首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The presence of magnetic material in tissues of lateral line and ocellar spot of tomtates Haemulon aurolineatum is shown using the ferromagnetic resonance technique. For the first time magnetic material is reported in the ocellar spot. The magnetic material detected in these structures of H. aurolineatum suggests that this species could use magnetic orientation during its nocturnal foraging, and the relevance and role of this material with respect to schooling movements is discussed.  相似文献   

2.
A morphological study by light and electron microscopy on the lateral line system of the urodele amphibian Pleurodeles waltii demonstrates the presence of sensory organs other than neuromasts in the head. From their morphology, they have been called ampullary organs. The ampullary organs occur in the bottom of a groove and consist of three different types of cells: sensory, supporting and mantle cells. Histochemical analysis indicates that the last two are secretory cells, probably involved in the production of the material filling the ampulla and the groove.  相似文献   

3.
The magnetic anisotropy of the whole radula, the major lateral radula teeth, and magnetic material in the major lateral radula teeth of the chiton Acanthochiton rubrolinestus LISCHKE have been studied by a magnetic torque meter and superconducting quantum interference device (SQUID) magnetometer. The length and width axes of the teeth are the easily magnetized axes, while the thickness axis is difficult to magnetize. The width and thickness axes of the radula are the easily magnetized axes, and the length axis is difficult to magnetize. The measurement results of the whole radula and the major lateral radula teeth agree well with each other. The magnetic anisotropy of the magnetic material is given as well as a possible distribution of the magnetic material in the major lateral radula teeth.  相似文献   

4.
Separately delivered visual and lateral line stimuli elicit similar but not identical orientation and approach by intact, sighted Xenopus. Response frequencies for visual stimuli declined sharply for distant or caudal stimuli while those for lateral line stimuli changed little. Turn angles correlated highly with stimulus angles but were smaller on average, so regression slopes were less than one. Regression slopes were smaller for visual than for lateral line stimuli, but this apparent difference was due to different distributions of stimulus distance interacting with the toad’s rotation center. Errors in final headings, most often under-rotations, did not differ by modality. Frequencies of lunges and arm capture movements were higher for visual stimuli both overall and especially for rostral proximal stimuli. The results demonstrate accurate orientation by sighted Xenopus to visual and lateral line stimuli; they are consistent with expectations based on in-register tectal maps. Orientation to lateral line stimuli is similar to previous results with blinded animals, revealing no heightened acuity in the latter. Modality differences indicate that the lateral line system is better for omnidirectional orientation and approach to distant stimuli whereas the visual system is more attuned to nearby rostral stimuli and more apt to mediate strikes.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

5.
The morphology and development of the multiple lateral line canals (canals 1–5 in dorsal to ventral sequence) on the trunk of two representative hexagrammids, Hexagrammos decagrammus and H. stelleri, were studied using histological and cleared and stained material. The morphology of the lateral line scales of which the lateral line canals are composed and the distribution of canal neuromasts within them were described quantitatively. We hypothesized that 1) one neuromast is contained in each lateral line scale and all five canals contain neuromasts, 2) all five canals develop similarly, and 3) the multiple trunk canals are an adaptation for the alteration of lateral line function. Lateral line scale morphology was found to be similar among the five canals in Hexagrammos decagrammus and H. stelleri. However, canal 3 is significantly wider than the other four canals. It is the only one of the five canals connected to the canals on the head, and more significantly, it is the only one of the five canals that contains neuromasts. The lateral line scales that comprise all five lateral line canals show the same pattern of development whether or not they contain neuromasts. The five canals develop asynchronously, and each of the canals develops either rostro-caudally or caudo-rostrally. Canal 3 is the homologue of a single trunk canal in other teleosts; canals 1, 2, 4, and 5 are apomorphic features of the two species of Hexagrammos. Canals 1, 2, 4, and 5 cannot be functional components of the lateral line system because they do not contain neuromasts and thus cannot be adaptations for the alteration of lateral line function. The occurrence of lateral line canals lacking neuromasts demands a direct assessment of neuromast distributions in the lateral line canals among fishes. Finally, our data suggest that the putative role of neuromasts in the morphogenesis of lateral line canals and the nature of neuromast-bone relationships need to be critically reevaluated. J. Morphol. 233:195–214, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
The most accepted hypothesis of magnetoreception for social insects is the ferromagnetic hypothesis which assumes the presence of magnetic material as a sensor coupled to sensitive structures that transmit the geomagnetic field information to the nervous system. As magnetite is the most common magnetic material observed in living beings, it has been suggested as basic constituent of the magnetoreception system. Antennae and head have been pointed as possible magnetosensor organs in social insects as ants, bees and termites. Samples of three antenna joints: head-scape, scape-pedicel and pedicel-third segment joints were embedded in epoxi resin, ultrathin sectioned and analyzed by transmission electron microscopy. Selected area electron diffraction patterns and X-ray energy dispersive spectroscopy were obtained to identify the nanoparticle compound. Besides iron oxides, for the first time, nanoparticles containing titanium have been identified surrounded by tissue in the antennae of ants. Given their dimension and related magnetic characteristics, these nanoparticles are discussed as being part of the magnetosensor system.  相似文献   

