首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microcystis aeruginosa is a common form of cyanobacteria (blue‐green algae) capable of forming toxic heptapeptides (microcystins) that can cause illness or death. Occasionally, blooms of cyanobacteria have caused toxic fish‐kills in catfish production ponds. We have developed a PCR test that will detect the presence of microcystin‐producing cyanobacteria. Microcystin producers are detected by the presence of the microcystin peptide synthetase B gene (an obligate enzyme in the microcystin pathway), which appears to be present only in toxin‐producing cyanobacteria. These PCR amplifications can be performed in multiplex using purified DNA from pond waters or by two‐stage amplification from native water samples. A synoptic survey of 476 channel catfish production ponds from four states in the southeastern United States revealed that 31% of the ponds have the genetic potential to produce microcystins by toxic algae.  相似文献   

2.
Detecting harmful bioactive compounds produced by bloom-forming pelagic algae is important to assess potential risks to public health. We investigated the application of a cell-based bioassay: the rainbow trout gill-w1 cytotoxicity assay (RCA) that detects changes in cell metabolism. The RCA was used to evaluate the cytotoxic effects of (1) six natural freshwater lake samples from cyanobacteria-rich lakes in central Ontario, Canada; (2) analytical standards of toxins and noxious compounds likely to be produced by the algal communities in these lakes; and (3) complex mixtures of compounds produced by cyanobacterial and chrysophyte cultures. RCA provided a measure of lake water toxicity that could not be reproduced using toxin or noxious compound standards. RCA was not sensitive to toxins and only sensitive to noxious compounds at concentrations higher than reported environmental averages (EC50  103 nM). Cultured algae produced bioactive compounds that had recognizable dose dependent and toxic effects as indicated by RCA. Toxicity of these bioactive compounds depended on taxa (cyanobacteria, not chrysophytes), growth stage (stationary phase more toxic than exponential phase), location (intracellular more toxic than extracellular) and iron status (cells in high-iron treatment more toxic than cells in low-iron treatment). The RCA provides a new avenue of exploration and potential for the detection of natural lake algal toxic and noxious compounds.  相似文献   

3.
The benthic dinoflagellate Gambierdiscus toxicus produces polyether toxins that cause ciguatera fish poisoning in humans. The toxins initially enter food webs when fish forage on macroalgae, or other substrates, hosting this epiphytic dinoflagellate. Population studies of G. toxicus and risk assessments in ciguatera-prone regions often rely on quantifying dinoflagellates on macroalgae. Underlying these studies is the assumption that the algae sampled represent a readily consumable resource equally available for benthic grazers. However, many algal hosts of G. toxicus possess a variety of defenses against grazing, and host–dinoflagellate associations may act as toxin sources or sinks depending on their palatability. Marine macroalgae may tolerate or avoid herbivory by exhibiting fast growth, by having poor nutritional quality, by utilizing spatial or temporal escapes or by using chemical or structural defenses. Thus, rapidly consumed algae that cope with herbivores by growing fast, such as many filamentous turfs, could be responsible for a high toxin flux even at low dinoflagellate densities. In contrast, ubiquitous unpalatable algae with much higher dinoflagellate densities might contribute little to toxin flux, and effectively act as refuges for G. toxicus. To date, G. toxicus has been reported from 56 algal genera, two cyanobacteria, one diatom, and one seagrass; 63% of these contain species that are defended from fish grazing and other grazers via chemical, morphological or structural defenses, by low nutritional quality, or by a combination of defensive strategies. High dinoflagellate densities on unpalatable macroalgae could indicate passive accumulation of cells on undisturbed hosts, rather than population explosions or active toxin sources for food webs. Understanding the flow of ciguatoxins in nature requires consideration of the ecology of both G. toxicus and its algal hosts. The complexity of marine algal–herbivore interactions also has consequences for other benthic dinoflagellates that produce toxins, which accumulate in consumers.  相似文献   

