首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analyzed proteomic profiles in monocytes of chronic kidney disease (CKD) patients and healthy control subjects. Two-dimensional electrophoresis (2-DE) and silver staining indicated differences in protein pattern. Among the analyzed proteins, superoxide dismutase type 1 (SOD1), which was identified both by MS/MS mass-spectrometry and immunoblotting, was reduced in kidney disease. We characterized SOD1 protein amount, using quantitative in-cell Western assay and immunostaining of 2-DE gel blots, and SOD1 gene expression, using quantitative real-time polymerase chain reaction (PCR), in 98 chronic hemodialysis (HD) and 211 CKD patients, and 34 control subjects. Furthermore, we showed that different SOD1 protein species exist in human monocytes. SOD1 protein amount was significantly lower in HD (normalized SOD1 protein, 27.2 ± 2.8) compared to CKD patients (34.3 ± 2.8), or control subjects (48.0 ± 8.6; mean ± SEM; P < 0.05). Analysis of SOD1 immunostaining showed significantly more SOD1 protein in control subjects compared to patients with CKD or HD (P < 0.0001, analysis of main immunoreactive protein spot). SOD1 gene expression was significantly higher in HD (normalized SOD1 gene expression, 17.8 ± 2.3) compared to CKD patients (9.0 ± 0.7), or control subjects (5.5 ± 1.0; P < 0.0001). An increased SOD1 gene expression may indicate increased protein degradation in patients with CKD and compensatory increase of SOD1 gene expression. Taken together, we show reduced SOD1 protein amount in monocytes of CKD, most pronounced in HD patients, accompanied by increased SOD1 gene expression.  相似文献   

2.
Intracellular heat shock protein (Hsp) 27 is a potent anti-apoptotic factor that, among other activities, prevents the binding of membrane receptor Fas to its ligand FasL. However, the potential role of extracellular Hsp27 and possibilities to control it have not been clarified. Moreover, there are no data on relations between Hsp27, sFas/sFasL system, matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) in patients with chronic kidney disease (CKD)—neither children nor adults. The aim of this study was to evaluate serum concentrations of Hsp27 and their potential regulators (sFas, sFasL, MMP-7, TIMP-1) in children with CKD and on chronic dialysis. Twenty-six CKD children stage 5 still on conservative treatment, 19 patients on hemodialysis (HD), 22 children on automated peritoneal dialysis (APD), and 30 controls were examined. Serum concentrations of Hsp27, sFas, sFasL, MMP-7, and TIMP-1 were assessed by ELISA. Median values of Hsp27 were significantly elevated in all dialyzed patients vs. those in pre-dialysis period and vs. controls, the highest values being observed in subjects on HD. Regression analysis revealed that MMP-7, TIMP-1, sFas, and sFasL were the best predictors of Hsp27 concentrations in dialyzed patients. Children with CKD are prone to Hsp27 dysfunction, aggravated by the dialysis commencement, and more pronounced in patients on hemodialysis. Correlations between Hsp27 and examined parameters suggest the potential role for Hsp27 as a marker of cell damage in the pediatric population on chronic dialysis.  相似文献   

3.
《Epigenetics》2013,8(1):161-172
Epigenetic dysregulation contributes to the high cardiovascular disease burden in chronic kidney disease (CKD) patients. Although microRNAs (miRNAs) are central epigenetic regulators, which substantially affect the development and progression of cardiovascular disease (CVD), no data on miRNA dysregulation in CKD-associated CVD are available until now. We now performed high-throughput miRNA sequencing of peripheral blood mononuclear cells from ten clinically stable hemodialysis (HD) patients and ten healthy controls, which allowed us to identify 182 differentially expressed miRNAs (e.g., miR-21, miR-26b, miR-146b, miR-155). To test biological relevance, we aimed to connect miRNA dysregulation to differential gene expression. Genome-wide gene expression profiling by MACE (Massive Analysis of cDNA Ends) identified 80 genes to be differentially expressed between HD patients and controls, which could be linked to cardiovascular disease (e.g., KLF6, DUSP6, KLF4), to infection / immune disease (e.g., ZFP36, SOCS3, JUND), and to distinct proatherogenic pathways such as the Toll-like receptor signaling pathway (e.g., IL1B, MYD88, TICAM2), the MAPK signaling pathway (e.g., DUSP1, FOS, HSPA1A), and the chemokine signaling pathway (e.g., RHOA, PAK1, CXCL5). Formal interaction network analysis proved biological relevance of miRNA dysregulation, as 68 differentially expressed miRNAs could be connected to 47 reciprocally expressed target genes. Our study is the first comprehensive miRNA analysis in CKD that links dysregulated miRNA expression with differential expression of genes connected to inflammation and CVD. After recent animal data suggested that targeting miRNAs is beneficial in experimental CVD, our data may now spur further research in the field of CKD-associated human CVD.  相似文献   