7.
The lateral line system in anurans is functional during aquatic stages and therefore could provide characters related to larval morphological variation. However, few studies have addressed its components in an integrated overview, and little is known about its ontogenetic variation. This study describes the postembryonic trajectory of the lateral system in Telmatobius atacamensis up to its metamorphic regression. This includes structure, number, topography, and innervation of neuromasts, to contribute new and complete information about its larval organization and its temporal sequence of regression. The arrangement and innervation of lateral lines in T. atacamensis resembles those described for other Type IV tadpoles. Its distinctive features are the orientation of the neuromast stitches in the lateral lines, the presence of supraotic neuromasts, and the first-described case of asymmetry of the ventral trunk line. The temporal sequence of regression during metamorphosis differs between the lateral lines and the lateral line nerves, which remain myelinated into postmetamorphic stages. This asynchronous pattern between different components of the system has also been described for Pseudis paradoxa, which shares with T. atacamensis a remarkably long larval period. This long larval period and gradual metamorphosis could also be related to the constitutive metamorphic regression of the system, in spite of the aquatic lifestyle of these frogs.  相似文献   

8.
In the direct-developing frog Eleutherodactylus coqui neuromasts and ganglia of the lateral line system never develop. We show here that this absence of the lateral line system, which is evolutionarily derived in anurans, is due to very early changes in development. Ectodermal thickenings, which are typical of lateral line placodes, and from which neuromasts and ganglion cells of the lateral line originate, never form in E. coqui, although other neurogenic placodes are present. Moreover, although NeuroD is expressed in the lateral line placodes of Xenopus laevis, corresponding expression sites are lacking in E. coqui. Heterospecific transplantation experiments show that axolotl ectoderm can be induced to form lateral line placodes after transplantation to E. coqui hosts but that E. coqui ectoderm does not form lateral line placodes on axolotl hosts. This suggests that the loss of the lateral line system in E. coqui is due to the specific loss of ectodermal competence to form lateral line placodes in response to inductive signals. Our results (1) indicate that the competence for lateral line placode formation is distinct and dissociable from the competence to form other neurogenic placodes and (2) support the idea that the lateral line system acts as a module in development and evolution.  相似文献   

9.
The laterophysic connection (LC) is an association between bilaterally paired, anterior swim bladder extensions (horns) and medial openings in the supracleithral lateral line canals that diagnoses butterflyfishes in the genus Chaetodon. It has been hypothesized that the LC makes the lateral line system sensitive to sound pressure stimuli that are transmitted by the swim bladder horns and converted to fluid flow into the lateral line system via a laterophysic tympanum. The purpose of this study was to define variation in the morphology of the LC, swim bladder and swim bladder horns among 41 Chaetodon species from all 11 Chaetodon subgenera and a species from each of four non-Chaetodon genera using gross dissection, histological analysis as well as 2D or 3D CT (computed tomographic) imaging of live, anesthetized fishes. Our results demonstrate that the lateral line system appears rather unspecialized with well-ossified narrow canals in all species examined. Two LC types (direct and indirect), defined by whether or not the paired anterior swim bladder horns are in direct contact with a medial opening in the supracleithral lateral line canal, are found among species examined. Two variants on a direct LC and four variants of an indirect LC are defined by combinations of soft tissue anatomy (horn length [long/short] and width [wide/narrow], number of swim bladder chambers [one/two], and presence/absence of mucoid connective tissue in the medial opening in the supracleithrum). The combination of features defining each LC variant is predicted to have functional consequences for the bioacoustics of the system. These findings are consistent with the recent discovery that Chaetodon produce sounds during social interactions. The data presented here provide the comparative morphological context for the functional analysis of this novel swim bladder-lateral line connection.  相似文献   

