首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alzheimer’s disease (AD) is a major cause of dementia in the elderly. Pathologically, AD is characterized by the accumulation of insoluble aggregates of Aβ-peptides that are proteolytic cleavage products of the amyloid-β precursor protein (“plaques”) and by insoluble filaments composed of hyperphosphorylated tau protein (“tangles”). Familial forms of AD often display increased production of Aβ peptides and/or altered activity of presenilins, the catalytic subunits of γ-secretase that produce Aβ peptides. Although the pathogenesis of AD remains unclear, recent studies have highlighted two major themes that are likely important. First, oligomeric Aβ species have strong detrimental effects on synapse function and structure, particularly on the postsynaptic side. Second, decreased presenilin function impairs synaptic transmission and promotes neurodegeneration. The mechanisms underlying these processes are beginning to be elucidated, and, although their relevance to AD remains debated, understanding these processes will likely allow new therapeutic avenues to AD.Alzheimer’s disease (AD) is a common neurodegenerative disease of the elderly, first described by the physician-pathologist Alois Alzheimer in 1907 (Maurer and Maurer 2003). Clinically, AD is characterized by progressive impairment of memory (particularly short-term memory in early stages) and other cognitive disabilities, personality changes, and ultimately, complete dependence on others. The most prevalent cause of dementia worldwide, AD afflicts >5 million people in the United States and >25 million globally (Alzheimer’s Association, http://www.alz.org). Age is the most important risk factor, with the prevalence of AD rising exponentially after 65 (Blennow et al. 2006). However, many cases of so-called AD above 80 yr of age may result from a combination of pathological dementia processes (Fotuhi et al. 2009). The apolipoprotein E (ApoE) gene is the most important genetic susceptibility factor for AD, with the relatively common ApoE4 allele (prevalence ∼16%) increasing the risk for AD threefold to fourfold in heterozygous dose (Kim et al. 2009).The histopathological hallmarks of AD are amyloid plaques (extracellular deposits consisting largely of aggregated amyloid beta [Aβ] peptide that are typically surrounded by neurons with dystrophic neurites) and neurofibrillary tangles (NFTs, intracellular filamentous aggregates of hyperphosphorylated tau, a microtubule-binding protein) (Blennow et al. 2006). The development of amyloid plaques typically precedes clinically significant symptoms by at least 10–15 yr. Amyloid plaques are found in a minority of nondemented elderly patients, who may represent a “presymptomatic” AD population. As AD progresses, cognitive function worsens, synapse loss and neuronal cell death become prominent, and there is substantial reduction in brain volume, especially in the entorhinal cortex and hippocampus. The best correlation between dementia and histopathological changes is observed with neurofibrillary tangles, whereas the relationship between the density of amyloid plaques and loss of cognition is weaker (Braak and Braak 1990; Nagy et al. 1995). In addition to amyloid plaques and neurofibrillary tangles, many AD cases exhibit widespread Lewy body pathology. (Lewy bodies are intracellular inclusion bodies that contain aggregates of α-synuclein and other proteins.) Particularly in very old patients, considerable overlap between AD, frontotemporal dementia, Lewy body dementia, and vascular disease is observed, and pure AD may be rare (Fotuhi et al. 2009).  相似文献   

2.
Autophagy is an essential degradation pathway in clearing abnormal protein aggregates in mammalian cells and is responsible for protein homeostasis and neuronal health. Several studies have shown that autophagy deficits occurred in early stage of Alzheimer’s disease (AD). Autophagy plays an important role in generation and metabolism of β-amyloid (Aβ), assembling of tau and thus its malfunction may lead to the progress of AD. By considering the above evidences, autophagy may be a new target in developing drugs for AD. So far, a number of mammalian target of rapamycin (mTOR)-dependent and independent autophagy modulators have been identified to have positive effects in AD treatment. In this review, we summarized the latest progress supporting the role for autophagy deficits in AD and the potential therapeutic effects of autophagy modulators in AD.  相似文献   