4.

Background

Monocytes are increasingly implicated in the inflammatory consequences of HIV-1 disease, yet their phenotype following antiretroviral therapy (ART) initiation is incompletely defined. Here, we define more completely monocyte phenotype both prior to ART initiation and during 48 weeks of ART.

Methods

Cryopreserved peripheral blood mononuclear cells (PBMCs) were obtained at baseline (prior to ART initiation) and at weeks 12, 24, and 48 of treatment from 29 patients participating in ACTG clinical trial A5248, an open label study of raltegravir/emtricitibine/tenofovir administration. For comparison, cryopreserved PBMCs were obtained from 15 HIV-1 uninfected donors, each of whom had at least two cardiovascular risk factors. Thawed samples were stained for monocyte subset markers (CD14 and CD16), HLA-DR, CCR2, CX3CR1, CD86, CD83, CD40, CD38, CD36, CD13, and CD163 and examined using flow cytometry.

Results

In untreated HIV-1 infection there were perturbations in monocyte subset phenotypes, chiefly a higher frequency and density (mean fluorescence intensity–MFI) of HLA-DR (%-p = 0.004, MFI-p = .0005) and CD86 (%-p = 0.012, MFI-p = 0.005) expression and lower frequency of CCR2 (p = 0.0002) expression on all monocytes, lower CCR2 density on inflammatory monocytes (p = 0.045) when compared to the expression and density of these markers in controls’ monocytes. We also report lower expression of CX3CR1 (p = 0.014) on patrolling monocytes at baseline, compared to levels seen in controls. After ART, these perturbations tended to improve, with decreasing expression and density of HLA-DR and CD86, increasing CCR2 density on inflammatory monocytes, and increasing expression and density of CX3CR1 on patrolling monocytes.

Conclusions

In HIV-1 infected patients, ART appears to attenuate the high levels of activation (HLA-DR, CD86) and to increase expression of the chemokine receptors CCR2 and CX3CR1 on monocyte populations. Circulating monocyte phenotypes are altered in untreated infection and tend to normalize with ART; the role of these cells in the inflammatory environment of HIV-1 infection warrants further study.  相似文献   

5.
Patients with chronic kidney disease (CKD) have significantly increased morbidity and mortality resulting from infections and cardiovascular diseases. Since monocytes play an essential role in host immunity, this study was directed to explore the gene expression profile in order to identify differences in activated pathways in monocytes relevant to the pathophysiology of atherosclerosis and increased susceptibility to infections. Monocytes from CKD patients (stages 4 and 5, estimated GFR <20 ml/min/1.73 m2) and healthy donors were collected from peripheral blood. Microarray gene expression profile was performed and data were interpreted by GeneSpring software and by PANTHER tool. Western blot was done to validate the pathway members. The results demonstrated that 600 and 272 genes were differentially up- and down regulated respectively in the patient group. Pathways involved in the inflammatory response were highly expressed and the Wnt/β-catenin signaling pathway was the most significant pathway expressed in the patient group. Since this pathway has been attributed to a variety of inflammatory manifestations, the current findings may contribute to dysfunctional monocytes in CKD patients. Strategies to interfere with this pathway may improve host immunity and prevent cardiovascular complications in CKD patients.  相似文献   

6.