10.
The lateral line system and its innervation in ten tetraodontiform families and five outgroup taxa were examined. Although some homology issues remained unresolved, tetraodontiforms were characterized by having two types (at least) of superficial neuromasts (defined by the presence or absence of supporting structures) and accessory lateral lines and neuromasts (except Molidae in which “accessory” elements were absent). The preopercular line in Tetraodontiformes was not homologous with that of typical teleosts, because the line was innervated by the opercular ramule that was newly derived from the mandibular ramus, the condition being identical to that in Lophiidae. Within Tetraodontiformes, the number of neuromasts varied between 70 and 277 in the main lines and between 0 and 52 in accessory elements. Variations were also recognized in the presence or absence of the supraorbital commissure, mandibular line, otic line, postotic line, ventral trunk line, and some lateral line nerve rami, most notably the dorsal branch of the opercular ramule, being absent in Aracanidae, Ostraciidae, Tetraodontidae, Diodontidae, and Molidae. Morphological characteristics derived from the lateral line system and its innervation provided some support for a sister relationship of tetraodontiforms with lophiiforms. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
The mechanosensory lateral line is a distributed, hair-cell based system which detects the water flow regime at the surface of the fish. Superficial neuromasts densely scattered over the surface of some cave fish detect the pattern of flow over the surface of the body and are important in rheotactic behaviors and perhaps in the localization of small vibrating sources. Canal neuromasts are very likely also involved in the detection of small planktonic prey, but seem also to play an essential role in replacing vision as the major sense by which blind cave-fish perceive their surroundings. The flow-field that exists around a gliding fish is perturbed by objects in the immediate vicinity, these perturbations are detected by the lateral line system. In this way the fish can build up a picture of its environment, a process that has been called active hydrodynamic imaging. None of the lateral line behaviors exhibited by blind cave fish are necessarily exclusive to these species, but there is some evidence that their lateral line capabilities are enhanced with respect to their sighted relatives.  相似文献   

12.
In all vertebrates, eighth nerve fibres from the inner ear distribute to target nuclei situated in the dorsolateral wall of the rhombencephalon. In amniotes, primary auditory and vestibular nuclei are readily delineated in that acoustic nuclei lie dorsal and sometimes rostral to vestibular nuclei. Fishes and aquatic amphibians have, in addition to labyrinthine organs, hair cell receptors in the lateral line system. Eighth nerve and lateral line fibres from these sense organs project to the octavolateralis region of the rhombencephalon. In this region, the primary nuclei cannot be easily divided into functionally distinct units. However, modality-specific zones seem to be present for auditory as well as lateral line projections lie dorsal and sometimes rostral to those from vestibular organs. Projections from the primary auditory and vestibular nuclei to higher order centres follow pathways which are conservative in their architecture among vertebrates. Ascending auditory fibres project either directly or via relay nuclei to a large midbrain center, the torus semicircularis (inferior colliculus) and hence to the forebrain. In fishes and aquatic amphibians, the lateral line system also sends a projection to the midbrain and information from this system may be integrated with auditory input at that level. The organization of vestibulospinal and vestibulo-ocular pathways shows little variation throughout vertebrate phylogeny. The sense organs of the inner ear of all vertebrates and of the lateral line system of anamniotes receive an efferent innervation. In anamniotes and some reptiles, the efferent supply originates from a single nucleus (Octavolateralis Efferent Nucleus) while that of "higher" vertebrates arises from separate auditory and vestibular efferent nuclei. The biological significance of this innervation for all vertebrates is not yet understood. However, an important feature common to all is the association of the efferent system with the motor centres of the hindbrain.  相似文献   