3.
“Modern” medicine and pharmacology require an effective medical drug with a single compound for a specific disease. This seams very scientific but usually has unavoidable side effects. For example, the chemical therapy to cancer can totally damage the immunological ability of the patient leading to death early than non-treatment. On the other hand, natural antioxidant drugs not only can cure the disease but also can enhance the immunological ability of the patient leading to healthier though they usually have several compounds or a mixture. For the degenerative disease such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), natural antioxidant drugs are suitable drugs, because the pathogenesis of these diseases is complex with many targets and pathways. These effects are more evidence when the clinic trial is for long term treatment. The author reviews the studies on the protecting effects of natural antioxidants on neurons in neurodegenerative diseases, especially summarized the results about protective effect of green tea polyphenols on neurons against apoptosis of cellular and animal PD models, and of genestine and nicotine on neurons against Aβ—induced apoptosis of hippocampal neuronal and transgenic mouse AD models. Special issue in honor of Dr. Akitane Mori.  相似文献   

4.
New insights into how Ca2+ regulates learning and memory have begun to provide clues as to how the amyloid-dependent remodelling of neuronal Ca2+ signalling pathways can disrupt the mechanisms of learning and memory in Alzheimer’s disease (AD). The calcium hypothesis of AD proposes that activation of the amyloidogenic pathway remodels the neuronal Ca2+ signalling pathways responsible for cognition by enhancing the entry of Ca2+ and/or the release of internal Ca2+ by ryanodine receptors or InsP3 receptors. The specific proposal is that Ca2+ signalling remodelling results in a persistent elevation in the level of Ca2+ that constantly erases newly acquired memories by enhancing the mechanism of long-term depression (LTD). Neurons can still form memories through the process of LTP, but this stored information is rapidly removed by the persistent activation of LTD. Further dysregulation in Ca2+ signalling will then go on to induce the neurodegeneration that characterizes the later stages of dementia.  相似文献   

5.
The importance of the role of the endocannabinoid system (ECS) in neurodegenerative diseases has grown during the past few years. Mostly because of the high density and wide distribution of cannabinoid receptors of the CB1 type in the central nervous system (CNS), much research focused on the function(s) that these receptors might play in pathophysiological conditions. Our current understanding, however, points to much diverse roles for this system. In particular, other elements of the ECS, such as the fatty acid amide hydrolase (FAAH) or the CB2 cannabinoid receptor are now considered as promising pharmacological targets for some diseases and new cannabinoids have been incorporated as therapeutic tools. Although still preliminary, recent reports suggest that the modulation of the ECS may constitute a novel approach for the treatment of Alzheimer’s disease (AD). Data obtained in vitro, as well as in animal models for this disease and in human samples seem to corroborate the notion that the activation of the ECS, through the use of agonists or by enhancing the endogenous cannabinoid tone, may induce beneficial effects on the evolution of this disease.  相似文献   

6.
Late onset Alzheimer’s disease (LOAD) etiology is influenced by complex interactions between genetic and environmental risk factors. Large-scale genome wide association studies (GWAS) for LOAD have identified 10 novel risk genes: ABCA7, BIN1, CD2AP, CD33, CLU, CR1, EPHA1, MS4A6A, MS4A6E, and PICALM. We sought to measure the influence of GWAS single nucleotide polymorphisms (SNPs) and gene expression levels on clinical and pathological measures of AD in brain tissue from the parietal lobe of AD cases and age-matched, cognitively normal controls. We found that ABCA7, CD33, and CR1 expression levels were associated with clinical dementia rating (CDR), with higher expression being associated with more advanced cognitive decline. BIN1 expression levels were associated with disease progression, where higher expression was associated with a delayed age at onset. CD33, CLU, and CR1 expression levels were associated with disease status, where elevated expression levels were associated with AD. Additionally, MS4A6A expression levels were associated with Braak tangle and Braak plaque scores, with elevated expression levels being associated with more advanced brain pathology. We failed to detect an association between GWAS SNPs and gene expression levels in our brain series. The minor allele of rs3764650 in ABCA7 is associated with age at onset and disease duration, and the minor allele of rs670139 in MS4A6E was associated with Braak tangle and Braak plaque score. These findings suggest that expression of some GWAS genes, namely ABCA7, BIN1, CD33, CLU, CR1 and the MS4A family, are altered in AD brains.  相似文献   