Background

Soluble tumor necrosis factor receptors 1 (sTNFR1) and 2 (sTNFR2) have been associated to progression of renal failure, end stage renal disease and mortality in early stages of chronic kidney disease (CKD), mostly in the context of diabetic nephropathy. The predictive value of these markers in advanced stages of CKD irrespective of the specific causes of kidney disease has not yet been defined. In this study, the relationship between sTNFR1 and sTNFR2 and the risk for adverse cardiovascular events (CVE) and all-cause mortality was investigated in a population with CKD stage 4-5, not yet on dialysis, to minimize the confounding by renal function.

Patients and methods

In 131 patients, CKD stage 4-5, sTNFR1, sTNFR2 were analysed for their association to a composite endpoint of all-cause mortality or first non-fatal CVE by univariate and multivariate Cox proportional hazards models. In the multivariate models, age, gender, CRP, eGFR and significant comorbidities were included as covariates.

Results

During a median follow-up of 33 months, 40 events (30.5%) occurred of which 29 deaths (22.1%) and 11 (8.4%) first non-fatal CVE. In univariate analysis, the hazard ratios (HR) of sTNFR1 and sTNFR2 for negative outcome were 1.49 (95% confidence interval (CI): 1.28-1.75) and 1.13 (95% CI: 1.06-1.20) respectively. After adjustment for clinical covariables (age, CRP, diabetes and a history of cardiovascular disease) both sTNFRs remained independently associated to outcomes (HR: sTNFR1: 1.51, 95% CI: 1.30-1.77; sTNFR2: 1.13, 95% CI: 1.06-1.20). A subanalysis of the non-diabetic patients in the study population confirmed these findings, especially for sTNFR1.

Conclusion

sTNFR1 and sTNFR2 are independently associated to all-cause mortality or an increased risk for cardiovascular events in advanced CKD irrespective of the cause of kidney disease.  相似文献   

7.
目的:研究慢性肾病(CKD)患者血清可溶性细胞粘附分子-1(soluble intercellular adhesionmolecule-1,sICAM)的变化与临床意义。方法:用双抗体夹心ELISA方法,对52例CKD患者及20例健康对照人群的sICAM-1水平进行检测分析。52例CKD患者中,其中27例为CRF血液透析患者;25例肾功能正常CKD患者。结果:CKD组患者sICAM-1水平明显高于对照组(105.42±61.95)(P<0.01);肾功能正常CKD组和CKD-CRF组sICAM-1水平均显著高于对照组(P<0.01);CRF组sICAM-1水平明显低于肾功能正常CKD组(P<0.01);但高于对照组(84.80±19.61/164.08±70.66/54.61±5.48)(P<0.01)。结论:sICAM-1水平在慢性肾脏病中明显升高,CRF组病人sICAM-1水平低于CKD肾功能正常患者,提示透析过程中可能有sICAM溢出,吸附并丢失入透析液中(1),或可能是肾纤维化为主的病变使sICAM-1表达下降。  相似文献   

8.
One consequence of chronic kidney disease (CKD) is an elevated risk for cancer. There is sufficient evidence to conclude that there is an increased incidence of at least some cancers in kidney-dialysis patients. Cancer risk after kidney transplantation has mainly been attributed to immunosuppressive therapy. There are no data evaluating DNA damage in children with CKD, in dialysis patients, or following kidney transplantation. In this study, the comet assay and the enzyme-modified comet assay - with the use of endonuclease III (Endo III) and formamidopyrimidine glycosylase (FPG) enzymes - were conducted to investigate the basal damage and the oxidative DNA damage as a result of treatment in peripheral blood lymphocytes of children. Children at various stages of treatment for kidney disease, including pre-dialysis patients (PreD) (n=17), regular hemodialysis patients (HD) (n=15), and those that received kidney transplants (Tx) (n=17), comprised the study group. They were compared with age- and gender-matched healthy children (n=20) as a control group. Our results show that the %DNA intensity, a measure of basal damage, was significantly increased in children with CKD (mean ± SD) (5.22 ± 1.57) and also in each of the PreD, HD, and Tx groups [(4.92 ± 1.23), (4.91 ± 1.35), and (5.79 ± 1.94), respectively, vs the healthy children (2.74 ± 2.91) (p<0.001). Significant increases in oxidative DNA damage were only found in the FPG-sensitive sites for the PreD and Tx groups, compared with control and HD groups (p<0.05), suggesting that basal DNA damage was more evident for the PreD, HD, and Tx groups. The findings of the present study indicate a critical need for further research on genomic damage with different endpoints and also for preventive measures and improvements in treatment of pediatric patients, in order to improve their life expectancy.  相似文献   

