首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Cytotherapy》2020,22(7):344-353
Background aimsThis study evaluated the release kinetics of numerous representative and less studied platelet-rich plasma (PRP) cytokines/chemokines with regard to the effects of various cellular compositions and incubation times. In addition, the biological effects of different PRPs on osteoarthritis synovial fibroblasts in vitro were tested.MethodsPeripheral whole blood was collected from healthy donors, and pure platelet-rich plasma (P-PRP), leukocyte-rich platelet-rich plasma (L-PRP) and platelet-poor plasma (PPP) were prepared for the analysis of the following biomolecules: IL-1β, IL-4, IL-6, IL-10, IL-17a, IL-22, MIP-1α/CCL-3, RANTES/CCL-5, MCP-3/CCL-7, Gro-α/CXCL-1, PF-4/CXCL-4, ENA-78/CXCL-5, NAP-2/CXCL-7, IL-8/CXCL-8, Fractalkine/CX3CL-1, s-CD40L P-PRP, L-PRP and PPP. Their effect on osteoarthritis synovial fibroblasts in vitro was tested by analyzing changes induced in both gene expression on a panel of representative molecules involved in physiopathology of joint environment and synthesis of IL-1β, IL-8 and hyaluronic acid.ResultsThis study demonstrated that among the 16 analyzed biomolecules, four were undetectable, whereas most of the detected biomolecules were more concentrated in L-PRP even when concentrations were normalized to platelet number. Despite the pro-inflammatory boost, the various PRP preparations did not alter synovial fibroblast gene expression of specific factors that play a pivotal role in joint tissue homeostasis and are able to induce anti-inflammatory (TIMP-1) biomolecules.DiscussionThis study provides a set of reference data on the concentration and release kinetics of some less explored biomolecules that could represent potential specific effectors in the modulation of inflammatory processes and in tissue repair after treatment with PRP.  相似文献   

2.
Background aimsAn extensive debate about the clinical benefits of autologous platelet concentrates used as a treatment option for patients with orthopedic injuries is ongoing. The aim of this study was to determine whether different compositions of platelet concentrates may affect the osteogenic differentiation of bone marrow stromal cells (BMSC).MethodsPure platelet-rich plasma (P-PRP) and leukocyte-PRP (L-PRP) were characterized for platelet and leukocyte content. As an indicative marker of the delivery of growth factors (GFs), the release of basic fibroblast growth factor (bFGF) from platelet gel (PG) was measured at 1, 18, 48 and 72 h and at 7 d. The ability of different PGs to induce proliferation and differentiation of BMSC was evaluated by using bioactivity assays.ResultsThe platelet recovery was significantly higher in L-PRP, either fresh or frozen. PGs derived from L-PRP and P-PRP showed significant differences in terms of bFGF release and biological activity. bFGF release was faster both in fresh and frozen L-PRP preparations. Moreover, L-PRP samples were able to induce a significantly higher proliferation of BMSC compared with P-PRP or PPP samples. Even though all PG preparations allowed the deposition of mineral nodules in BMSC cultures, the mineralization activity correlated significantly with bFGF levels.ConclusionsThe biological activity of platelet concentrates differs according to preparation technique, which affects platelet and leukocyte content and GF availability. Because GF levels are not always optimal in subjects with defective bone healing, composition and bioactivity of PRP should be analyzed to test the reliability and potential effectiveness of the regenerative treatment.  相似文献   

3.
The objective of this in vitro study was to examine the immunomodulatory impact of human periodontal ligament (PDL) cells on the nature and magnitude of the leukocyte infiltrate in periodontal inflammation, particularly with regard to Th17 cells. PDL cells were challenged with pro-inflammatory cytokines (IL-1ß, IL-17A, and IFN-γ) and analyzed for the expression of cytokines involved in periodontal immunoinflammatory processes (IL-6, MIP-3 alpha, IL-23A, TGFß1, IDO, and CD274). In order to further investigate a direct involvement of PDL cells in leukocyte function, co-culture experiments were conducted. The expression of the immunomodulatory cytokines studied was significantly increased under pro-inflammatory conditions in PDL cells. Although PDL cells did not stimulate leukocyte proliferation or Th17 differentiation, these cells induced the recruitment of leukocytes. The results of our study suggest that PDL cells might be involved in chronic inflammatory mechanisms in periodontal tissues and thus in the transition to an adaptive immune response in periodontitis.  相似文献   

