首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Adult retinal ganglion cells (RGCs) can regenerate their axons in vitro. Using proteomics, we discovered that the supernatants of cultured retinas contain isoforms of crystallins with crystallin beta b2 (crybb2) being clearly up-regulated in the regenerating retina. Immunohistochemistry revealed the expression of crybb within the retina, including in filopodial protrusions and axons of RGCs. Cloning and overexpression of crybb2 in RGCs and hippocampal neurons increased axonogenesis, which in turn could be blocked with antibodies against beta-crystallin. Conditioned medium from crybb2-transfected cell cultures also supported the growth of axons. Finally real time imaging of the uptake of green fluorescent protein-tagged crybb2 fusion protein showed that this protein becomes internalized. These data are the first to show that axonal regeneration is related to crybb2 movement. The results suggest that neuronal crystallins constitute a novel class of neurite-promoting factors that likely operate through an autocrine mechanism and that they could be used in neurodegenerative diseases.  相似文献   

2.
Animals that develop without extra-embryonic membranes (anamniotes--fish, amphibians) have impressive regenerative capacity, even to the extent of replacing entire limbs. In contrast, animals that develop within extra-embryonic membranes (amniotes--reptiles, birds, mammals) have limited capacity for regeneration as adults, particularly in the central nervous system (CNS). Much is known about the process of nerve development in fish and mammals and about regeneration after lesions in the CNS in fish and mammals. Because the retina of the eye and optic nerve are functionally part of the brain and are accessible in fish, frogs, and mice, optic nerve lesion and regeneration (ONR) has been extensively used as a model system for study of CNS nerve regeneration. When the optic nerve of a mouse is severed, the axons leading into the brain degenerate. Initially, the cut end of the axons on the proximal, eye-side of the injury sprout neurites which begin to grow into the lesion. Simultaneously, astrocytes of the optic nerve become activated to initiate wound repair as a first step in reestablishing the structural integrity of the optic nerve. This activation appears to initiate a cascade of molecular signals resulting in apoptotic cell death of the retinal ganglion cells axons of which make up the neural component of the optic nerve; regeneration fails and the injury is permanent. Evidence specifically implicating astrocytes comes from studies showing selective poisoning of astrocytes at the optic nerve lesion, along with activation of a gene whose product blocks apoptosis in retinal ganglion cells, creates conditions favorable to neurites sprouting from the cut proximal stump, growing through the lesion and into the distal portion of the injured nerve, eventually reaching appropriate targets in the brain. In anamniotes, astrocytes ostensibly present no such obstacle since optic nerve regeneration occurs without intervention; however, no systematic study of glial involvement has been done. In fish, vigorously growing neurites sprout from the cut axons and within a few days begin to re-enervate the brain. This review offers a new perspective on the role of glia, particularly astrocytes, as "gate-keepers;" i.e., as being permissive or inhibitory, by comparison between fish and mammals of glial function during ONR.  相似文献   

3.
Cho KS  Chen DF 《Neurochemical research》2008,33(10):2126-2133
Our previous research has suggested that lack of Bcl-2-supported axonal growth mechanisms and the presence of glial scarring following injury are major impediments of optic nerve regeneration in postnatal mice. Mice overexpressing Bcl-2 and simultaneously carrying impairment in glial scar formation supported robust optic nerve regeneration in the postnatal stage. To develop a therapeutic strategy for optic nerve damage, the combined effects of chemicals that induce Bcl-2 expression and selectively eliminate mature astrocytes—scar forming cells—were examined in mice. Mood-stabilizer, lithium, has been shown to induce Bcl-2 expression and stimulate axonal outgrowth in retinal ganglion cells in culture and in vivo. Moreover, astrotoxin (alpha-aminoadipate), a glutamate analogue, selectively kills astrocytes while has minimal effects on surrounding neurons. In the present study, we sought to determine whether concurrent applications of lithium and astrotoxin were sufficient to induce optic nerve regeneration in mice. Induction of Bcl-2 expression was detected in the ganglion cell layer (GCL) of mice that received a lithium diet in compared with control-treated group. Moreover, efficient elimination of astrocytes and glial scarring was observed in the optic nerve of mice treated with astrotoxin. Simultaneous application of lithium and astrotoxin, but not any of the drugs alone, induced robust optic nerve regeneration in adult mice. These findings further support that a combinatorial approach of concurrent activation of Bcl-2-supported growth mechanism and suppression of glial scarring is required for successful regeneration of the severed optic nerve in adult mice. They suggest a potential therapeutic strategy for treating optic nerve and CNS damage. Special issue article in honor of Dr. Ji-Sheng Han.  相似文献   