7.
Matrix metalloproteinases (MMPs) and oxidative stress have been implicated in neurological diseases such as Alzheimer’s disease (AD). Plasma MMP-2 and MMP-9 activities were assessed in Mild Cognitive Impairment (MCI) and AD subjects compared with aged-matched controls, and subsequently analysed in relation to oxidative stress markers. Both MMP-2 and MMP-9 showed no significant changes versus control subjects. Plasma glutathione peroxidase Se-dependent (GPx-Se) activity and malondialdehyde (MDA) levels were higher in AD than in controls (< 0.05), suggesting a role for GPx-Se in controlling oxidative stress in AD. Negative correlations were observed between MMPs and MDA in AD and MCI patients (P < 0.05). In conclusion, oxidative stress events did not include activation of MMPs and this similar pattern in AD and MCI suggests that both are biochemically equivalent.  相似文献   

8.
Parkinson’s disease (PD) is one of the most common neurodegenerative diseases. The development of pathology is associated with the loss of dopaminergic neurons, mainly in substantia nigra pars compacta. Dopamine deficiency causes a whole range of severe motor symptoms, including bradykinesia, postural instability, muscle rigidity, and tremor. Studies have shown the primary role of the alpha-synuclein protein in this neurodegenerative disease. A large amount of data indicates different mechanisms of the toxic effect of alpha-synuclein. The process of neurodegeneration in PD is the result of significant disturbances in mitochondrial functions and/or genetic mutations. The number of mutated genes in hereditary and sporadic forms of Parkinson’s disease includes genes encoding PINK1 and Parkin, which are the main participants in the mitochondrial “quality control” system. The earliest biochemical hallmarks of the disease are disturbances of the mitochondrial interaction with endoplasmic reticulum, mitochondrial dynamics, Ca2+ homeostasis, and an increase in the level of mitochondrial reactive oxygen species. All these factors exert damaging effects on dopaminergic neurons.  相似文献   

9.
10.
Alzheimer's disease (AD) is one key medical challenge of the aging society and despite a great amount of effort and a huge collection of acquired data on molecular mechanisms that are associated with the onset and progression of this devastating disorder, no causal therapy is in sight. The two main hypotheses of AD, the amyloid cascade hypothesis and the Tau hypothesis, are still in the focus of AD research. With aging as the accepted main risk factor of the most important non familial and late onset sporadic forms of AD, it is now mandatory to discuss more intensively aspects of cellular aging and aging biochemistry and its impact on neurodegeneration. Since aging is accompanied by changes in cellular protein homeostasis and an increasing demand for protein degradation, aspects of protein folding, misfolding, refolding and, importantly, protein degradation need to be linked to AD pathogenesis. This is the purpose of this short review.  相似文献   

11.
Oxidative and Inflammatory Pathways in Parkinson’s Disease   总被引:2,自引:0,他引:2  
Parkinson’s disease (PD) is the second most prevalent age-related neurodegenerative disease with physiological manifestations including tremors, bradykinesia, abnormal postural reflexes, rigidity and akinesia and pathological landmarks showing losses of dopaminergic neurons in the substantia nigra. Although the etiology of PD has been intensively pursued for several decades, biochemical mechanisms and genetic and epigenetic factors leading to initiation and progression of the disease remain elusive. Environmental toxins including (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) MPTP, paraquat and rotenone have been shown to increase the risk of PD in humans. Oxidative stress remains the leading theory for explaining progression of PD. Studies with cell and animal models reveal oxidative and inflammatory properties of these toxins and their ability to activate glial cells which subsequently destroy neighboring dopaminergic neurons. This review describes pathological effects of neurotoxins on cells and signaling pathways for production of reactive oxygen species (ROS) that underline the pathophysiology of PD. Special issue article in honor of Dr. George DeVries.  相似文献   

12.
Alzheimer’s disease (AD) is characterized by progressive memory loss and cognitive function deficits. There are two major pathological hallmarks that contribute to the pathogenesis of AD which are the presence of extracellular amyloid plaques composed of amyloid-β (Aβ) and intracellular neurofibrillary tangles composed of hyperphosphorylated tau. Despite extensive research that has been done on Aβ in the last two decades, therapies targeting Aβ were not very fruitful at treating AD as the efficacy of Aβ therapies observed in animal models is not reflected in human clinical trials. Hence, tau-directed therapies have received tremendous attention as the potential treatments for AD. Tauopathies are closely correlated with dementia and immunotherapy has been effective at reducing tau pathology and improving cognitive deficits in animal models. Thus, in this review article, we discussed the pathological mechanism of tau proteins, the key factors contributing to tauopathies, and therapeutic approaches for tauopathies in AD based on the recent progress in tau-based research.  相似文献   