9.
There are two major myeloid pulmonary dendritic cell (DC) populations: CD103+ DCs and CD11bhigh DCs. In this study, we investigated in detail the origins of both myeloid DC pools using multiple experimental approaches. We show that, in resting lung, Ly-6ChighCCR2high monocytes repopulated CD103+ DCs using a CCR2-dependent mechanism, and these DCs preferentially retained residual CCR2 in the lung, whereas, conversely, Ly-6ClowCCR2low monocytes repopulated CD11bhigh DCs. CX3CR1 was required to generate normal numbers of pulmonary CD11bhigh DCs, possibly because Ly-6Clow monocytes in the circulation, which normally express high levels of CX3CR1, failed to express bcl-2 and may have diminished survival in the circulation in the absence of CX3CR1. Overall, these data demonstrate that the two circulating subsets of monocytes give rise to distinct tissue DC populations.  相似文献   

10.
11.
Busch M  Fleck C  Wolf G  Stein G 《Amino acids》2006,30(3):225-232
Summary. Background: Asymmetrical dimethylarginine (ADMA) is an inhibitor of nitric-oxide synthase. It has been linked to atherosclerotic risk in the general population as well as in end-stage renal disease patients (ESRD), whereas symmetrical dimethylarginine (SDMA) is thought to be biological inactive. Prospective data concerning the role of both dimethylarginines are rare in patients with chronic kidney disease. Methods: 200 patients with chronic kidney disease (mean age 57.6 ± 13.0 years, 69 female, 131 male); 82 with chronic renal failure (CRF), 81 on maintenance haemodialysis (HD) and 37 renal transplant recipients (RTR) were prospectively followed for 24 months. ADMA and SDMA were measured by HPLC. The relation of plasma levels of ADMA and SDMA together with conventional risk factors for the cardiovascular and renal outcome was investigated with Cox proportional hazards model. Results: Mean serum levels of SDMA were significantly increased in all groups compared to the control group (P ≤ 0.0005), ADMA was increased only in HD and RTR (P ≤ 0.004). Forty-seven cardiovascular events (CVE) occurred during follow-up, 35 patients died, and 39 patients reached ESRD. Multivariate analysis showed diabetes (RR 3.072, P = 0.01), ESRD (RR 11.915, P < 0.0005), elevated CRP levels (RR 3.916, P < 0.0005) and surprisingly a lower ADMA level (RR 0.271, P = 0.008) as independent risk factors for CVE. Serum creatinine (RR 11.378, P = 0.001), haemoglobin (RR 0.710, P = 0.038 for an increment of 1 mmol/l), and SDMA levels (RR 1.633, P = 0.006, per 1 μmol/l increment) were predictors for the progression to ESRD. Conclusions: Data from a heterogeneous group of patients with chronic kidney disease provide evidence that conventional risk factors seem to play a more important role than elevated serum levels of ADMA or SDMA for cardiovascular events. Increasing serum SDMA concentration seems to play an additive role for the renal outcome besides serum creatinine and haemoglobin levels. Whether ADMA might possibly be a candidate for the phenomenon of “paradoxical epidemiology” in chronic kidney disease needs further investigation.  相似文献   