4.
In contrast to the situation in mammals and birds, neurons in the central nervous system (CNS) of fish—such as the retinal ganglion cells—are capable of regenerating their axons and restoring vision. Special properties of the glial cells and the neurons of the fish visual pathway appear to contribute to the success of axonal regeneration. The fish oligodendrocytes lack the axon growth inhibiting molecules that interfere with axonal extension in mammals. Instead, fish optic nerve oligodendrocytes support—at least in vitro—axonal elongation of fish as well as that of rat retinal axons. Moreover, the fish retinal ganglion cells re-express upon injury a set of growth associated cell surface molecules and equip the regenerating axons throughout their path and up into their target, the tectum opticum with these molecules. This may indicate that the injured fish ganglion cells reactivate the cellular machinery necessary for axonal regrowth and pathfinding. Furthermore, the target itself provides positional marker molecules even in adult fish. These marker molecules are required to guide the regenerating axons back to their retinotopic home territory within the tectum. © 1992 John Wiley & Sons, Inc.  相似文献   

5.
The poor regenerative ability of the CNS of mammals has been attributed, at least in part, to the presence of mature oligodendrocytes, which have been shown to inhibit axonal growth. Proliferation of oligodendrocyte progenitor cells in the rat optic nerve during development, and thereby the timing of oligodendrocyte differentiation, has been shown to depend on a factor derived from type 1 astrocytes, later characterized as platelet-derived growth factor (PDGF). In the present study we examine whether injury to the optic nerve induces changes in the levels of PDGF in spontaneously regenerating systems, compared with nonregenerating systems. Soluble substances, derived from nonneuronal cells surrounding injured fish and rat optic nerves, were prepared and examined for the presence of PDGF immunoreactivity and biological mitogenic activity on PDGF-responsive cells. The results suggest that PDGF-like mitogenic activity and immunoreactivity are present in both fish and rat optic nerves. However, in the rat optic nerve PDGF levels increased after axonal injury, whereas in the fish optic nerve injury was accompanied by an apparent decrease in PDGF-like levels. The results are discussed with respect to the possible role of PDGF in regeneration.  相似文献   

6.
The use of the visual system played a major role in the elucidation of molecular mechanisms controlling axonal regeneration in the injured CNS after trauma. In this model, CNTF was shown to be the most potent known neurotrophic factor for axonal regeneration in the injured optic nerve. To clarify the role of the downstream growth regulator Stat3, we analyzed axonal regeneration and neuronal survival after an optic nerve crush in adult mice. The infection of retinal ganglion cells with adeno-associated virus serotype 2 (AAV2) containing wild-type (Stat3-wt) or constitutively active (Stat3-ca) Stat3 cDNA promoted axonal regeneration in the injured optic nerve. Axonal growth was analyzed in whole-mounted optic nerves in three dimensions (3D) after tissue clearing. Surprisingly, with AAV2.Stat3-ca stimulation, axons elongating beyond the lesion site displayed very irregular courses, including frequent U-turns, suggesting massive directionality and guidance problems. The pharmacological blockade of ROCK, a key signaling component for myelin-associated growth inhibitors, reduced axonal U-turns and potentiated AAV2.Stat3-ca-induced regeneration. Similar results were obtained after the sustained delivery of CNTF in the axotomized retina. These results show the important role of Stat3 in the activation of the neuronal growth program for regeneration, and they reveal that axonal misguidance is a key limiting factor that can affect long-distance regeneration and target interaction after trauma in the CNS. The correction of axonal misguidance was associated with improved long-distance axon regeneration in the injured adult CNS.  相似文献   