4.
Platelet-rich plasma (PRP) has received increasing interest in applied medicine, being widely used in clinical practice with the aim of stimulating tissue healing. Despite the reported clinical success, there is still a lack of knowledge when considering the biological mechanisms at the base of the activity of PRP during the process of muscle healing. The aim of the present study was to verify whether the local delivery of PRP modulates specific molecular events involved in the early stages of the muscle regeneration process. The right flexor sublimis muscle of anesthetized Wistar rats was mechanically injured and either treated with PRP or received no treatment. At day 2 and 5 after surgery, the animals were sacrificed and the muscle samples evaluated at molecular levels. PRP treatment increased significantly the mRNA level of the pro-inflammatory cytokines IL-1β, and TGF-β1. This phenomenon induced an increased expression at mRNA and/or protein levels of several myogenic regulatory factors such as MyoD1, Myf5 and Pax7, as well as the muscular isoform of insulin-like growth factor1 (IGF-1Eb). No effect was detected with respect to VEGF-A expression. In addition, PRP application modulated the expression of miR-133a together with its known target serum response factor (SRF); increased the phosphorylation of αB-cristallin, with a significant improvement in several apoptotic parameters (NF-κB-p65 and caspase 3), indexes of augmented cell survival. The results of the present study indicates that the effect of PRP in skeletal muscle injury repair is due both to the modulation of the molecular mediators of the inflammatory and myogenic pathways, and to the control of secondary pathways such as those regulated by myomiRNAs and heat shock proteins, which contribute to proper and effective tissue regeneration.  相似文献   

5.
Lee SH  Lee E  Ko YT 《BMB reports》2012,45(6):371-376
To investigate the therapeutic effect of a Korean herbal medicine Pulsatilla koreana as an anti-septic agent, anti-inflammatory effects of the herbal medicine were determined in lipopolysaccharide (LPS)-exposed rats. Treatment with a methanol extract from Pulsatilla koreana significantly inhibited LPS-induced inflammatory responses. Results from ELISA analysis showed that Pulsatilla koreana decreased the plasma and hepatic levels of pro-inflammatory cytokines such as IL-1 β, IL-6, TNF-α while increased the level of anti-inflammatory cytokine IL-10 in LPS-exposed rats. Pulsatilla koreana also decreased the plasma levels of other inflammatory mediators such as NO3 -/NO2 -, ICAM-1, PGE2, and CINC-1 in LPS-exposed rats. Although no significant effects were observed in the phagocytic activities, the distribution of lymphocyte population was significantly shifted by the treatment with Pulsatilla koreana. All together, Pulsatilla koreana exerts anti-inflammatory activities in the immune-challenged animals implicating that this Korean herbal medicine is therapeutically useful for the treatment of inflammatory diseases like sepsis.  相似文献   