12.
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation triggered by infiltrating CD4 lymphocytes. The positioning and activation of lymphocyte in inflamed synovial tissues are dependent on a number of factors including their chemokine receptor expression profile. We aimed to investigate which chemokine receptors pattern correlate with serum cytokine levels and with disease activity. Forty patients with RA (34 female and 6 male) with age range from 21 to 68 years were included. Twenty healthy volunteers (16 female and 4 male) with matched age (range 21–48 years) were served as healthy controls (HCs). Expression of chemokine receptors (CCR5, CX3CR1 and CCR7) together with the apoptosis-related marker (CD95) was analyzed using three-color flow cytometry analysis after gating on CD4+ peripheral blood lymphocytes. Plasma levels of IL-6, IL-10, IL-12 and TNF-α cytokines were measured in all participants using ELISA. Disease activity score (DAS28-CRP) system was assessed and active disease was defined as DAS28 ⩾3.2. Twenty-five (62.4%) patients were classified as active RA (ARA) and 15 (37.5%) patients with inactive RA (IRA). Percentages of CD4+ lymphocytes expressing CD95 with either of CCR7 or CCR5 were significantly higher in ARA compared to IRA and HCs groups, while the expression of CX3CR1 on T-cells was found significantly lower in both CD95 and CD95+ T-cells in RA groups than HC. Percentages of CD4+CD95+CCR7+ cells correlated positively with IL-6 (r = 0.390). Whereas CD4+CD95+CX3CR1+ were negatively correlated with TNF-α (r = −0.261). Correlation of CD4+CD95+CCR7+ T cell subset with disease activity and inflammatory cytokines suggests a role for this cell subset in the pathogenesis of RA. Further investigation will be required to fully characterize this cell subset and its role in disease progression.  相似文献   

13.
CX3CR1, an important chemokine receptor in dendritic cells (DCs), is linked to the progression of atherosclerotic plaques. However, the mechanism(s) determining the role of CX3CR1 in atherosclerosis have not been clearly elucidated. In this study, we developed DCs from monocytes of Sprague-Dawley (SD) rats in the presence of recombinant human granulocyte–macrophage colony-stimulating factor (GM-CSF) and recombinant human interleukin-4 (IL-4). The presence of recombinant human TNF-α and LPS forced the cells to mature. When compared to immature DCs, flow cytometry (FACS) analysis revealed that mature DCs display a sustained increase in the levels of CD11c, CD86, and CD80 expression. The expression of Fractalkine (FKN) in endothelial cells (ECs) contributes to the maturation of DCs and expression of CX3CR1. We revealed that mRNA expression levels of CX3CR1 in mature DCs are significantly higher than those of immature DCs (P < 0.001). Transfection of DCs with siRNA specific for the CX3CR1 gene resulted in potent suppression of gene expression and inhibition of interactions between DCs and ECs. Based on these data, we hypothesized that CX3CR1 contributes to the DC–EC interaction. CX3CR1 may serve as a new target molecule for increasing therapeutic interactions in atherosclerosis.  相似文献   

14.
Eotaxin-3/CCL26 is a functional ligand for CCR3 and abundantly produced by IL-4-/IL-13-stimulated vascular endothelial cells. CCL26 also functions as a natural antagonist for CCR1, CCR2, and CCR5. In this study, we report that CCL26 is yet a functional ligand for CX3CR1, the receptor for fractalkine/CX3CL1, which is expressed by CD16(+) NK cells, cytotoxic effector CD8(+) T cells, and CD14(low)CD16(high) monocytes. Albeit at relatively high concentrations, CCL26 induced calcium flux and chemotaxis in mouse L1.2 cells expressing human CX3CR1 but not mouse CX3CR1 and competed with CX3CL1 for binding to CX3CR1. In chemotaxis assays using human PBMCs, CCL26 attracted not only eosinophils but also CD16(+) NK cells, CD45RA(+)CD27(-)CD8(+) T cells, and CD14(low)CD16(high) monocytes. Intraperitoneal injection of CCL26 into mice rapidly recruited mouse eosinophils and intravenously transferred human CD16(+) NK cells into the peritoneal cavity. IL-4-stimulated HUVECs produced CCL26 and efficiently induced adhesion of cells expressing CX3CR1. Real-time PCR showed that skin lesions of psoriasis consistently contained CX3CL1 mRNA but not CCL26 mRNA, whereas those of atopic dermatitis contained CCL26 mRNA in all samples but CX3CL1 mRNA in only about half of the samples. Nevertheless, the skin lesions from both diseases consistently contained CX3CR1 mRNA at high levels. Thus, CCL26 may be partly responsible for the recruitment of cells expressing CX3CR1 in atopic dermatitis particularly when the expression of CX3CL1 is low. Collectively, CCL26 is another agonist for CX3CR1 and may play a dual role in allergic diseases by attracting eosinophils via CCR3 and killer lymphocytes and resident monocytes via CX3CR1.  相似文献   