7.
Unlike mammals, teleost fish are able to mount an efficient and robust regenerative response following optic nerve injury. Although it is clear that changes in gene expression accompany axonal regeneration, the extent of this genomic response is not known. To identify genes involved in successful nerve regeneration, we analyzed gene expression in zebrafish retinal ganglion cells (RGCs) regenerating their axons following optic nerve injury. Microarray analysis of RNA isolated by laser capture microdissection from uninjured and 3-day post-optic nerve injured RGCs identified 347 up-regulated and 29 down-regulated genes. Quantitative RT-PCR and in situ hybridization were used to verify the change in expression of 19 genes in this set. Gene ontological analysis of the data set suggests regenerating neurons up-regulate genes associated with RGC development. However, not all regeneration-associated genes are expressed in differentiating RGCs indicating the regeneration is not simply a recapitulation of development. Knockdown of six highly induced regeneration-associated genes identified two, KLF6a and KLF7a, that together were necessary for robust RGC axon re-growth. These results implicate KLF6a and KLF7a as important mediators of optic nerve regeneration and suggest that not all induced genes are essential to mount a regenerative response.  相似文献   

8.
Peripheral nerve trauma triggers a well characterised sequence of events both proximal and distal to the site of injury. Axons distal to the injury degenerate, Schwann cells convert to a repair supportive phenotype and macrophages enter the nerve to clear myelin and axonal debris. Following these events, axons must regrow through the distal part of the nerve, re-innervate and finally are re-myelinated by Schwann cells. For nerve crush injuries (axonotmesis), in which the integrity of the nerve is maintained, repair may be relatively effective whereas for nerve transection (neurotmesis) repair will likely be very poor as few axons may be able to cross between the two parts of the severed nerve, across the newly generated nerve bridge, to enter the distal stump and regenerate. Analysing axon growth and the cell-cell interactions that occur following both nerve crush and cut injuries has largely been carried out by staining sections of nerve tissue, but this has the obvious disadvantage that it is not possible to follow the paths of regenerating axons in three dimensions within the nerve trunk or nerve bridge. To try and solve this problem, we describe the development and use of a novel whole mount staining protocol that allows the analysis of axonal regeneration, Schwann cell-axon interaction and re-vascularisation of the repairing nerve following nerve cut and crush injuries.  相似文献   

9.
Trying to understand axonal regeneration in the CNS of fish.   总被引:7,自引:0,他引:7  
In contrast to the situation in mammals and birds, neurons in the central nervous system (CNS) of fish--such as the retinal ganglion cells--are capable of regenerating their axons and restoring vision. Special properties of the glial cells and the neurons of the fish visual pathway appear to contribute to the success of axonal regeneration. The fish oligodendrocytes lack the axon growth inhibiting molecules that interfere with axonal extension in mammals. Instead, fish optic nerve oligodendrocytes support--at least in vitro--axonal elongation of fish as well as that of rat retinal axons. Moreover, the fish retinal ganglion cells re-express upon injury a set of growth-associated cell surface molecules and equip the regenerating axons throughout their path and up into their target, the tectum opticum with these molecules. This may indicate that the injured fish ganglion cells reactivate the cellular machinery necessary for axonal regrowth and pathfinding. Furthermore, the target itself provides positional marker molecules even in adult fish. These marker molecules are required to guide the regenerating axons back to their retinotopic home territory within the tectum.  相似文献   

10.
Berry  M.  Carlile  J.  Hunter  A.  Tsang  W.-L.  Rosustrel  P.  Sievers  J. 《Brain Cell Biology》1999,28(9):721-741
We have studied axon regeneration through the optic chiasm of adult rats 30 days after prechiasmatic intracranial optic nerve crush and serial intravitreal sciatic nerve grafting on day 0 and 14 post-lesion. The experiments comprised three groups of treated rats and three groups of controls. All treated animals received intravitreal grafts either into the left eye after both left sided (unilateral) and bilateral optic nerve transection, or into both eyes after bilateral optic nerve transection. Control eyes were all sham grafted on day 0 and 14 post-lesion, and the optic nerves either unlesioned, or crushed unilaterally or bilaterally. No regeneration through the chiasm was seen in any of the lesioned control optic nerves. In all experimental groups, large numbers of axons regenerated across the optic nerve lesions ipsilateral to the grafted eyes, traversed the short distal segment of the optic nerve and invaded the chiasm without deflection. Regeneration was correlated with the absence of the mesodermal components in the scar. In all cases, axon regrowth through the chiasm appeared to establish a major crossed and a minor uncrossed projection into both optic tracts, with some aberrant growth into the contralateral optic nerve. Axons preferentially regenerated within the degenerating trajectories from their own eye, through fragmented myelin and axonal debris, and reactive astrocytes, oligodendrocytes, microglia and macrophages. In bilaterally lesioned animals, no regeneration was detected in the optic nerve of the unimplanted eye. Although astrocytes became reactive and their processes proliferated, the architecture of their intrafascicular processes was little perturbed after optic nerve transection within either the distal optic nerve segment or the chiasm. The re-establishment of a comparatively normal pattern of passage through the chiasm by regenerating axons in the adult might therefore be organised by this relatively immutable scaffold of astrocyte processes. Binocular interactions between regenerating axons from both nerves (after bilateral optic nerve transection and intravitreal grafting), and between regenerating axons and the intact transchiasmatic projections from the unlesioned eye (after unilateral optic nerve lesions and after ipsilateral grafting) may not be important in establishing the divergent trajectories, since regenerating axons behave similarly in the presence and absence of an intact projection from the other eye.  相似文献   

