首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To evaluate the in situ occurrence of phytoplankton photoinhibition, the light-mediated depression of chlorophyll in vivo fluorescence (IVF) and of the cellular fluorescence capacity (CFC) of phytoplankton was determined in three southeastern United States reservoirs. Vertical profiles of a fluorescence depression index (FDI) and of the CFC for reservoir phytoplankton showed that near-surface photoinhibition of fluorescence properties occurred in association with high surface irradiance and weak vertical mixing of the water column. To characterize the time scales of photochemical and photosynthetic responses to and recovery from exposure to supraoptimal light intensity, phytoplankton IVF responses and 14C-fixation rates were measured infield experiments. Phytoplankton chlorophyll IVF, CFC, and photosynthetic 14C fixation were rapidly (20–40 min) depressed when reservoir phytoplankton were exposed to surface irradiances (1700–2000 μE·m?2·s?1). Light-mediated increases in the FDI declined rapidly (20–40 min) to pre-exposure levels during a subsequent low-light (75–200 μE·m?2·s?1) period, but CFC and 14C fixation recovered more slowly (>40 min). Exposure of reservoir phytoplankton to a light-intensity gradient revealed both intensity and time thresholds for IVF and CFC depression. Phytoplankton photochemical responses to bright light operate on time scales that, in conjunction with vertical mixing, should limit the occurrence of photoinhibition to extreme irradiance environments. Our results support the hypothesis that the photoinhibition of phytoplankton productivity occurs less commonly than is indicated by fixed-depth incubation measurements.  相似文献   

2.
The underwater light field in blackwater environments is strongly skewed toward the red end of the electromagnetic spectrum due to blue light absorption by colored dissolved organic matter (CDOM). Exposure of phytoplankton to full spectrum irradiance occurs only when cells are mixed up to the surface. We studied the potential effects of mixing‐induced changes in spectral irradiance on photoacclimation, primary productivity and growth in cultures of the cryptophyte Rhodomonas salina and the diatom Skeletonema costatum. We found that these taxa have very different photoacclimation strategies. While S. costatum showed classical complementary chromatic adaption, R. salina showed inverse chromatic adaptation, a strategy previously unknown in the cryptophytes. Transfer of R. salina to periodic full spectrum light (PFSL) significantly enhanced growth rate (μ) by 1.8 times and primary productivity from 0.88 to 1.35 mg C · (mg Chl?1) · h?1. Overall, R. salina was less dependent on PFSL than was S. costatum, showing higher μ and net primary productivity rates. In the high‐CDOM simulation, carbon metabolism of the diatom was impaired, leading to suppression of growth rate, short‐term 14C uptake and net primary production. Upon transfer to PFSL, μ of the diatom increased by up to 3‐fold and carbon fixation from 2.4 to 6.0 mg C · (mg Chl?1) · h?1. Thus, a lack of PFSL differentially impairs primarily CO2‐fixation and/or carbon metabolism, which, in turn, may determine which phytoplankton dominate the community in blackwater habitats and may therefore influence the structure and function of these ecosystems.  相似文献   

3.
During summer 2008, as part of the Circumpolar Flaw Lead system study, we measured phytoplankton photosynthetic parameters to understand regional patterns in primary productivity, including the degree and timescale of photoacclimation and how variability in environmental conditions influences this response. Photosynthesis–irradiance measurements were taken at 15 sites primarily from the depth of the subsurface chlorophyll a (Chl a) maximum (SCM) within the Beaufort Sea flaw lead polynya. The physiological response of phytoplankton to a range of light levels was used to assess maximum rates of carbon (C) fixation (P m*), photosynthetic efficiency (α *), photoacclimation (E k), and photoinhibition (β *). SCM samples taken along a transect from under ice into open water exhibited a >3-fold increase in α * and P m*, showing these parameters can vary substantially over relatively small spatial scales, primarily in response to changes in the ambient light field. Algae were able to maintain relatively high rates of C fixation despite low light at the SCM, particularly in the large (>5 μm) size fraction at open water sites. This may substantially impact biogenic C drawdown if species composition shifts in response to future climate change. Our results suggest that phytoplankton in this region are well acclimated to existing environmental conditions, including sea ice cover, low light, and nutrient pulses. Furthermore, this photoacclimatory response can be rapid and keep pace with a developing SCM, as phytoplankton maintain photosynthetic rates and efficiencies in a narrow “shade-acclimated” range.  相似文献   