6.
AimsTo investigate the mechanism by which platelet endothelial cell adhesion molecule 1 (PECAM-1/CD31), an immunoglobulin (Ig)-superfamily cell adhesion and signaling receptor, regulates pro-inflammatory cytokine levels. The purpose of the present investigation was to test the hypothesis that PECAM-1 influences circulating cytokine levels by regulating the trafficking of activated, cytokine-producing leukocytes to sites of inflammation.Main methodsPECAM-1+/+ and PECAM-1?/? mice were subjected to lipopolysaccharide (LPS)-induced endotoxemia, and systemic cytokine levels were measured by Bioplex multiplex cytokine assays. Flow cytometry was employed to enumerate leukocytes at inflammatory sites and to measure cytokine synthesis in leukocyte sub-populations. Enzyme-linked immunosorbent assay (ELISA) was used to measure cytokine levels in tissue samples and in supernatants of in vitro-stimulated leukocytes.Key findingsWe confirmed earlier reports that mice deficient in PECAM-1 had greater systemic levels of pro-inflammatory cytokines following intraperitoneal (IP) LPS administration. Interestingly, expression of PECAM-1, in mice, had negligible effects on the level of cytokine synthesis by leukocytes stimulated in vitro with LPS and in peritoneal macrophages isolated from LPS-injected mice. There was, however, excessive accumulation of macrophages and neutrophils in the lungs of PECAM-1-deficient, compared with wild-type, mice — an event that correlated with a prolonged increase in lung pro-inflammatory cytokine levels.SignificanceOur results demonstrate that PECAM-1 normally functions to dampen systemic cytokine levels during LPS-induced endotoxemia by diminishing the accumulation of cytokine-producing leukocytes at sites of inflammation, rather than by modulating cytokine synthesis by leukocytes.  相似文献   

7.
ABSTRACT

The current investigation was carried out to analyze the correlation of bacterial lipopolysaccharide (LPS) and pre-mRNA processing factor 4B (PRP4) in inducing inflammatory response and cell actin cytoskeleton rearrangement in macrophages (Raw 264.7) and colorectal (HCT116) as well as skin cancer (B16-F10) cells. Cell lines were stimulated with LPS, and the expression of PRP4 as well as pro-inflammatory cytokines and proteins like IL-6, IL-1β, TLR4, and NF-κB were assayed. The results demonstrated that LPS markedly increased the expression of PRP4, IL-6, IL-1β, TLR4, and NF-κB in the cells. LPS and PRP4 concomitantly altered the morphology of cells from an aggregated, flattened shape to a round shape. Decursin, a pyranocoumarin from Angelica gigas, inhibited the LPS and PRP4-induced inflammatory response, and reversed the induction of morphological changes. Finally, we established a possible link of LPS with TLR4 and JNK signaling, through which it activated PRP4. Our study provides molecular insights for LPS and PRP4-related pathogenesis and a basis for developing new strategies against metastasis in colorectal cancer and skin melanoma. Our study emphasizes that decursin may be an effective treatment strategy for various cancers in which LPS and PRP4 perform a critical role in inducing inflammatory response and morphological changes leading to cell survival and protection against anti-cancer drugs.  相似文献   

8.
The aim of this study was to assess the change of IL-37 concentrations in rheumatoid arthritis (RA) patients under Disease-modifying anti-rheumatic drug (DMARD) therapy, and to establish a correlation between Interleukin-37 and pro-inflammatory cytokines in plasma and disease activity. The plasma level of IL-37 was determined using ELISA in 50 newly diagnosed RA patients and 30 healthy controls (HC). Plasma levels of IL-17A, IL-6 and TNF-α were measured using flow a cytometric bead array assay. We found that the concentrations of IL-37, as well as IL-17A, IL-6 and TNF-α, were higher in plasma of RA patients compared to HCs. Compared to patients who did not respond to DMARD treatment, treatment of patients responsive to DMARDs resulted in down-regulation of IL-17A, IL-6 and TNF-α expression. The plasma level of the anti-inflammatory cytokine IL-37 was also decreased in drug responders after DMARD treatment. The plasma level of IL-37 in RA patients was positively correlated with pro-inflammatory cytokines (IL-17A, TNF-α) and disease activity (CRP, DAS28) in RA patients. IL-37 expression in RA and during DMARD treatment appears to be controlled by the level of pro-inflammatory cytokines. This results in a strong correlation between plasma levels of IL-37 and disease activity in RA patients.  相似文献   