13.
Synopsis Field and laboratory experiments indicate that the mottled sculpin, Cottus bairdi, feed in the dark. Blinded sculpins feed on a variety of motile prey in the laboratory and show stereotyped responses to prey stimuli. The sculpins bite at moving inert objects, even if buried in substratum, indicating that they use their lateral line system to detect prey. Covering portions of the lateral line with an inert paste eliminates response to objects near the covered region of the lateral line. The sculpins can also detect prey (including inert objects) in a stream if the prey is upstream. Collection from two series of presunset, postsunset, presunrise, postsunrise, dives in Lake Michigan indicate nocturnal feeding by the mottled sculpin.  相似文献   

14.
The lateral line system of anamniote vertebrates enables the detection of local water movement and weak bioelectric fields. Ancestrally, it comprises neuromasts – small sense organs containing mechanosensory hair cells – distributed in characteristic lines over the head and trunk, flanked on the head by fields of electroreceptive ampullary organs, innervated by afferent neurons projecting respectively to the medial and dorsal octavolateral nuclei in the hindbrain. Given the independent loss of the electrosensory system in multiple lineages, the development and evolution of the mechanosensory and electrosensory components of the lateral line must be dissociable. Nevertheless, the entire system arises from a series of cranial lateral line placodes, which exhibit two modes of sensory organ formation: elongation to form sensory ridges that fragment (with neuromasts differentiating in the center of the ridge, and ampullary organs on the flanks), or migration as collectives of cells, depositing sense organs in their wake. Intensive study of the migrating posterior lateral line placode in zebrafish has yielded a wealth of information concerning the molecular control of migration and neuromast formation in this migrating placode, in this cypriniform teleost species. However, our mechanistic understanding of neuromast and ampullary organ formation by elongating lateral line placodes, and even of other zebrafish lateral line placodes, is sparse or non-existent. Here, we attempt to highlight the diversity of lateral line development and the limits of the current research focus on the zebrafish posterior lateral line placode. We hope this will stimulate a broader approach to this fascinating sensory system.  相似文献   

15.
Parapercis colias (blue cod) and Cheimarrichthys fosteri (torrentfish) are two members of the family Pinguipedidae. They reside in habitats with different background levels of hydrodynamic activity and differ in their feeding ecology. The peripheral morphology of the mechanosensory lateral line system was investigated in each species. The torrentfish is the only freshwater member of this otherwise exclusively marine family. It resides in turbulent fast flowing habitats and feeds nocturnally on stream drift. Torrentfish have many superficial neuromasts and a simple unbranched canal system. In comparison the blue cod resides in sub-tidal slow flowing habitats, is a diurnal predator and has relatively few superficial neuromasts and a well-developed branching canal system. For these two species the background level of hydrodynamic activity does not appear to be the dominant selection pressure on lateral line morphology, in the case of the torrentfish in particular it is more compelling to view lateral line morphology in the light of environmental pressures that have favoured the evolution of nocturnal feeding.  相似文献   

16.
Tadpoles (Xenopus laevis) have a lateral line system whose anatomical structure has been described, but whose functional significance has not been closely examined. These experiments tested the hypothesis that the lateral line system is involved in rheotaxis. Tadpoles in developmental stages 47–56 oriented toward the source of a water current. Orientation was less precise after treatment with cobalt chloride or streptomycin, but was similar to that of untreated animals after exposure to gentamicin. In no current conditions, tadpoles exhibited a characteristic head-down posture by which they held themselves in the water column at an angle around 45°. This body posture became significantly less tilted in the presence of water current. Treatment with cobalt chloride or streptomycin increased the angle of tilt close to that seen in no current conditions, while gentamicin treatment tended to decrease tilt angle. The data are consistent with anatomical and physiological findings that tadpole neuromasts are similar to superficial, but not canal, neuromasts in fishes, and they suggest that the lateral line system is involved in both directional current detection and current-related postural adjustments in Xenopus.  相似文献   