4.
Antimicrobial activity of toxin produced by a freshwater bloom-forming cyanobacterium Microcystis aeruginosa has been studied. When tested against certain green algae, cyanobacteria, heterotrophic bacteria and fungi, the toxin inhibited growth of only green algae and cyanobacteria. The toxin has been partially purified employing Thin layer chromatography (TLC) and High-performance liquid chromatography (HPLC) techniques and appears to be microcystin-LR (leucine–arginine). Both crude and purified toxins showed toxicity to mice, the clinical symptoms in test mice being similar to those produced by hepatotoxin. Purified toxin at a concentration of 50 g ml–1 caused complete inhibition of growth followed by cell lysis in Nostoc muscorum and Anabaena BT1 after 6 days of toxin addition. Addition of toxin (25 g ml–1) to the culture suspensions of the Nostoc and Anabaena strains caused instant and drastic loss of O2 evolution. Furthermore a marked reduction (about 87%) in the 14CO2 uptake was also observed at a concentration of 50 g ml–1. Besides its inhibitory effects on photosynthetic processes, M. aeruginosa toxin (50 g ml–1) also caused 90% loss of nitrogenase activity after 8 h of its addition. Experiments performed with 14C-labelled toxin indicate that the toxin uptake by cyanobacterial cells occurs both in light and dark. These results demonstrate that the toxin is strongly algicidal and point to the possibility that it may have an important role in establishment and maintenance of toxic blooms of M. aeruginosa in freshwater ecosystems. The relative significance of the hepatotoxic effect and the algicidal effect of the toxin is discussed with reference both to survival and dominance of M. aeruginosa in nature.  相似文献   

5.
6.
赤潮藻毒素生物合成研究进展   总被引:12,自引:0,他引:12  
合成毒素是赤潮藻类的一个常见特征,已知能够产生毒素的微藻有70多种。作为次级代谢产物,藻毒素的产生可能是一种压制或清除其它藻类竞争者的一种反应,在群落演替、种间竞争中发挥重要作用。目前,人们对藻毒素生物合成机理依然知之甚少,相关基因的研究仍无明显突破。利用环境因子诱导毒素生成变化进而分离差异表达基因或者比较不同产毒藻株间基因表达的差异,从中克隆藻毒素生物合成基因似乎是一种极具潜力的研究方向。  相似文献   

7.
Many cyanobacteria produce cyanotoxins, which has been well documented from freshwater environments but not investigated to the same extent in marine environments. Cyanobacteria are an obligate component of the polymicrobial disease of corals known as black band disease (BBD). Cyanotoxins were previously shown to be present in field samples of BBD and in a limited number of BBD cyanobacterial cultures. These toxins were suggested as one of the mechanisms contributing to BBD-associated coral tissue lysis and death. In this work, we tested nine cyanobacterial isolates from BBD and additionally nine isolated from non-BBD marine sources for their ability to produce toxins. The presence of toxins was determined using cell extracts of laboratory grown cyanobacterial cultures using ELISA and the PP2A assay. Based on these tests, it was shown that cyanobacterial toxins belonging to the microcystin/nodularin group were produced by cyanobacteria originating from both BBD and non-BBD sources. Several environmental factors that can be encountered in the highly dynamic microenvironment of BBD were tested for their effect on both cyanobacterial growth yield and rate of toxin production using two of the BBD isolates of the genera Leptolyngbya and Geitlerinema. While toxin production was the highest under mixotrophic conditions (light and glucose) for the Leptolyngbya isolate, it was highest under photoautotrophic conditions for the Geitlerinema isolate. Our results show that toxin production among marine cyanobacteria is more widespread than previously documented, and we present data showing three marine cyanobacterial genera (Phormidium, Pseudanabaena, and Spirulina) are newly identified as cyanotoxin producers. We also show that cyanotoxin production by BBD cyanobacteria can be affected by environmental factors that are present in the microenvironment associated with this coral disease.  相似文献   