13.
The study of sporadic Alzheimer’s disease etiology, now more than ever, needs an infusion of new concepts. Despite ongoing interest in Alzheimer’s disease, the basis of this entity is not yet clear. At present, the best-established and accepted “culprit” in Alzheimer’s disease pathology by most scientists is the amyloid, as the main molecular factor responsible for neurodegeneration in this disease. Abnormal upregulation of amyloid production or a disturbed clearance mechanism may lead to pathological accumulation of amyloid in brain according to the “amyloid hypothesis.” We will critically review these observations and highlight inconsistencies between the predictions of the “amyloid hypothesis” and the published data. There is still controversy over the role of amyloid in the pathological process. A question arises whether amyloid is responsible for the neurodegeneration or if it accumulates because of the neurodegeneration. Recent evidence suggests that the pathophysiology and neuropathology of Alzheimer’s disease comprises more than amyloid accumulation, tau protein pathology and finally brain atrophy with dementia. Nowadays, a handful of researchers share a newly emerged view that the ischemic episodes of brain best describe the pathogenic cascade, which eventually leads to neuronal loss, especially in hippocampus, with amyloid accumulation, tau protein pathology and irreversible dementia of Alzheimer type. The most persuasive evidences come from investigations of ischemically damaged brains of patients and from experimental ischemic brain studies that mimic Alzheimer-type dementia. This review attempts to depict what we know and do not know about the triggering factor of the Alzheimer’s disease, focusing on the possibility that the initial pathological trigger involves ischemic episodes and ischemia-induced gene dysregulation. The resulting brain ischemia dysregulates additionally expression of amyloid precursor protein and amyloid-processing enzyme genes that, in addition, ultimately compromise brain functions, leading over time to the complex alterations that characterize advanced sporadic Alzheimer’s disease. The identification of the genes involved in Alzheimer’s disease induced by ischemia will enable to further define the events leading to sporadic Alzheimer’s disease-related abnormalities. Additionally, knowledge gained from the above investigations should facilitate the elaboration of the effective treatment and/or prevention of Alzheimer’s disease.  相似文献   

14.
This case report discusses a patient with co-occurring neuroborreliosis and Alzheimer’s disease (AD). Although no claim is made for causality nor is there objective evidence that spirochetes are involved in AD, co-infection may exacerbate the symptoms of either neuroborreliosis or AD. Much is to be learned about the role of spirochetes in degenerative central nervous system disease.  相似文献   

15.
The substantia nigra plays important roles in the brain function and is critical in the development of many diseases, particularly Parkinson??s disease. Pathological changes of the substantia nigra have also been reported in other neurodegenerative diseases. Using a quantitative proteomic approach, we investigated protein expressions in the substantia nigra of Alzheimer??s disease, Huntington??s disease, and Multiple sclerosis. The expression level of one hundred and four proteins that were identified in at least three samples of each group were compared with the control group, with nineteen, twenty-two and thirteen proteins differentially expressed in Alzheimer??s diseases, Huntington??s disease and Multiple sclerosis respectively. The result indicates that the substantia nigra also undergoes functional adaption or damage in these diseases.  相似文献   

16.
Dopaminergic activity is expected to be altered in patients with Huntington’s disease (HD) and be related to factors like duration and severity of illness or patients’ specific symptomatology like dementia, depression, or psychotic features. We assessed plasma homovanillic acid (pHVA) and plasma prolactin (pPRL), two correlates of dopaminergic activity, in 116 subjects with CAG repeats expansion in the HD gene, 26 presymptomatic (18 females) and 90 with overt symptomatology (43 females). Patients were evaluated using the Unified HD Rating Scale and the Total Functional Capacity Scale. Presence of dementia, depression, and psychotic features were also assessed. The age range of the patients was 22–83 years, duration of illness from 0.5 to 27 years, and CAG repeat number from 34 to 66. A group of 60 age and sex matched healthy subjects served as control group. Plasma PRL in subjects at risk and in neuroleptic-free patients, evaluated separately for males and females, did not differ from controls. Plasma HVA levels did not differ from controls in the group of presymptomatic subjects, but were significantly higher in the patients group. This increase was positively associated mainly with severity of illness and functional capacity of the patients, and not with presence of depression or dementia. Plasma HVA levels may be proven to be a peripheral index of disease progression. Reducing dopaminergic activity may have not only symptomatic, but also neuroprotective effects in HD.  相似文献   