4.
Two methods of measuring primary production, modulated fluorimetry (PAM) and the traditional carbon incorporation method (13C), were compared in four phytoplankton species, two diatoms (Pseudo-nitzschia pungens and Asterionellopsis glacialis), and two dinoflagellates (Heterocapsa sp and Karenia mikimotoï), under N (nitrogen), P (phosphorus) and Si (silicon) limited semi-continuous culture. N and Si-limited cultures showed relatively high quantum efficiency of the PSII (Fv/Fm) values, confirming that Fv/Fm is not a good proxy for nutrient stress in balanced systems, whereas P limitation had a drastic effect on many physiological parameters. In all species, the physiological capacity of phytoplankton cells to acclimate to nutrient limitations led to changes in the cellular biochemical composition and the structure of the photosynthetic apparatus. The observed physiological responses were species and nutrient specific. The values of the chlorophyll-specific absorption cross section (a*) increased with nutrient limitation due to package effect, while the carbon/Chl a ratio was higher under N and P limitations. In diatoms, Si limitation did not affect photosynthesis confirming the uncoupling between Si and carbon metabolisms. In all four species and under all treatments, significant relationships were found between photosynthetic activities, ETRChl (electron transport rate) and PChl (carbon fixation rate) estimated using PAM measurements and 13C incorporation, showing that the fluorescence technique can reliably be used to estimate carbon fixation by phytoplankton. The relationship between ETRChl and PChl can be described by the shape and the slope of the curve (ΦC.e). Linear relationships were found for dinoflagellates and P. pungens under all treatments. A decrease in ΦC.e was observed under N and P limitation probably due to structural damage to the photosynthetic apparatus. A. glacialis showed a logarithmic relationship in N and P limited conditions, due to the alternative electron flow which takes place to optimise photosynthetic performances under high light and/or nutrient stress.  相似文献   

5.
Nutrient limitation in Crater Lake,Oregon   总被引:2,自引:2,他引:0  
Experiments were carried out to determine what nutrient (or nutrients) was primarily responsible for limiting phytoplankton productivity in ultraoligotrophic Crater Lake. The experiments included in situ and laboratory nutrient addition bioassays utilizing the natural phytoplankton community, Selenastrum capricornutum bottle assays, photosynthetic responses, photosynthetic carbon metabolism, and response of dark uptake of 14CO2 with the addition of NH 4 + . The results suggested that a trace metal(s) or its availability was the primary factor limiting the epilimnetic phytoplankton productivity. Nitrogen was extremely low, and quickly became limiting with the addition of trace metals and a chelator. Iron is the most likely candidate as the limiting nutrient. Trace metals and nitrogen are also both important in limiting phytoplankton at 100 m, a depth where biologically mediated turnover of nutrients seems to be more important.  相似文献   