15.
The membrane-anchored form of CX3CL1 has been proposed as a novel adhesion protein for leukocytes. This functional property of CX3CL1 is mediated through CX3CR1, a chemokine receptor expressed predominantly on circulating white blood cells. Thus far, it is still uncertain at what stage of the trafficking process CX3CR1 becomes importantly involved and how the CX3CR1-dependent adhesion of leukocytes is regulated during inflammation. The objective of this study was to examine the functional effects of chemokine stimulation on CX3CR1-mediated adhesion of human monocytes. Consistent with previous reports, our data indicate that the activity of CX3CR1 on resting monocytes is sufficient to mediate cell adhesion to CX3CL1. However, the basal, nonstimulated adhesion activity is low, and we hypothesized that like the integrins, CX3CR1 may require a preceding activation step to trigger firm leukocyte adhesion. Compatible with this hypothesis, stimulation of monocytes with MCP-1 significantly increased their adhesion to immobilized CX3CL1, under both static and physiological flow conditions. The increase of the adhesion activity was mediated through CCR2-dependent signaling and obligatory activation of the p38 MAPK pathway. Stimulation with MCP-1 also induced a rapid increase of CX3CR1 protein on the cell surface. Inhibition of the p38 MAPK pathway prevented this increase of CX3CR1 surface expression and blunted the effect of MCP-1 on cell adhesion, indicating a causal link between receptor surface density and adhesion activity. Together, our data suggest that a chemokine signal is required for firm CX3CR1-dependent adhesion and demonstrate that CCR2 is an important regulator of CX3CL1-dependent leukocyte adhesion.  相似文献   

16.
We identified two novel isoforms of the human chemokine receptor CX3CR1, produced by alternative splicing and with N-terminal regions extended by 7 and 32 aa. Expression of the messengers coding these isoforms, compared with that of previously described V28 messengers, is lower in monocytes and NK cells, but higher in CD4(+) T lymphocytes. CX3CR1 and its extended isoforms were expressed in HEK-293 cells and compared for expression, ligand binding, and cellular responses. In steady state experiments, all three CX3CR1 isoforms bound CX3CL1 with similar affinity. In kinetic binding studies, however, k(on) and k(off) were significantly greater for the extended CX3CR1 isoforms, thereby suggesting that the N-terminal extensions may alter the functions induced by CX3CL1. In signaling studies, all three CX3CR1 isoforms mediated agonist-dependent calcium mobilization, but the EC(50) was lower for the extended than for the standard isoforms. In addition, chemotactic responses for these extended isoforms shifted left, also indicating a more sensitive response. Finally, the longer variants appeared to be more potent HIV coreceptors when tested in fusion and infection assays. In conclusion, we identified and characterized functionally two novel isoforms of CX3CR1 that respond more sensitively to CX3CL1 and HIV viral envelopes. These data reveal new complexity in CX3CR1 cell activation and confirm the critical role of the N-terminal domain of the chemokine receptors in ligand recognition and cellular response.  相似文献   

17.
Fractalkine (FKN, CX3CL1) is a regulator of leukocyte recruitment and adhesion, and controls leukocyte migration on endothelial cells (ECs). We show that FKN triggers different effects in CD16+ and CD16 monocytes, the two major subsets of human monocytes. In the presence of ECs a lipopolysaccharide (LPS)-stimulus led to a significant increase in tumor necrosis factor (TNF)-secretion by CD16+ monocytes, which depends on the interaction of CX3CR1 expressed on CD16+ monocytes with endothelial FKN. Soluble FKN that was efficiently shed from the surface of LPS-activated ECs in response to binding of CD16+ monocytes to ECs, diminished monocyte adhesion in down-regulating CX3CR1 expression on the surface of CD16+ monocytes resulting in decreased TNF-secretion. In this process the TNF-converting enzyme (TACE) acts as a central player regulating FKN-shedding and TNFα-release through CD16+ monocytes interacting with ECs. Thus, the release and local accumulation of sFKN represents a mechanism that limits the inflammatory potential of CD16+ monocytes by impairing their interaction with ECs during the initial phase of an immune response to LPS. This regulatory process represents a potential target for therapeutic approaches to modulate the inflammatory response to bacterial components.  相似文献   