9.
Placenta is an important source and target of hormones that contribute to immunological tolerance and maintenance of pregnancy. In preeclampsia (PE), placental calcitriol synthesis is low; whereas pro-inflammatory cytokines levels are increased, threatening pregnancy outcome. Previously, we showed that calcitriol inhibits Th-1 cytokines under experimental inflammatory conditions in normal trophoblasts. However, a study of the regulation of inflammatory cytokines by calcitriol in trophoblasts from a natural inflammatory condition, such as PE, is still lacking. Therefore, the aim of the present study was to investigate calcitriol effects upon TNF-α, IFN-γ, IL-6 and IL-1β in cultured placental cells from preeclamptic women by using qPCR and ELISA. Placentas were collected after cesarean section from preeclamptic women and enriched trophoblastic preparations were cultured in the absence or presence of different calcitriol concentrations during 24 h. In these cell cultures, pro-inflammatory cytokines TNF-α and IL-6 secretion and mRNA expression were downregulated by calcitriol (P < 0.05). No significant effects of calcitriol upon IFN-γ and IL-1β were observed. In addition, basal expression of TNF-α, IL-6 and IL-1β decreased as the cells formed syncytia. Our study supports an important autocrine/paracrine role of placental calcitriol in controlling adverse immunological responses at the feto–maternal interface, particularly in gestational pathologies associated with exacerbated inflammatory responses such as preeclampsia.  相似文献   

10.
Fresh noma is a severe orofacial necrosis with an astonishingly rapid development. It is seen mainly in malnourished children less than 4 years old from developing countries. Cytokines play a central role in oral mucosal inflammation. We therefore studied the relevance of circulating cytokines to noma, and the key microorganisms associated with the lesion. Nigerian village children with acute noma (n=68) and their neighborhood village (n=63) as well as urban (n=45) counterparts of comparable age and free of overt infections were evaluated for serum cytokine levels by ELISA. Oral bacteria were studied by polymerase chain reaction. Evaluation of random cases of the village and noma children showed marked depletion (p<0.05 or 0.001) of the plasma antioxidant micronutrients (retinol, ascorbic acid, zinc) as well as albumin and blood hemoglobin in the latter, relative to the former group. Concentrations of the circulating, pro-inflammatory cytokines (IL-18, IL-6, IL-12, IL-8, IFN-gamma) and the soluble inhibitors (TNFR-p55, TNFR-p75 and IL-1ra) were significantly higher (p<0.01 or 0.001) in noma children than in the healthy urban children, but less so when compared to their neighborhood village counterparts. The increase in levels of the anti-inflammatory/regulatory cytokines (IL-4, IL-10 and TGF-beta) was less marked relative to the pro-inflammatory cytokines. Bacteria observed at the highest frequencies in noma lesions were P. intermedia (83%), T. forsythensis (83%), P. gingivalis (50%), C. rectus (50%) and T. denticola (50%). We conclude that noma is an immunopathological response to potent bacterial factors resulting in uncontrolled production of cytokines and possibly other, still unknown, inflammatory mediators.  相似文献   

11.

Background

Toll-like receptors (TLR) and cytokines play a central role in the pathogen clearance as well as in pathological processes. Recently, we reported that TLR2, TLR4 and TLR9 are differentially modulated in injured livers from BALB/c and C57BL/6 (B6) mice during Trypanosoma cruzi infection. However, the molecular and cellular mechanisms involved in local immune response remain unclear.

Methodology/Principal Findings

In this study, we demonstrate that hepatic leukocytes from infected B6 mice produced higher amounts of pro-inflammatory cytokines than BALB/c mice, whereas IL10 and TGFβ were only released by hepatic leukocytes from BALB/c. Strikingly, a higher expression of TLR2 and TLR4 was observed in hepatocytes of infected BALB/c mice. However, in infected B6 mice, the strong pro-inflammatory response was associated with a high and sustained expression of TLR9 and iNOS in leukocytes and hepatic tissue respectively. Additionally, co-expression of gp91- and p47-phox NADPH oxidase subunits were detected in liver tissue of infected B6 mice. Notably, the pre-treatment previous to infection with Pam3CSK4, TLR2-agonist, induced a significant reduction of transaminase activity levels and inflammatory foci number in livers of infected B6 mice. Moreover, lower pro-inflammatory cytokines and increased TGFβ levels were detected in purified hepatic leukocytes from TLR2-agonist pre-treated B6 mice.