6.
The morpho‐functional patterns of photosynthesis, measured as 14C‐fixation and chl fluorescence of PSII, also as affected by different doses of UV radiation in the laboratory were examined in the South Pacific kelp Lessonia nigrescens Bory of the coast of Valdivia, Chile (40°S). The results indicated the existence of longitudinal thallus profiles in physiological performance. In general, blades exhibited higher rates of carbon fixation and pigmentation as compared with stipes and holdfasts. Light‐independent 14C fixation (LICF) was high in meristematic zones of the blades (3.5 μmol 14C·g?1 fresh weight [FW]·h?1), representing 2%–16% (percentage ratio) of the photosynthetic 14C fixation (20 μmol 14C·g?1 FW·h?1). Exposures to UV radiation indicated that biologically effective UV‐B doses (BEDphotoinhibition300) of 200–400 kJ·m?2 (corresponding to current daily doses measured in Valdivia on cloudless summer days) inhibit photosynthetic 14C fixation of blades by 90%, while LICF was reduced by 70%. The percentage ratio of LICF to photosynthetic 14C fixation increased under UV exposure to 45%. Primary light reactions measured as maximum quantum yield (Fv/Fm) and electron transport rate (ETR) indicated a higher UV susceptibility of blades as compared with stipes and holdfasts: after a 48 h exposure to UV‐B, the decrease in the blades was close to 30%, while in the stipes and holdfasts it was <20%. The existence of translocation of labeled carbon along the blades suggests that growth at the meristem may be powered by nonphotosynthetic processes. A possible functional role of LIFC, such as during reduction of photosynthetic carbon fixation due to enhanced UV radiation, is discussed. These results in general support the idea that the UV‐related responses in Lessonia are integrated in the suite of morpho‐functional adaptations of the alga.  相似文献   

7.
A large ultra-oligotrophic Antarctic freshwater lake, Crooked Lake, was investigated between January 1993 and November 1993. The water column supported a small phytoplankton community limited by temperature, nutrient availability and, seasonally, by low photosynthetically active radiation. Chlorophyll a concentrations were consistently low (<1 g l−1) and showed no obvious seasonal patterns. Production rates were low, ranging from non-detectable to 0.56 g C l−1 h−1, with highest rates generally occurring towards the end of the austral winter and in spring. The pattern of carbon fixation indicated that the phytoplankton was adapted to low light levels. Chlorophyll a specific photosynthetic rates (assimilation numbers) ranged from non-detectable to 1.27 gC (g chlorophyll a)−1 h−1. Partitioning of photosynthetic products revealed carbon incorporation principally into storage products such as lipids at high light fluxes with increasing protein synthesis at depth. With little allochthonous input the data suggest that lake dynamics in this Antarctic system are driven by phytoplankton activity. Received: 21 February 1997 / Accepted: 18 May 1997  相似文献   

8.
Previous studies have not always found a significant relationshipbetween fast repetition rate fluorometry (FRRF)-derived and14C-based primary production rates. This apparent discrepancymight be related to environmental control of the coupling betweenphotosynthetic electron transport through photosystem II (PSII)and carbon uptake in phytoplankton. In this study, we lookedat this relationship under upwelling conditions favourable forphytoplankton growth. The combination of both techniques allowedthe calculation of the quantum efficiency of carbon fixation,which averaged 0.12 mol C (mol quanta)–1 indicating thatphytoplankton populations were very efficient in convertingabsorbed photons into photosynthetically produced organic carbon.The tight coupling observed between phytoplankton photosyntheticelectron transport through PSII and carbon uptake resulted ina statistically significant linear relationship between FRRF-derivedand 14C-based carbon incorporation rates, with a slope of 1.43.In conclusion, the results of the this study indicate that FRRFcan be a useful tool to derive high spatial and temporal resolutionprimary production estimates under environmental conditionsfavouring the close coupling between PSII electron transportand carbon uptake, such as those characteristic of this coastalupwelling system.  相似文献   

9.
10.
Fast repetition rate fluorometry (FRRF) was successfully applied to various studies in modern oceanography. In this study, for the first time, the seasonality of phytoplankton photosynthetic parameters in a deep alpine lake was observed using FRRF in combination with the traditional 14C incubation technique. Special attention was given to the differences in photosynthetic behaviour during mixed and stratified conditions, characterised especially during summer by a deep chlorophyll maximum (DCM) dominated by the filamentous cyanobacterial species Planktothrix rubescens. Maximum light-utilisation efficiency (α*14C) was in the range of 0.01–0.03 mgC (mg Chl-a)−1 h−1 (μmol phot. m−2 s−1)−1, while maximum quantum yields for carbon fixation (ΦC,max) varied from 0.01–0.07 molC (mol phot.)−1. Higher values occurred during thermal stratification indicating acclimation of the phytoplankton assemblage. These findings were supported by FRRF-based estimates, although cyanobacterial blooms could not be characterised by FRRF-excitation due to methodological deficiencies. In general, however, instantaneous photosynthetic rates measured by FRRF-excitation correlate well at sub-saturating light-intensities with conventional 14C-uptake rates, although they operate on different time-scales.  相似文献   