11.
Summary The architecture of normal and regenerating nerve fiber bundles in the optic nerve of the goldfish and the Crucian carp was compared to that of the axonal fascicles in the optic tectum of these teleost species with the use of ultrathin sections and freeze-fracture replicas. The fascicles in the optic nerve are clearly demarcated by astrocytic processes, in contrast to the fascicles in the tectum. No astrocytes could be identified in the tectum; in this region processes of astrocytes or of radial glial cells do not form channeling structures reminiscent of those in the optic nerve. Furthermore, tectal blood vessels lack complete investments of glial processes. It can be assumed that at least in lower vertebrates a framework of astrocytic processes might be important for growth of optic fibers over large distances, i.e., from the eye to the tectum, but may be dispensable in the target region itself.  相似文献   

12.
13.
Ciliary neurotrophic factor (CNTF) is a potent survival molecule for a variety of embryonic neurons in culture. The developmental expression of CNTF occurs clearly after the time period of the physiological cell death of CNTF-responsive neurons. This, together with the sites of expression, excludes CNTF as a target-derived neuronal survival factor, at least in rodents. However, CNTF also participates in the induction of type 2 astrocyte differentiation in vitro. Here we demonstrate that the time course of the expression of CNTF-mRNA and protein in the rat optic nerve (as evaluated by quantitative Northern blot analysis and biological activity, respectively) is compatible with such a glial differentiation function of CNTF in vivo. We also show that the type 2 astrocyte-inducing activity previously demonstrated in optic nerve extract can be precipitated by an antiserum against CNTF. Immunohistochemical analysis of astrocytes in vitro and in vivo demonstrates that the expression of CNTF is confined to a subpopulation of type 1 astrocytes. The olfactory bulb of adult rats has comparably high levels of CNTF to the optic nerve, and here again, CNTF-immunoreactivity is localized in a subpopulation of astrocytes. However, the postnatal expression of CNTF in the olfactory bulb occurs later than in the optic nerve. In other brain regions both CNTF-mRNA and protein levels are much lower.  相似文献   

14.
Raibon  E.  Sauvé  Y.  Carter  D. A.  Gaillard  F. 《Brain Cell Biology》2002,31(1):57-71
Intravitreal injection of the microglia inhibitor tuftsin 1-3 leads to an increase in retinal ganglion cell axonal regeneration into peripheral nerve grafts and a decrease in phagocytic cells in the retina. However, the relation of phagocytic cells and particularly microglia towards axonal regeneration remains unclear. Initially, to assess this, tuftsin 1-3's effect on axonal regeneration was reexamined by doing a dose-response study. Optimal doses were found to be 2.5 μg/ml and 250 μg/ml in rats and hamsters respectively. We then studied retinal phagocytic cells in rats. Microglial cells were classified as resting or activated based on their morphology following OX42 immunolabelling. In controls, most microglial cells were in the resting state. Optic nerve cut led to an increase in the total number of microglia and a ten-fold elevation in the proportion of activated cells; changes were more pronounced at the optic nerve stump. Anastomosis of an autologous segment of sciatic nerve to the stump of the freshly cut optic nerve minimized the overall increase in microglia, and combined with 2.5 μg/ml tuftsin 1-3, lead to a marked blunting of activation. Preservation within the retina of a higher proportion of resting over active form of microglia, and not the prevention of microglial proliferation per se, may be a crucial factor in allowing additional retinal ganglion cell axons to regenerate into peripheral nerve grafts.  相似文献   