Conclusions/Significance

Our results describe some of the main injurious signals involved in liver immune response during the T. cruzi acute infection. Additionally we show that the administration of Pam3CSk4, previous to infection, can attenuate the exacerbated inflammatory response of livers in B6 mice. These results could be useful to understand and design novel immune strategies in controlling liver pathologies.  相似文献   

12.
Mast cells infiltrate the inflammatory microenvironment and regulate the production of many pro-inflammatory cytokines and mediators of inflammatory cell production to promote tumor development and growth in intestinal lesions. Currently, there are insufficient studies of the mediators and signaling pathways regulated by mast cells that influence the pathogenesis of colon cancer in inflamed colon tissue. This study aimed to confirm the role of mast cells in the incidence and growth of colitis-associated colon cancer (CAC) and to identify inflammation-mediated factors and signaling pathways related to tumor development. CAC was induced by the administration of azoxymethane (AOM) and dextran sodium sulfate (DSS) in mast cell-deficient (WBB6F1/J-W/WV) and mast cell–sufficient control (WBB6F1_+/+) mice. The results confirmed that mast cell-deficient mice exhibited less tumor formation than normal mice under the same conditions, and down-regulated expression of pro-inflammatory cytokines and mediators. Mast cells play an important role in tumor formation by regulating pro-inflammatory cytokines and inflammatory mediators in CAC, indicating that they can act as new targets for the prevention and treatment of CAC.  相似文献   

13.
Proline-rich protein (PRP) is a plasma protein associated with lipoproteins. In an attempt to clarify the biological significance of this protein, we isolated and characterized it and studied the biological role in plasma. PRP was isolated by immunosorber column chromatography and by gel filtration and ion-exchange chromatography. The molecular weight determined by gel filtration chromatography was 352,000, that is, about 5-times larger than the weight determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (73,800), indicating pentamer formation. About 10 or 11 isoproteins (pI 5.89-6.55) were observed by isoelectric focusing gel electrophoresis. PRP contained fucose, mannose, galactose, glucosamine and sialic acid accounting for 8.0% of the dry weight. PRP also had a hydrophilic property, as determined by charge shift electrophoresis. Levels of this protein in the human serum related to triacylglycerol-rich lipoproteins. The concentration of PRP correlated to the erythrocyte sedimentation rate (ESR), the C-reactive protein (CRP) and alpha 1- and alpha 2-globulin. Sera from patients with infection and inflammation showed significantly higher PRP levels than those noted in controls. Levels of PRP rose in parallel with ESR and CRP levels following acute myocardial infarction, and the maximal level was noted on the 7th postinfarction day. The PRP levels were elevated during the active phase of pneumonia, followed normalization. These data suggest that PRP is an acute phase reactant and may be important in the metabolism of triacylglycerol-rich lipoproteins.  相似文献   

14.

Background

Hantaan virus (HTNV) causes a severe lethal haemorrhagic fever with renal syndrome (HFRS) in humans. Despite a limited understanding of the pathogenesis of HFRS, the importance of the abundant production of pro-inflammatory cytokines has been widely recognized. Interleukin 33 (IL-33) has been demonstrated to play an important role in physiological and pathological immune responses. After binding to its receptor ST2L, IL-33 stimulates the Th2-type immune response and promotes cytokine production. Depending on the disease model, IL-33 either protects against infection or exacerbates inflammatory disease, but it is unknown how the IL-33/ST2 axis regulates the immune response during HTNV infection.

Methodology/Principal Findings

Blood samples were collected from 23 hospitalized patients and 28 healthy controls. The levels of IL-33 and soluble ST2 (sST2) in plasma were quantified by ELISA, and the relationship between IL-33, sST2 and the disease severity was analyzed. The role of IL-33/sST2 axis in the production of pro-inflammatory cytokines was studied on HTNV-infected endothelial cells. The results showed that the plasma IL-33 and sST2 were significantly higher in patients than in healthy controls. Spearman analysis showed that elevated IL-33 and sST2 levels were positively correlated with white blood cell count and viral load, while negatively correlated with platelet count. Furthermore, we found that IL-33 enhanced the production of pro-inflammatory cytokines in HTNV-infected endothelial cells through NF-κB pathway and that this process was inhibited by the recombinant sST2.