11.
Summary Four autotrophic compartments were recognised in Lake Kitiesh, King George Island (Southern Shetland) at the beginning of the summer in 1987: snow microalgae, ice bubble communities, phytoplankton in the water column and benthic communities of moss with epiphytes. Chlorophyll a concentration and pigment absorption spectra were obtained in these four compartments before and/or after the thawing of the ice cover. During the ice free period, carbon fixation and biomass was measured in the phytoplankton and in the benthic moss Campyliadelphus polygamus. From these measurements we conclude that the benthic moss is the most significant autotrophic component in this lake in terms of biomass, chlorophyll a content and primary productivity. The integral assimilation number (The ratio of carbon fixation per unit area to biomass per unit area) values were similar for both phytoplankton and the moss, ranging from 3.6 to 5.4 mg C (mg Chl a)–1h–1in phytoplankton and from 4.0 to 6.4 mgC (mg Chl a)–1h–1 in the benthic moss. This approach allows comparisons of carbon fixation efficiency of the chlorophyll a under a unit area between compartments in their different light environments.  相似文献   

12.
We present results from a field study of inorganic carbon (C) acquisition by Ross Sea phytoplankton during Phaeocystis‐dominated early season blooms. Isotope disequilibrium experiments revealed that HCO3? was the primary inorganic C source for photosynthesis in all phytoplankton assemblages. From these experiments, we also derived relative enhancement factors for HCO3?/CO2 interconversion as a measure of extracellular carbonic anhydrase activity (eCA). The enhancement factors ranged from 1.0 (no apparent eCA activity) to 6.4, with an overall mean of 2.9. Additional eCA measurements, made using membrane inlet mass spectrometry (MIMS), yielded activities ranging from 2.4 to 6.9 U · [μg chl a]?1 (mean 4.1). Measurements of short‐term C‐fixation parameters revealed saturation kinetics with respect to external inorganic carbon, with a mean half‐saturation constant for inorganic carbon uptake (K1/2) of ~380 μM. Comparison of our early springtime results with published data from late‐season Ross Sea assemblages showed that neither HCO3? utilization nor eCA activity was significantly correlated to ambient CO2 levels or phytoplankton taxonomic composition. We did, however, observe a strong negative relationship between surface water pCO2 and short‐term 14C‐fixation rates for the early season survey. Direct incubation experiments showed no statistically significant effects of pCO2 (10 to 80 Pa) on relative HCO3? utilization or eCA activity. Our results provide insight into the seasonal regulation of C uptake by Ross Sea phytoplankton across a range of pCO2 and phytoplankton taxonomic composition.  相似文献   

13.
Extensive blooms of the autotrophic ciliate Mesodinium rubrum (Lohmann) occurred in the Peru coastal upwelling region at 15°S latitude in March through May 1977 and contributed significantly to the organic productivity of the region. From observations made during the JOINT-II oceanographic expedition, a budget of the carbon flux of these unusual photosynthetic organisms can be constructed. The light dependent C fixation was determined with short (1 h) incubations because of the organisms' sensitivity to confinement and rapid nutrient exhaustion. Maximum photosynthesis occurred at 50% of incident light with a maximum rate of particulate C synthesis of 2187 mg C · m?3· h?1. The specific carbon uptake rates were also high with a maximum light saturated value of 16.8 mg C ·(mg chl a)?1· h?1. The rate of excretion of dissolved organic C at the productivity maximum ranged from 16.1 to 181.1 mg C · m?3· h?1. The range of percent excretion was 1.8–12.5% the total C fixed, similar to the range found in both motile and nonmotile phytoplankton assemblages. Respiration, determined by the decrease in particulate C in the dark, averaged 4.6% of the previously fixed photosynthetic C · h?1. M. rubrum actively took up amino acids and naturally occurring dissolved organic carbon. The C budget for this ciliate indicates that the daily contribution to the particulate food chain is large, although not as great as is indicated by short incubations. The contribution of M. rubrum to the productivity and elemental fluxes of upwelling and coastal ecosystems has been seriously underestimated.  相似文献   