18.
Enhanced apoptosis is characteristic for chronic kidney disease (CKD). A specific type of apoptosis, anoikis, is connected with the extracellular matrix turnover and cell detachment. Although E-cadherin, extracellular matrix metalloproteinase inducer (EMMPRIN) and matrix metalloproteinase (MMP)-8 may play an important role in this process, they have not been analyzed in any nephrological aspect, either in CKD. The aim of study was to evaluate the serum concentrations of E-cadherin, EMMPRIN and their potential regulators (MMP-8, MMP-7, TIMP-1, TIMP-2), with relevance to apoptosis/cell damage markers (sFas, sFasL, Hsp27), in children with CKD. 39 CKD children stages 3–4, 26 CKD children stage 5 still on conservative treatment, 19 patients on hemodialysis (HD), 22 children on automated peritoneal dialysis (APD) and 30 controls were examined. Serum concentrations of those parameters were assessed by ELISA. Median E-cadherin, EMMPRIN and MMP-8 values were significantly increased in patients on dialysis versus those in pre-dialysis period and versus controls. The highest values were noticed in the HD subjects. Regression analysis revealed that EMMPRIN and MMP-8 predicted various apoptosis markers, whereas E-cadherin turned out the best predictor of both apoptosis (Hsp27, sFas, sFasL) and matrix turnover (MMP-7, TIMP-1, TIMP-2) indexes in dialyzed patients. Children with CKD are prone to E-cadherin, EMMPRIN and MMP-8 elevation, aggravated by the dialysis commencement and most evident on hemodialysis. Correlations between parameters suggest their role as indexes of apoptosis in children on dialysis. E-cadherin seems the most accurate marker of anoikis in this population.  相似文献   

19.
Respiratory syncytial virus (RSV) is the most common cause of serious lower respiratory illness in infants and young children worldwide, making it a high priority for development of strategies for prevention and treatment. RSV can cause repeat infections throughout life, with serious complications in elderly and immunocompromised patients. Previous studies indicate that the RSV G protein binds through a CX3C chemokine motif to the host chemokine receptor, CX3CR1, and modulates the inflammatory immune response. In the current study, we examined the contribution of CX3CR1 to the immune response to RSV infection in mice. CX3CR1-deficient mice showed an impaired innate immune response to RSV infection, characterized by substantially decreased NK1.1(+) natural killer, CD11b(+), and RB6-8C5(+) polymorphonuclear cell trafficking to the lung and reduced IFNγ production compared with those in wildtype control mice. Leukocytes from CX3CR1-deficient mice were poorly chemotactic toward RSV G protein and CX3CL1. These results substantiate the importance of the RSV G CX3C-CX3CR1 interaction in the innate immune response to RSV infection.  相似文献   

20.
The chemokine receptors CCR2 and CX3CR1 are critical for the recruitment of “inflammatory” and “resident” monocytes, respectively, subpopulations that differentially affect vascular remodeling in atherosclerosis. Here, we tested the hypothesis that bone marrow-derived cell (BMC)-specific CCR2 and CX3CR1 differentially control venular and arteriolar remodeling. Venular and arteriolar lumenal remodeling were observed by intravital microscopy in mice with either CCR2 or CX3CR1 deficient BMCs after implantation of a dorsal skinfold window chamber, a model in which arterioles and venules lumenally enlarge in wild-type (WT) mice. Arteriolar remodeling was abolished in mice with either CCR2 or CX3CR1-deficient BMCs. In contrast, the loss of CX3CR1 from BMCs, but not CCR2, significantly reduced small venule remodeling compared to WT controls. We conclude that microvascular remodeling is differentially regulated by BMC-expressed chemokine receptors. Both CCR2 and CX3CR1 regulate arteriole growth; however, only BMC-expressed CX3CR1 impacts small venule growth. These findings may provide a basis for additional investigations aimed at determining how patterns of monocyte subpopulation recruitment spatially influence microvascular remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号