15.
A number of intracellular proteins that are protective after brain injury are classically thought to exert their effect within the expressing cell. The astrocytic metallothioneins (MT) are one example and are thought to act via intracellular free radical scavenging and heavy metal regulation, and in particular zinc. Indeed, we have previously established that astrocytic MTs are required for successful brain healing. Here we provide evidence for a fundamentally different mode of action relying upon intercellular transfer from astrocytes to neurons, which in turn leads to uptake-dependent axonal regeneration. First, we show that MT can be detected within the extracellular fluid of the injured brain, and that cultured astrocytes are capable of actively secreting MT in a regulatable manner. Second, we identify a receptor, megalin, that mediates MT transport into neurons. Third, we directly demonstrate for the first time the transfer of MT from astrocytes to neurons over a specific time course in vitro. Finally, we show that MT is rapidly internalized via the cell bodies of retinal ganglion cells in vivo and is a powerful promoter of axonal regeneration through the inhibitory environment of the completely severed mature optic nerve. Our work suggests that the protective functions of MT in the central nervous system should be widened from a purely astrocytic focus to include extracellular and intra-neuronal roles. This unsuspected action of MT represents a novel paradigm of astrocyte-neuronal interaction after injury and may have implications for the development of MT-based therapeutic agents.  相似文献   

16.
A fundamental issue in central nervous system development regards the effect of target tissue on the differentiation of innervating neurons. We address this issue by characterizing the role the retinal ganglion cell target, i.e., the optic tectum, plays in regulating expression of tubulin and nicotinic acetylcholine receptor genes in regenerating retinal ganglion cells. Tubulins are involved in axonal growth, whereas nicotinic acetylcholine receptors mediate communication across synapses. Retinal ganglion cell axons were induced to regenerate by crushing the optic nerve. Following crush, there was a rapid increase in alpha-tubulin RNAs (3 days), which preceded the increase in nicotinic acetylcholine receptor RNAs (10-15 days). Both classes of RNAs approached control levels by the time retinotectal synapses and functional recovery were restored (4-6 weeks). If the optic nerve was repeatedly crushed or its target ablated, tubulin RNAs remained elevated, and the increase in receptor RNAs that would otherwise be seen 2 weeks after a single nerve crush did not occur. The interaction of retinal ganglion cell axons with their targets in the optic tectum appears, then, to exert a suppressive effect on the RNA encoding a cytoskeletal protein, tubulin, and an inductive effect on RNAs encoding nicotinic acetylcholine receptors involved in synaptic communication.  相似文献   

17.

Background

We have used optic nerve injury as a model to study early signaling events in neuronal tissue following axonal injury. Optic nerve injury results in the selective death of retinal ganglion cells (RGCs). The time course of cell death takes place over a period of days with the earliest detection of RGC death at about 48 hr post injury. We hypothesized that in the period immediately following axonal injury, there are changes in the soma that signal surrounding glia and neurons and that start programmed cell death. In the current study, we investigated early changes in cellular signaling and gene expression that occur within the first 6 hrs post optic nerve injury.

Results

We found evidence of cell to cell signaling within 30 min of axonal injury. We detected differences in phosphoproteins and gene expression within the 6 hrs time period. Activation of TNFα and glutamate receptors, two pathways that can initiate cell death, begins in RGCs within 6 hrs following axonal injury. Differential gene expression at 6 hrs post injury included genes involved in cytokine, neurotrophic factor signaling (Socs3) and apoptosis (Bax).

Conclusion

We interpret our studies to indicate that both neurons and glia in the retina have been signaled within 30 min after optic nerve injury. The signals are probably initiated by the RGC soma. In addition, signals activating cellular death pathways occur within 6 hrs of injury, which likely lead to RGC degeneration.  相似文献   