14.
  • 1 The underwater light climate in Loch Ness is described in terms of mixing depth (Zm) and depth of the euphoric zone (Zeu). During periods of complete mixing, Zm equates with the mean depth of the loch (132 m), but even during summer stratification the morphometry of the loch and the strong prevailing winds produce a deep thermocline and an epilimnetic mixed layer of about 30 m or greater. Hence, throughout the year the quotient Zm/Zeu is exceptionally high and the underwater light climate particularly unfavourable for phytoplankton production and growth.
  • 2 Phytoplankton biomass expressed as chlorophyll a is very low in Loch Ness, with a late summer maximum of less than 1.5 mg chlorophyll a m-3 in the upper 30 m of the water column. This low biomass and the resulting very low photosynthetic carbon fixation within the water column are evidence that a severe restraint is imposed on the rate at which phytoplankton can grow in the loch.
  • 3 The chlorophyll a content per unit of phytoplankton biovolume and the maximum, light-saturated specific rate of photosynthesis are both parameters which might be influenced by the light climate under which the phytoplankton have grown. However, values obtained from Loch Ness for both chlorophyll a content (mean 0.0045 mg mm-3) and maximum photosynthetic rate (1–4 mg C mg Chla-1 h-1) are within the range reported from other lakes.
  • 4 Laboratory bioassays with the natural phytoplankton community from Loch Ness on two occasions in late summer when the light climate in the loch is at its most favourable, suggest that even then limitation of phytoplankton growth is finely balanced between light and phosphorus limitation. Hence, for most of the year, when the light climate is less favourable, phytoplankton growth will be light limited.
  • 5 Quotients relating mean annual algal biomass as chlorophyll a (c. 0.5 mg Chla m-3) and the probable annual specific areal loading of total phosphorus (0.4–1.7 g TP m-2 yr-1) suggest that the efficiency with which phytoplankton is produced in Loch Ness per unit of TP loading is extremely low when compared with values from other Scottish lochs for which such an index has been calculated. This apparent inefficiency can be attributed to suppression of photosynthetic productivity in the water column due to the unfavourable underwater light climate.
  • 6 These several independent sources of evidence lead to the conclusion that phytoplankton development in Loch Ness is constrained by light rather than by nutrients. Loch Ness thus appears to provide an exception to the generally accepted paradigm that phytoplankton development in lakes of an oligotrophic character is constrained by nutrient availability.
  相似文献   

15.
Equations have been developed which quantitatively predict the theoretical time-course of photosynthetic 14C incorporation when CO2 or HCO3 serves as the sole source of exogenous inorganic carbon taken up for fixation by cells during steady state photosynthesis. Comparison between the shape of theoretical (CO2 or HCO3) and experimentally derived time-courses of 14C incorporation permits the identification of the major species of inorganic carbon which crosses the plasmalemma of photosynthetic cells and facilitates the detection of any combined contribution of CO2 and HCO3 transport to the supply of intracellular inorganic carbon. The ability to discriminate between CO2 or HCO3 uptake relies upon monitoring changes in the intracellular specific activity (by 14C fixation) which occur when the inorganic carbon, present in the suspending medium, is in a state of isotopic disequilibrium (JT Lehman 1978 J Phycol 14: 33-42). The presence of intracellular carbonic anhydrase or some other catalyst of the CO2-HCO3 interconversion reaction is required for quantitatively accurate predictions. Analysis of equations describing the rate of 14C incorporation provides two methods by which any contribution of HCO3 ions to net photosynthetic carbon uptake can be estimated.  相似文献   

