas plasma aldosterone concentration decreased from 277 +/- 63 to 132 +/- 23 pg/ml (P < 0.05). In control experiments, PRA decreased from 6.8 +/- 0.8 during normoxia to 3.0 +/- 0.5 ng ANG I. ml(-1). h(-1) during hypoxia, ANG II decreased from 13.3 +/- 1.9 to 7.3 +/- 1.9 pg/ml, and plasma aldosterone concentration decreased from 316 +/- 50 to 70 +/- 13 pg/ml (P < 0.05). Thus infusion of the adenosine receptor antagonist theophylline inhibited the suppression of the renin-angiotensin system during acute hypoxia. The decrease in aldosterone occurred independently and is apparently directly related to hypoxia. In conclusion, it is likely that adenosine mediates the decrease in PRA during acute hypoxia in conscious dogs.  相似文献   

13.
We tested the hypothesis that 1-desamino-8-D-arginine vasopressin (DDAVP), a V2-receptor agonist, could inhibit the diuresis induced by water immersion in humans. Water and electrolyte excretion, plasma atrial natriuretic factor concentration, and plasma aldosterone concentration were measured initially and after 3 h of water immersion in 13 healthy sodium-replete men given either placebo or 20 micrograms of intranasal DDAVP. Guanosine 3',5'-cyclic monophosphate and urea excretion and urine osmolality were also determined. DDAVP inhibited the diuresis induced by water immersion in men: 758 +/- 168 (SE) ml/3 h in the placebo group vs. 159 +/- 28 ml/3 h in the DDAVP group (P less than 0.05). After 3 h of water immersion, plasma atrial natriuretic factor concentrations were increased from 11 +/- 2 to 20 +/- 4 pg/ml in the placebo group and from 14 +/- 2 to 33 +/- 4 pg/ml in the DDAVP group (P less than 0.05). Plasma aldosterone concentrations were decreased from 98 +/- 18 to 45 +/- 6 pg/ml in the placebo group (P less than 0.05) and from 54 +/- 17 to 25 +/- 5 pg/ml in the DDAVP group (P less than 0.05). Despite these changes in aldosterone and atrial natriuretic factor concentrations, which should increase sodium excretion, DDAVP decreased the natriuresis induced by water immersion in humans: 56 +/- 8 meq Na+/3 h in the placebo group vs. 36 +/- 6 meq Na+/3 h in the DDAVP group (P less than 0.05). DDAVP may be used to prevent the diuresis associated with central redistribution of blood volumes that occur during water immersion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The adrenal gland regulates metabolism and maintains normal electrolyte balance. Adrenal hormones are equivalent in all vertebrates; the chromaffin tissue produces adrenaline and noradrenaline and the steroidogenic tissue produces most of the steroid hormones present in mammals. Podarcis sicula belongs to the Squamata family of lizards and it is the most abundant lizard species in southern Italy. This species shows a reproductive annual cycle and the presence of seasonal variations in the activity of the hypothalamus-hypophyseal-thyroid axis. To investigate the existence of an annual cycle of lizard adrenal gland, we have measured plasma concentrations of corticosterone, ACTH, noradrenaline and adrenaline. We have shown that corticosterone rapidly increased from January to March to reach a peak value that persisted until July, then, it slowly decreased until December. ACTH levels increased from January to May and slowly decreased from July to December. Noradrenaline levels were higher in March and then decreased until December. On the contrary, adrenaline levels increased from March to July and slowly decreased until December. Our results demonstrate the existence of an annual cycle of the lizard adrenal gland activity. This is very interesting because its activity is important to rightly regulate the reproductive status of the Podarcis sicula lizard.  相似文献   

15.
Tissue and plasma concentration of peptide YY (PYY) were measured by means of a radioimmunoassay (RIA) developed in our laboratory, using a specific PYY antiserum generated in New Zealand white rabbits against synthetic PYY, and dextran-coated charcoal to terminate the assay. Cellular localization of PYY was studied immunohistochemically using the peroxidase-antiperoxidase (PAP) technique. The highest tissue concentration of PYY was found in the mucosa of the terminal ileum and colon. PYY-containing secretory granules were primarily found in the basal pole of open-type endocrine cells. Basal plasma concentration of PYY was 70 +/- 9 pg/ml and rose to 357 +/- 30 pg/ml during the IV administration of PYY at 400 pmol/kg-h. A significant correlation was found (r = 0.94, p less than 0.05) between dose of PYY (12.5, 25, 50, 100, 200, 400 pmol/kg-h, IV) and plasma concentration of PYY. The calculated half-life of PYY in plasma was 8.3 +/- 1.9 minutes. Plasma concentration of PYY during the intraduodenal administration of sodium oleate (150 +/- 20 pg/ml) or long-chain triglyceride (187 +/- 37 pg/ml) was similar to plasma concentration of PYY obtained during the IV administration of PYY at 100 pmol/kg-h. Plasma concentration of PYY raised (126 +/- 10 pg/ml) after the administration of bombesin (400 pmol/kg-h, IV). Bile enhanced release of PYY. The present study suggests a hormonal role for PYY.  相似文献   