8.
Escherichia coli cytotoxins and enterotoxins.   总被引:18,自引:0,他引:18  
Vero cell cytotoxins and cytotonic enterotoxins produced by E. coli are toxic proteins, which have been implicated in a number of specific diseases in humans and animals. Nomenclature for these toxins is complicated by the existence of different names for the same toxin. The Vero cell cytotoxins are called verotoxins because they are lethal for Vero cells in culture; they are also known as Shiga-like toxins (SLTs) because they are clearly related to Shiga toxin in structure, amino acid sequence, mechanism of action, and biological activity. SLTs belong to two classes. SLT-I is identical with Shiga toxin and is in a class by itself (class I). The other SLTs are closely related to each other and form a second class (class II). Class II SLTs include SLT-II, SLT-IIv, SLT-IIvha, SLT-IIvhb, and SLT-IIva. All SLTs that have been investigated are A-B subunit protein toxins, whose A subunits possess N-glycosidase activity against 28S rRNA and cause inhibition of protein synthesis in eukaryotic cells. These toxins are enterotoxic as well as cytotoxic. SLTs produced in the intestine are absorbed into the blood stream and affect vascular endothelial cells in target organs. They may also have a direct toxic effect on enterocytes. Diseases in which E. coli SLTs have been implicated include diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome in humans and edema disease in pigs. Variation in receptor specificities among SLTs may be the reason for different disease syndromes in different host species. The E. coli enterotoxins belong to three distinct classes: heat-labile enterotoxin (LT), heat-stable enterotoxin type I or type a (STI, STa), and heat-stable enterotoxin type II or type b (STII, STb). There is clear evidence that these cytotonic enterotoxins play an essential role in diarrheal disease. LT is an A-B subunit protein toxin, closely related to cholera toxin. Following binding of LT to receptors in enterocytes the A subunit is internalized. The enzymatically active A subunit transfers ADP-ribose from NAD to a GTP-dependent adenylate cyclase regulatory protein, thereby elevating intracellular levels of adenylate cyclase. The increased levels of cyclic AMP cause stimulation of A kinase and lead to hypersecretion of electrolytes and fluid. STI is a small peptide of 18 or 19 amino acids. It binds to receptors in enterocytes and stimulates particulate guanyl cyclase. Elevated intracellular cyclic GMP stimulates G kinase, resulting in increased Cl- secretion and impaired absorption of Na+Cl-. STII is a peptide toxin whose mechanism of action is unknown.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
To prevent the consumption of bivalves contaminated with paralytic shellfish poisoning (PSP), toxin levels in seafood products are estimated by using the official mouse bioassay. Because of the limitations of this bioassay other methods of monitoring toxins are clearly needed. We have developed a test to screen for PSP toxins based on its functional activity; the toxins bind to the voltage-gated Na+ channels and block their activity. The method is a fluorimetric assay that allows quantitation of the toxins by detecting changes in the membrane potential of human excitable cells. This assay gives an estimate of toxicity, since each toxin present in the sample binds to sodium channels with an affinity which is proportional to its intrinsic toxic potency. The detection limits for paralytic shellfish toxins were found to be 1 ng saxitoxin equivalents/ml compared to the regulatory limit threshold of 400 ng/ml (equivalent to 80 microg/100 g) used in most countries. Our results indicate that this fluorescent assay is a specific, very sensitive, rapid, and reliable method of monitoring PSP toxin levels in samples from seafood products and toxic algae.  相似文献   

10.
Black band disease (BBD) of corals is a complex pathogenic polymicrobial mat community that lyses coral tissue as it migrates over an infected colony. Two known toxins are produced by BBD microorganisms - sulfide, produced by sulfate-reducing bacteria, and microcystin, produced by cyanobacteria. Experiments were carried out to determine the effects of exposing healthy coral fragments to variable concentrations of purified microcystin, sulfide at a concentration known to exist in BBD, and a combination of the two. Healthy fragments of the coral Montastraea annularis were placed into experimental chambers with known toxin/s for 18-22.5 h. Fine structural analysis using scanning electron microscopy (SEM) showed that toxin exposure resulted in thinning or removal of the coral epidermal layer coupled with degradation of the gastrodermis. These effects were exacerbated when both toxins were used in combination. Exposure to sulfide and the highest concentration of microcystin caused zooxanthellae to dissociate from the coral tissue and to form clusters on the coral surface. Examination of coral fragments infected with BBD was carried out for comparison. It was determined that the effects of exposure to sulfide and microcystin on coral fine structure were consistent, both quantitatively and qualitatively, with the effects of artificially induced and naturally occurring BBD on M. annularis.  相似文献   