16.
Fast Repetition Rate fluorometry (FRRf) has been increasingly used to measure marine primary productivity by oceanographers to understand how carbon (C) uptake patterns vary over space and time in the global ocean. As FRRf measures electron transport rates through photosystem II (ETRPSII), a critical, but difficult to predict conversion factor termed the “electron requirement for carbon fixation” (Φe,C) is needed to scale ETRPSII to C‐fixation rates. Recent studies have generally focused on understanding environmental regulation of Φe,C, while taxonomic control has been explored by only a handful of laboratory studies encompassing a limited diversity of phytoplankton species. We therefore assessed Φe,C for a wide range of marine phytoplankton (n = 17 strains) spanning multiple taxonomic and size classes. Data mined from previous studies were further considered to determine whether Φe,C variability could be explained by taxonomy versus other phenotypic traits influencing growth and physiological performance (e.g., cell size). We found that Φe,C exhibited considerable variability (~4–10 mol e · [mol C]?1) and was negatively correlated with growth rate (R2 = 0.7, P < 0.01). Diatoms exhibited a lower Φe,C compared to chlorophytes during steady‐state, nutrient‐replete growth. Inclusion of meta‐analysis data did not find significant relationships between Φe,C and class, or growth rate, although confounding factors inherent to methodological inconsistencies between studies likely contributed to this. Knowledge of empirical relationships between Φe,C and growth rate coupled with recent improvements in quantifying phytoplankton growth rates in situ, facilitate up‐scaling of FRRf campaigns to routinely derive Φe,C needed to assess ocean C‐cycling.  相似文献   

17.
Iron (Fe) is essential for phytoplankton growth and photosynthesis, and is proposed to be an important factor regulating algal blooms under replete major nutrients in coastal environments. Here, Skeletonema costatum, a typical red-tide diatom species, and Chlorella vulgaris, a widely distributed Chlorella, were chosen to examine carbon fixation and Fe uptake by coastal algae under dark and light conditions with different Fe levels. The cellular carbon fixation and intracellular Fe uptake were measured via 14C and 55Fe tracer assay, respectively. Cell growth, cell size, and chlorophyll-α concentration were measured to investigate the algal physiological variation in different treatments. Our results showed that cellular Fe uptake proceeds under dark and the uptake rates were comparable to or even higher than those in the light for both algal species. Fe requirements per unit carbon fixation were also higher in the dark resulting in higher Fe: C ratios. During the experimental period, high Fe addition significantly enhanced cellular carbon fixation and Fe uptake. Compared to C. vulgaris, S. costatum was the common dominant bloom species because of its lower Fe demand but higher Fe uptake rate. This study provides some of the first measurements of Fe quotas in coastal phytoplankton cells, and implies that light and Fe concentrations may influence the phytoplankton community succession when blooms occur in coastal ecosystems.  相似文献   

18.
Characterization of physiological variability in phytoplankton photosynthetic efficiencies is one of the greatest challenges in assessing ocean net primary production (NPP) from remote sensing of surface chlorophyll (Chl). Nutrient limitation strongly influences phytoplankton intracellular pigmentation, but its impact on Chl-specific NPP (NPP *) is debated. We monitored six indices of photosynthetic activity in steady-state Dunaliella tertiolecta cultures over a range of nitrate-limited growth rates (μ), including photosynthetic efficiency of PSII (F v/F m), O2-based gross and net production, 20 min and 24 h carbon assimilation, and carbon- and μ-based NPP. Across all growth rates, O2-based Chl-specific gross primary production ( GPP\textO2 * GPP_{{{\text{O}}_{2} }}^{*} ), NPP *, and F v/F m were constant. GPP\textO2 * GPP_{{{\text{O}}_{2} }}^{*} was 3.3 times greater than NPP *. In stark contrast, Chl-specific short-term C fixation showed clear linear dependence on μ, reflecting differential allocation of photosynthate between short-lived C products and longer-term storage products. Indeed, 14C incorporation into carbohydrates was five times greater in cells growing at 1.2 day−1 than 0.12 day−1. These storage products are catabolized for ATP and reductant generation within the period of a cell cycle. The relationship between Chl-specific gross and net O2 production, short-term 14C-uptake, NPP *, and growth rate reflects cellular-level regulation of fundamental metabolic pathways in response to nutrient limitation. We conclude that growth rate-dependent photosynthate metabolism bridges the gap between gross and net production and resolves a controversial question regarding nutrient limitation effects on primary production measures.  相似文献   