17.
版纳鱼螈侧线系统的结构   总被引:5,自引:0,他引:5  
李桂芬  许崇任 《动物学报》2007,53(2):346-353
版纳鱼螈(Ichthyophis bannanica)是我国无足目的仅有代表,应用光镜和扫描电镜对版纳鱼螈的侧线系统进行形态学和组织学观察的研究表明:版纳鱼螈幼体表皮中的侧线器官有接受机械刺激的神经丘和电接受壶腹器官两种,神经丘包括表面神经丘和陷神经丘。侧线分布主要包括:头部的鼻侧线、眶上线、眶下线、眶后线、口侧线、下颌线、咽侧线、鳃孔上线和身体上的背侧线。侧线器官的分布密度、大小和凹陷深度明显与周围表皮的厚度和不同部位有关。幼体的侧线器官退化与鳃孔的退化同步,亚成体以后不保留侧线系统。版纳鱼螈的侧线分布和器官结构与其它无足类的大致相似,仅在眶上线和眶下线的器官分布上存在微小的差别  相似文献   

18.
The mechanosensory lateral line system of fishes is an important organ system conveying information crucial to individual fitness. Yet, our knowledge of lateral line diversity is almost exclusively based on interspecific studies, whereas intraspecific variability and possible population divergence have remained largely unexplored. We investigated lateral line system variability in four marine and five pond populations of nine-spined stickleback (Pungitius pungitius). We found significant differences in neuromast number between pond and marine fish. In particular, three of seventeen lateral line regions (viz. caudal peduncle superficial neuromasts; canal neuromasts from the anterior trunk and caudal peduncle) showed strong divergence between habitats. Similar results were obtained with laboratory-reared individuals from a subset of populations, suggesting that the patterns found in nature likely have a genetic basis. Interestingly, we also found habitat-dependent population divergence in neuromast variability, with pond populations showing greater heterogeneity than marine populations, although only in wild-caught fish. A comparison of neutral genetic (F(ST)) and phenotypic (P(ST)) differentiation suggested that natural selection is likely associated with habitat-dependent divergence in neuromast counts. Hence, the results align with the conclusion that the mechanosensory lateral line system divergence among marine and pond nine-spined sticklebacks is adaptive.  相似文献   

19.
The biological function of anatomical specializations in the mechanosensory lateral line of elasmobranch fishes is essentially unknown. The gross and histological features of the lateral line in the Atlantic stingray, Dasyatis sabina, were examined with special reference to its role in the localization and capture of natural invertebrate prey. Superficial neuromasts are arranged in bilateral rows near the dorsal midline from the spiracle to the posterior body disk and in a lateral position along the entire length of the tail. All dorsal lateral line canals are pored, contain sensory neuromasts, and have accessory lateral tubules that most likely function to increase their receptive field. The pored ventral canal system consists of the lateral hyomandibular canal along the disk margin and the short, separate mandibular canal on the lower jaw. The extensive nonpored and relatively compliant ventral infraorbital, supraorbital, and medial hyomandibular canals form a continuous complex on the snout, around the mouth, and along the abdomen. Vesicles of Savi are small mechanosensory subdermal pouches that occur in bilateral rows only along the ventral midline of the rostrum. Superficial neuromasts are best positioned to detect water movements along the transverse body axis such as those produced by tidal currents, conspecifics, or predators. The pored dorsal canal system is positioned to detect water movements created by conspecifics, predators, or possibly distortions in the flow field during swimming. Based upon the stingray lateral line morphology and feeding behavior, we propose the Mechanotactile Hypothesis, which states that the ventral nonpored canals and vesicles of Savi function as specialized tactile mechanoreceptors that facilitate the detection and capture of small benthic invertebrate prey. J. Morphol. 238:1–22, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
Lateral line placodes are specialized regions of the ectoderm that give rise to the receptor organs of the lateral line system as well as to the sensory neurons innervating them. The development of lateral line placodes has been studied in amphibians since the early 1900s. This paper reviews these older studies and tries to integrate them with more recent findings. Lateral line placodes are probably induced in a multistep process from a panplacodal area surrounding the neural plate. The time schedule of these inductive processes has begun to be unravelled, but little is known yet about their molecular basis. Subsequent pattern formation, morphogenesis and differentiation of lateral line placodes proceeds in most respects relatively autonomously: Onset and polarity of migration of lateral line primordia, the type, spacing, size and number of receptor organs formed, as well as the patterned differentiation of different cell types occur normally even in ectopic locations. Only the pathways for migration of lateral line primordia depend on external cues. Thus, lateral line placodes act as integrated and relatively context-insensitive developmental modules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号