17.
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder characterized by involuntary body movement, cognitive impairment and psychiatric disturbance. A polyglutamine expansion in the amino-terminal region of the huntingtin (htt) protein is the genetic cause of HD. Htt protein interacts with a wide variety of proteins, and htt mutation causes cell signaling alterations in various neurotransmitter systems, including dopaminergic, glutamatergic, and cannabinoid systems, as well as trophic factor systems. This review will overview recent findings concerning htt-promoted alterations in cell signaling that involve different neurotransmitters and trophic factor systems, especially involving mGluR1/5, as glutamate plays a crucial role in neuronal cell death. The neuronal cell death that takes place in the striatum and cortex of HD patients is the most important factor underlying HD progression. Metabotropic glutamate receptors (mGluR1 and mGluR5) have a very controversial role in neuronal cell death and it is not clear whether mGluR1/5 activation either protects or exacerbates neuronal death. Thus, understanding how mutant htt protein affects glutamatergic receptor signaling will be essential to further establish a role for glutamate receptors in HD and develop therapeutic strategies to treat HD.  相似文献   

18.
Inflammatory regulators, including endogenous anti-inflammatory systems, can down-regulate inflammation thus providing negative feedback. Chronic inflammation can result from imbalance between levels of inflammatory mediators and regulators during immune responses. As a consequence, there are heightened inflammatory responses and irreversible tissue damage associated with many age-related chronic diseases. Alzheimer’s disease (AD) brain is marked by prominent inflammatory features, in which microglial activation is the driving force for the elaboration of an inflammatory cascade. How the regulation of inflammation loses its effectiveness during AD pathogenesis remains largely unclear. In this article, we will first review current knowledge of microglial activation and its association with AD pathology. We then discuss four examples of anti-inflammatory systems that could play a role in regulating microglial activation: CD200/CD200 receptor, vitamin D receptor, peroxisome proliferator-activated receptors, and soluble receptor for advanced glycation end products. Through this, we hope to illustrate the diverse aspects of inflammatory regulatory systems in brain and neurodegenerative diseases such as AD. We also propose the importance of neuronal defense systems, because they are part of the integral inflammatory and anti-inflammatory systems. Augmenting the anti-inflammatory defenses of neurons can be included in the strategy for restoration of balanced immune responses during aging and neurodegenerative diseases.  相似文献   

19.
Alzheimer’s disease (AD) is a progressive neurodegenerative disease that develops insidiously and causes dementia finally. There are also clinical complications in advanced dementia, such as eating problems, infections, which will lead to the decline of patients’ life quality, and the rising cost of care for AD to our society. AD will be important public health challenge. Early detection of AD may be a key issue to prevent, delay, and stop the disease. Gut microbiome and neuroinflammation are closely related with nervous system diseases, although the specific mechanism is not clear. This review introduces the relationship between neuroinflammation, gut microbiome, and AD.  相似文献   

20.
Since the discovery of the significance of the cholesterol-carrying apolipoprotein E and cholesterolaemia as major risk factors for Alzheimer's Disease (AD) there has been a mounting interest in the role of this lipid as a possible pathogenic agent. In this review we analyse the current evidence linking cholesterol metabolism and regulation in the CNS with the known mechanisms underlying the development of Alzheimer's Disease. Cholesterol is known to affect amyloid-beta generation and toxicity, although it must be considered that the results studies using the statin class of drugs to lower plasma cholesterol may be affected by other effects associated with these drugs. Finally, we report some of our results pointing at the interplay between neurons and astrocytes and NADPH oxidase activation as a new candidate mechanism linking cholesterol and AD pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号