18.
To determine mechanisms of structural plasticity in adult CNS neurons, we investigated the expression of immediate early genes (IEGs) in the rat retina. Gene products of different IEG families (JUN and FOS proteins) and cAMP-responsive element binding protein (CREBP) were examined by immunohistochemistry under three different paradigms. Normal rats which were not axotomized were compared with axotomized animals, where retinal ganglion cells (RGCs) were axotomized by intraorbital optic nerve cut and retrogradely labeled with fluorogold (FG). Under these circumstances, RGCs show only transient sprouting, followed by continuous retrograde RGC degeneration. In the third group, after the optic nerve lesion, adult rats additionally received a sciatic nerve graft to the transected optic nerve stump. This allows some RGCs to regenerate an axon into the grafted nerve. In both groups, the time course of RGC survival and JUN, CREB, and FOS protein expression was monitored. In normal animals, JUN-Immunoreactivity (JUN-Ir) was not detectable in the retinal ganglion cell layer. JUN-Ir was induced in about 70% of all FG-positive RGCs 5 days after axotomy. The expression of JUN-Ir started to decline 8 days after axotomy. Only a few JUN-Ir-positive RGCs were found after 2 weeks. In transplanted animals, however, the numbers of JUN-Ir-positive RGCs were significantly higher 2 and 3 weeks after transplantation compared to animals that exclusively received axotomy. Furthermore, in grafted rats about 70% of the regenerating RGCs expressed JUN-Ir 2 weeks after grafting as compared to only 38% JUN-positive RGCs among the surviving but not regenerating RGCs. In normal animals CREBP-Ir was constitutively expressed in nearly all cells of the retinal ganglion cell layer. The decline in number of CREBP-Ir-positive cells paralleled the axotmy-induced RGC death. FOS-Ir-positive cells were not found in the ganglion cell layer at any time. These results demonstrate a selective and transient JUN expression of RGCs after axotomy which is sustained during axonal regeneration. This suggests that sciatic nerve grafts are able to regulate the expression of JUN proteins in axotomized RGCs of adult rats. 1994 John Wiley & Sons, Inc.  相似文献   

19.
Summary The process by which axons regenerate following a freeze injury to the optic nerve of the newt was analyzed by light and electron microscopy. Freezing destroys cellular constituents in a one millimeter segment of the nerve, leaving intact the basal lamina and the blood supply to the eye. No axons are seen at the site of injury one to seven days post lesion. This contrasts with the persistence of normal-appearing but severed unmyelinated axons within the cranial stump which thus give a false appearance of early regeneration. The first axon sprouts traverse the lesion and enter the cranial stump by ten days. The number of regenerating axons increases rapidly thereafter with no signs of random growth at the site of injury. These axon sprouts tend to be somewhat larger than normal unmyelinated axons and contain dense core vesicles and abnormal organelles similar to those in growing axons in tissue culture. The persisting basal lamina inside the optic sheath appears to provide continuity across the site of injury, to orient axon sprouts, and to favor an orderly process of axon regeneration without neuroma formation.The authors wish to express their gratitude to Barbara Heindel and Jill Jones for extremely helpful technical assistance. This work was supported by grants NS 10864 and NS 05666 from the U.S. Public Health Service and by the Medical Research Service of the Veterans Administration  相似文献   

20.
CNS neurons, such as retinal ganglion cells (RGCs), do not normally regenerate injured axons, but instead undergo apoptotic cell death. Regenerative failure is due to inhibitory factors in the myelin and forming glial scar as well as due to an insufficient intrinsic capability of mature neurons to regrow axons. Nevertheless, RGCs can be transformed into an active regenerative state upon inflammatory stimulation (IS) in the inner eye, for instance by lens injury, enabling these RGCs to survive axotomy and to regenerate axons into the lesioned optic nerve. The beneficial effects of IS are mediated by various factors, including CNTF, LIF and IL-6. Consistently, IS activates various signaling pathways, such as JAK/STAT3 and PI3K/AKT/mTOR, in several retinal cell types. Using a conditional knockdown approach to specifically delete STAT3 in adult RGCs, we investigated the role of STAT3 in IS-induced neuroprotection and axon regeneration. Conditional STAT3 knockdown in RGCs did not affect the survival of RGCs after optic nerve injury compared with controls, but significantly reduced the neuroprotective effects of IS. STAT3 depletion significantly compromised CNTF-stimulated neurite growth in culture and IS-induced transformation of RGCs into an active regenerative state in vivo. As a consequence, IS-mediated axonal regeneration into the injured optic nerve was almost completely abolished in mice with STAT3 depleted in RGCs. In conclusion, STAT3 activation in RGCs is involved in neuroprotection and is a necessary prerequisite for optic nerve regeneration upon IS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号