11.
海洋卡盾藻(香港株)溶血毒素的提取和分离   总被引:4,自引:0,他引:4  
张文  江天久  王锐 《生态科学》2008,27(6):457-462
海洋卡盾藻(Chattonella marina)是我国南方沿海主要的鱼毒性赤潮生物,近年来由该藻形成的赤成已造成多起近岸养殖鱼类大量死亡的事件。为了弄清该藻毒素的基本成分特征,本文研究了室内培养条件下海洋卡盾藻(香港株)溶血毒素的提取方法,观察了溶血毒素对红细胞的溶血过程,采用薄层色谱法对溶血成分进行了初步分析。结果表明:海洋卡盾藻藻细胞的超声波破碎最适条件为功率400W,4℃下处理15min;通过显微镜观察,证实提取的毒素对血红细胞膜具破坏作用;海洋卡盾藻合成的溶血毒素至少含有4种组分,其中1种可能为为脂类,3种为糖脂类。该研究成果有助于我国今后进一步开展鱼毒性赤潮生物毒素的研究。  相似文献   

12.
Microbial toxins, their functional role and phylogenetic validity   总被引:2,自引:0,他引:2  
R S Pore 《Bio Systems》1978,10(1-2):189-198
Microbially produced toxins, which appear to lack a role in microbial survival, may be antimicrobial compounds of significance to the producers. These toxin/antibiotics may act against cell metabolism shared by man or animals and other microorganisms. Protein toxin/antibiotics are produced by single species of bacteria. Those from fungi and algae are nonprotein secondary metabolites and several microorganisms may make the same or similar toxin/antibiotics.  相似文献   

13.
A total of 333 Bacillus spp. isolated from foods, water, and food plants were examined for the production of possible enterotoxins and emetic toxins using a cytotoxicity assay on Vero cells, the boar spermatozoa motility assay, and a liquid chromatography-mass spectrometry method. Eight strains produced detectable toxins; six strains were cytotoxic, three strains produced putative emetic toxins (different in size from cereulide), and one strain produced both cytotoxin(s) and putative emetic toxin(s). The toxin-producing strains could be assigned to four different species, B. subtilis, B. mojavensis, B. pumilus, or B. fusiformis, by using a polyphasic approach including biochemical, chemotaxonomic, and DNA-based analyses. Four of the strains produced cytotoxins that were concentrated by ammonium sulfate followed by dialysis, and two strains produced cytotoxins that were not concentrated by such a treatment. Two cultures maintained full cytotoxic activity, two cultures reduced their activity, and two cultures lost their activity after boiling. The two most cytotoxic strains (both B. mojavensis) were tested for toxin production at different temperatures. One of these strains produced cytotoxin at growth temperatures ranging from 25 to 42 degrees C, and no reduction in activity was observed even after 24 h of growth at 42 degrees C. The strains that produced putative emetic toxins were tested for the influence of time and temperature on the toxin production. It was shown that they produced putative emetic toxin faster or just as fast at 30 as at 22 degrees C. None of the cytotoxic strains produced B. cereus-like enterotoxins as tested by PCR or by immunological methods.  相似文献   

14.
The use of ultrasound for the control of algae and in particular for Microcystis aeruginosa has been investigated. The results indicate that sonication may provide a more environmentally friendly and more effective method for the control of cyanobacteria blooms than conventional treatments.Algae blooms occur frequently and globally in water bodies and are a major concern in terms of their effects on other species such as plants, fish and other microorganisms together with the potential danger to human health from cyanobacterial toxins that are carcinogenic. In addition to removing the algae itself ultrasound can also degrade such toxins. A range of ultrasonic conditions (in terms of frequency and intensity) have been studied under laboratory conditions together with a small number of pilot (field) studies that confirm the potential for ultrasonic treatment of algae on a large scale.  相似文献   