Conclusion/Significance

Our results indicate that the IL-33 acts as an initiator of the “cytokine storm” during HTNV infection, while sST2 can inhibit this process. Our findings could provide a promising immunotherapeutic target for the disease control.  相似文献   

15.
Interleukin (IL)-32, a novel cytokine, participates in a variety of inflammatory disorders. Thymic stromal lymphopoietin (TSLP) plays important roles in mucosal epithelial cells, especially in allergy-induced inflammation, through the TSLP-TSLPR (thymic stromal lymphopoietin receptor) signalling pathway. However, the association of IL-32 with TSLP on the ocular surface remains unclear. The present work aimed to assess the functional association of IL-32 with TSLP in the control of pro-inflammatory cytokine levels in the corneal epithelium. Human corneal tissue specimens and human corneal epithelial cells (HCECs) were administered different concentrations of IL-32 in the presence or absence of various inhibitors to assess TSLP levels and localization, as well as the molecular pathways that control pro-inflammatory cytokine production. TSLP mRNA levels were determined by real time RT- PCR, while protein levels were quantitated by ELISA and immunohistochemical staining. TSLP protein expression was examined in donor corneal epithelium samples. IL-32 significantly upregulated TSLP and pro-inflammatory cytokines (TNFα and IL-6) in HCECs at the gene and protein levels. The production of pro-inflammatory molecules by IL-32 was increased by recombinant TSLP. Interestingly, both NF-κB (quinazoline) and caspase-1 (VX-765) inhibitors suppressed the IL-32-related upregulation of pro-inflammatory cytokines (TNFα and IL-6). These findings demonstrate that IL-32 and IL-32-induced-TSLP are critical cytokines that participate in inflammatory responses through the caspase-1 and NF-κB signalling pathways in the corneal epithelium, suggesting new molecular targets for inflammatory diseases of the ocular surface. The effects of IL-32 on cell proliferation and apoptosis were investigated by MTT assays and RT-PCR,respectively. The results demonstrated that IL-32 inhibits cells apoptosis in HCECs.  相似文献   

16.
The potent inducer of apoptosis TRAIL/Apo2 ligand is now under considerations in clinical trials for the treatment of different types of cancer. Since the natural history of cancer is often characterized by microbial infections, we have investigated the effect of recombinant human TRAIL in a mouse model of systemic acute inflammation of microbial origin represented by BALB/c mice treated with either bacterial muramyldipeptide (MDP) or lipopolysaccharide (LPS). When administered intraperitoneally (i.p.), these inflammatory bacterial compounds triggered a severe systemic inflammatory response within 2h, represented by body temperature elevation, increase of circulating serum amyloid-A (SAA) and of the number of leukocytes in the peritoneal cavity. Moreover, both MDP and LPS induced a significant elevation of the circulating levels of several inflammatory cytokines and chemokines. Noteworthy, pre-treatment with recombinant human TRAIL 48 and 72h before administration of either MDP or LPS, significantly counteracted all acute inflammatory responses, including the elevation of key pro-inflammatory cytokines/chemokines such as IL-1α, IL-6, G-CSF, MCP-1. These data demonstrate for the first time that TRAIL has a potent anti-inflammatory activity, which might be beneficial for the anti-tumoral activity of TRAIL.  相似文献   