16.
The aims of this study were to propose a bioindicator organism, the newt Triturus carnifex, for the assessment of toxicological impact of thiophanate methyl in the Campania region (Italy) and the possible adverse activity on the adrenal gland. In the acute toxicity study, experimental groups of T. carnifex were exposed to 2.40, 4.80, 9.60 and 19.20 microg/L tap water of thiophanate methyl for 2 days; the LD50 was found to be 9.60 microg/L. To evaluate the effects on the adrenal gland, newts were exposed to a dose of 25% of the LD50 2 days for 8 days. The ultrastructural features of the tissues as well as the serum levels of aldosterone, corticosterone, norepinephrine (NE) and epinephrine (E) were evaluated. The number of secretory vesicles in the chromaffin cells appeared significantly decreased, whereas NE and E serum levels appeared strongly increased. Moreover, corticosterone and aldosterone serum levels appeared significantly reduced. The results suggest that: 1) T. carnifex has the features of an ideal bioindicator, due to its high sensitivity to thiophanate methyl, 2) thiophanate methyl acts as endocrine disruptor, affecting the adrenal gland at very low doses, 3) thiophanate methyl may be toxic for nontarget organisms, such as newts.  相似文献   

17.
This work analyses the distribution, histology and ultrastructure of chromaffin cells (CCs) and interrenal tissue (It) in the head kidney of Epinephilus tauvina. Histological examination revealed that chromaffin cells are found in small groups under the endothelium of the posterior cardinal vein (PCV) and are mostly closely associated with the interrenal tissue. Ultrastructure examination confirmed the existence of two main chromaffin cell types, distinguished by different types of secretory granules. The first type was characterized by the presence of vesicles with round, strongly electron dense core granules, which were eccentrically located. Such cells were interpreted as being noradrenaline cells. Meanwhile, cells with vesicles that were completely electron lucent or that contained small less dense eccentric granules were identified as adrenaline cells. Nerve endings were invaginated into the chromaffin cells through synaptic junctions. Interrenal tissue consisted of nests, cords, or strands of cells in contact with the posterior cardinal vein (PCV) and interposed with haematopoietic tissue. Ultrastructure analysis revealed only one interrenal cell type, which contained abundant smooth endoplasmic reticulum (sER) and numerous mitochondria with tubulo‐vesicular cristae, characteristics of steroid‐producing cells. The interrenal tissue cells have different cytological aspects that can be linked to a steroidogenic cell cycle allowing a periodical renewal of organelles.  相似文献   

18.
c-Ret encodes a receptor tyrosine kinase that is essential for normal development of the kidney as well as enteric and sympathetic neurons. Since sympathetic neurons and neuroendocrine chromaffin cells originate from a common progenitor cell, we have examined the relevance of c-Ret for the development of adrenal chromaffin cells by analyzing mouse mutants lacking c-Ret. Adrenal chromaffin cells express c-Ret mRNA at embryonic day (E) 12.5 and 13.5, yet levels of expression decline at later embryonic and postnatal ages. Adrenal medullae of c-Ret deficient mice show normal numbers of tyrosine hydroxylase (TH)-immunoreactive cells at E13.5 and at birth. Ultrastructurally, adrenal chromaffin cells of c-Ret(-/-) mice appear unaltered: chromaffin cells develop typical secretory chromaffin granules, the morphological hallmark of chromaffin cells, and synaptic terminals appear normal. However, adrenaline levels and numbers of chromaffin cells immunoreactive for the adrenaline synthesizing enzyme phenylethanolamine-N-methyltransferase (PNMT) are reduced by about 30% in c-Ret-deficient mice arguing for a direct or indirect role of c-Ret in the regulation of PNMT. Thus, despite expression of c-Ret, adrenal chromaffin cells develop largely normal in mice lacking c-Ret. We therefore conclude that sympathetic neurons and neuroendocrine chromaffin cells profoundly differ in their requirement for c-Ret signaling during development.  相似文献   

19.
M Dumont  R Day  S Lemaire 《Life sciences》1983,32(3):287-294
The distribution of immunoreactive-dynorphin (ir-Dyn) in isolated subpopulations of bovine adrenal chromaffin cells was examined and compared with that of adrenaline (A), noradrenaline (NA) and ir-Leucine-Enkephalin (ir-Leu-Enk). Using a stepwise bovine serum albumin (BSA) gradient, various populations of catecholamine-storing cells were separated and designated as cell layers I, II and III. Cell layer I contained more NA than A; cell layer II contained slightly more A than NA whereas cell layer III was highly enriched in A. The original cell preparation contained 2.9 times more ir-Leu-Enk than ir-Dyn (4.7 and 1.6 pmoles per 10(6) cells, respectively). After separation of the cells on BSA gradient, ir-Dyn was mainly detected in cell layer I (4.0 pmoles/10(6) cells) whereas ir-Leu-Enk was concentrated in cell layer III (8.3 pmoles/10(6) cells). Both peptides were secreted in response to acetylcholine (5 x 10(-5) M), but the amount secreted was in accordance with the cell content in each peptide. After subcellular fractionation of the adrenal medulla, the neuropeptides were found in close association with catecholamines in the secretory granules. These results indicate that bovine adrenal chromaffin cells can be isolated according to their specific content in A, NA and opioid peptides and are consistent with the hypothesis of distinct biosynthetic pathways for Dyn and the Enk.  相似文献   

20.
Morphology of the chromaffin cells of Triturus cristatus during a complete annual cycle has been investigated. General ultrastructural characteristics are similar for all chromaffin cells, including numerous small mitochondria, well-developed Golgi apparatus and rough endoplasmic reticulum with short cisternae. The primary difference among cells is the type of the chromaffin granules they posses. These are of two kinds: adrenalin (A) and noradrenalin granules (NA). Both types are simultaneously present in the chromaffin cells but with different ratios during the year. During December–January and May–August, NA granules largely prevail, while in September–November and February–April, A and NA granules are present in about equal quantities. The total quantity of catecholamine granules, however, is relatively constant throughout the year. These findings suggest that T. cristatus has a single type of chromaffin cell, the granule content of which varies according to different functional states. The catecholamines are apparently discharged by exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号