19.
Dissolved DNA and microbial biomass and activity parameters were measured over a 15-month period at three stations along a salinity gradient in Tampa Bay, Fla. Dissolved DNA showed seasonal variation, with minimal values in December and January and maximal values in summer months (July and August). This pattern of seasonal variation followed that of particulate DNA and water temperature and did not correlate with bacterioplankton (direct counts and [3H]thymidine incorporation) or phytoplankton (chlorophyll a and 14CO2 fixation) biomass and activity. Microautotrophic populations showed maxima in the spring and fall, whereas microheterotrophic activity was greatest in late summer (September). Both autotrophic and heterotrophic microbial activity was greatest at the high estuarine (low salinity) station and lowest at the mouth of the bay (high salinity station), irrespective of season. Dissolved DNA carbon and phosphorus constituted 0.11 ± 0.05% of the dissolved organic carbon and 6.6 ± 6.5% of the dissolved organic phosphorus, respectively. Strong diel periodicity was noted in dissolved DNA and in microbial activity in Bayboro Harbor during the dry season. A noon maximum in primary productivity was followed by an 8 p.m. maximum in heterotrophic activity and a midnight maximum in dissolved DNA. This diel periodicity was less pronounced in the wet season, when microbial parameters were strongly influenced by episodic inputs of freshwater. These results suggest that seasonal and diel production of dissolved DNA is driven by primary production, either through direct DNA release by phytoplankton, or more likely, through growth of bacterioplankton on phytoplankton exudates, followed by excretion and lysis.  相似文献   

20.
The spring development of both phytoplankton and bacterioplankton was investigated between 18 April and 7 May 1983 in mesotrophic Lake Erken, Sweden. By using the lake as a batch culture, our aim was to estimate, via different methods, the production of phytoplankton and bacterioplankton in the lake and to compare these production estimates with the actual increase in phytoplankton and bacterioplankton biomass. The average water temperature was 3.5°C. Of the phytoplankton biomass, >90% was the diatom Stephanodiscus hantzchii var. pusillus, by the peak of the bloom. The 14C and O2 methods of estimating primary production gave equivalent results (r = 0.999) with a photosynthetic quotient of 1.63. The theoretical photosynthetic quotient predicted from the C/NO3 N assimilation ratio was 1.57. The total integrated incorporation of [14C]bicarbonate into particulate material (>1 μm) was similar to the increase in phytoplankton carbon determined from cell counts. Bacterioplankton increased from 0.5 × 109 to 1.52 × 109 cells liter−1 (~0.5 μg of C liter−1 day−1). Estimates of bacterioplankton production from rates of [3H]thymidine incorporation were ca. 1.2 to 1.7 μg of C liter−1 day−1. Bacterial respiration, measured by a high-precision Winkler technique, was estimated as 4.8 μg of C liter−1 day−1, indicating a bacterial growth yield of 25%. The bulk of the bacterioplankton production was accounted for by algal extracellular products. Gross bacterioplankton production (production plus respiration) was 20% of gross primary production, per square meter of surface area. We found no indication that bacterioplankton production was underestimated by the [3H]thymidine incorporation method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号