17.
The transforming growth factor beta 1 (TGF-β1) is a pleiotropic cytokine with multiple roles in development, wound healing, and immune regulation. TGF-β1-mediated immune dysfunction may lead to pathological conditions, such as inflammation. Chronic inflammatory process is characterized by a continuous release of pro-inflammatory cytokines, and the inhibition or the blockage of these cytokines signaling pathways are considered a target treatment. In this context, despite the high numbers of TGF-β-targeted pathways, the inducible regulatory T cells (iTreg) to control inflammation seems to be a promising approach. Our aim was to develop novel peptides through phage display (PhD) technology that could mimic TGF-β1 function with higher potency. Specific mimetic peptides were obtained through a PhD subtraction strategy from whole cell binding using TGF-β1 recombinant as a competitor during elution step. We have selected a peptide that seems to play an important role on cellular differentiation and modulation of TNF-α and IL-10 cytokines. The synthetic pm26TGF-β1 peptide tested in PBMC significantly down-modulated TNF-α and up-regulated IL-10 responses, leading to regulatory T cells (Treg) phenotype differentiation. Furthermore, the synthetic peptide was able to decrease leukocytes rolling in BALB/C mice and neutrophils migration during inflammatory process in C57BL/6 mice. These data suggest that this peptide may be useful for the treatment of inflammatory diseases, especially because it displays potent anti-inflammatory properties and do not exhibit neutrophils’ chemoattraction.  相似文献   

18.
Among their pleiotropic effects, statins exert antioxidant and anti-inflammatory properties. The aim of this study was to evaluate in normotensive (WKY) and in spontaneously hypertensive rats (SHR) the effect of rosuvastatin (ROSU) treatment on (1) plasma inflammation markers and endogenous NO synthase inhibitor (ADMA) levels, (2) reactive oxygen species (ROS) generated by circulating leukocytes and (3) vascular oxidative stress and tissue inflammation markers. Plasma cytokines were higher in SHR than in WKY, except for IL-4, which was lower in SHR than in WKY. SHR monocytes exhibited higher production of ROS than did WKY monocytes. In the experimental conditions, ROSU did not modify plasma cholesterol levels in SHR but attenuated the increase in systolic blood pressure. In SHR only, ROSU lessened pro-inflammatory cytokines and ADMA levels, increased IL-4 and reduced ROS production in circulating monocytes. These results demonstrate the beneficial effects of ROSU in SHR, independently of any lowering of cholesterol levels.  相似文献   

19.
Among their pleiotropic effects, statins exert antioxidant and anti-inflammatory properties. The aim of this study was to evaluate in normotensive (WKY) and in spontaneously hypertensive rats (SHR) the effect of rosuvastatin (ROSU) treatment on (1) plasma inflammation markers and endogenous NO synthase inhibitor (ADMA) levels, (2) reactive oxygen species (ROS) generated by circulating leukocytes and (3) vascular oxidative stress and tissue inflammation markers. Plasma cytokines were higher in SHR than in WKY, except for IL-4, which was lower in SHR than in WKY. SHR monocytes exhibited higher production of ROS than did WKY monocytes. In the experimental conditions, ROSU did not modify plasma cholesterol levels in SHR but attenuated the increase in systolic blood pressure. In SHR only, ROSU lessened pro-inflammatory cytokines and ADMA levels, increased IL-4 and reduced ROS production in circulating monocytes. These results demonstrate the beneficial effects of ROSU in SHR, independently of any lowering of cholesterol levels.  相似文献   

20.
(1-->3)-beta-D-glucans are known as potent inductors of humoral and cell-mediated immunity in humans and animals. (1-->3)-beta-D-glucans isolated from various sources differ in their chemical structure and physical parameters and consequently in their immunomodulatory potential. In this study the immunomodulatory activity of two (1-->3)-beta-D-glucans schizophyllan (SPG) and carboxymethylglucan (CMG) was determined and compared on human blood leukocytes in vitro. Both SPG and CMG activated blood phagocytes and lymphocytes as demonstrated by increased whole blood production of reactive oxygen species, by increased production of pro-inflammatory cytokines IL-6, IL-8, and TNF-alpha, by increased surface expression of CD69 on lymphocytes, and by altered expression of CD11b and CD62L on polymorphonuclear leukocytes and monocytes. SPG demonstrated a significantly higher potential to stimulate blood phagocytes and production of selected pro-inflammatory cytokines than CMG. The higher potency of SPG to stimulate human blood phagocytes in vitro could be caused by factors such as higher branching frequencies or neutral polymer charge of SPG or different conformation in solution if compared with CMG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号