15.
AB toxins consist of an enzymatic A subunit and a cell-binding B subunit(1). These toxins are secreted into the extracellular milieu, but they act upon targets within the eukaryotic cytosol. Some AB toxins travel by vesicle carriers from the cell surface to the endoplasmic reticulum (ER) before entering the cytosol(2-4). In the ER, the catalytic A chain dissociates from the rest of the toxin and moves through a protein-conducting channel to reach its cytosolic target(5). The translocated, cytosolic A chain is difficult to detect because toxin trafficking to the ER is an extremely inefficient process: most internalized toxin is routed to the lysosomes for degradation, so only a small fraction of surface-bound toxin reaches the Golgi apparatus and ER(6-12). To monitor toxin translocation from the ER to the cytosol in cultured cells, we combined a subcellular fractionation protocol with the highly sensitive detection method of surface plasmon resonance (SPR)(13-15). The plasma membrane of toxin-treated cells is selectively permeabilized with digitonin, allowing collection of a cytosolic fraction which is subsequently perfused over an SPR sensor coated with an anti-toxin A chain antibody. The antibody-coated sensor can capture and detect pg/mL quantities of cytosolic toxin. With this protocol, it is possible to follow the kinetics of toxin entry into the cytosol and to characterize inhibitory effects on the translocation event. The concentration of cytosolic toxin can also be calculated from a standard curve generated with known quantities of A chain standards that have been perfused over the sensor. Our method represents a rapid, sensitive, and quantitative detection system that does not require radiolabeling or other modifications to the target toxin.  相似文献   

16.
Okadaic acid and dinophysistoxins are produced by some marine unicellular algae from the plankton and also benthic microalgae and may accumulate in shellfish. These phycotoxins are involved in a gastrointestinal syndrome called diarrhetic shellfish poisoning (DSP), which occurs in humans after consumption of bivalve molluscs. Thousands cases of human poisonings in Europe were caused by consumption of toxic shellfish during the past decade. The rapid detection and the reliable determination of the main phycotoxins implicated in DSP are a major concern for governmental institutions in charge of the sanitary control of seafood safety. Analytical procedures for the detection and determination of DSP toxins can be classified as: bioassays, biochemical methods including immunoassays, or physicochemical methods. Although a large number of methods have been developed, none have been officially validated. A complete panel of tools for DSP toxin analysis should include screening, investigation, and confirmation methods. This paper presents a compilation of recent developments and optimisations of these methods. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Phage display is an in vitro method for selecting polypeptides with desired properties from a large collection of variants. The insecticidal Cry toxins produced by Bacillus thuringiensis are highly specific to different insects. Various proteins such as cadherin, aminopeptidase-N (APN) and alkaline phosphatase (ALP) have been characterized as potential Cry-receptors. We used phage display to characterize the Cry toxin-receptor interaction(s). By employing phage-libraries that display single-chain antibodies (scFv) from humans or from immunized rabbits with Cry1Ab toxin or random 12-residues peptides, we have identified the epitopes that mediate binding of lepidopteran Cry1Ab toxin with cadherin and APN receptors from Manduca sexta and the interaction of dipteran Cry11Aa toxin with the ALP receptor from Aedes aegypti. Finally we displayed in phages the Cry1Ac toxin and discuss the potential for selecting Cry variants with improved toxicity or different specificity.  相似文献   

18.
The blue green algae or cyanobacteria represent a diverse group of organisms that produce potent natural toxins. There have been case reports of severe morbidity and mortality in domestic animals through drinking water contaminated by these toxins. Microcystins, in particular, have been associated with acute liver damage and possibly liver cancer in laboratory animals. Although, there has been little epidemiologic research on toxin effects in humans, a study by Yu (1995) found an association between primary liver cancer and surface water. Surface water drinking supplies are particularly vulnerable to the growth of these organisms; current US drinking water treatment practices do not monitor or actively treat for blue green algal toxins including the microcystins.After a monitoring survey in Florida found organisms and microcystins (among other cyanobacterial toxins) in surface water drinking sources, a pilot ecological study was performed using a Geographic Information System (GIS) to evaluate the risk of primary hepatocellular carcinoma (HCC) and proximity to a surface water treatment plant at cancer diagnosis. The study linked all HCC cancers diagnosed in Florida from 1981 to 1998 with environmental databases.A significantly increased risk for HCC with residence within the service area of a surface water treatment plant was found compared to persons living in areas contiguous to the surface water treatment plants. However, this increased risk was not seen in comparison to persons living in randomly selected ground water treatment service areas or compared to the Florida cumulative incidence rate for the study period, using various comparison and GIS methodologies. Furthermore, these findings must be interpreted in light of significant issues of latency, high population mobility, and the lack of individual exposure information. Nevertheless, the issue of acute and chronic human health effects associated with the consumption of surface waters possibly contaminated by blue green algal toxins merits further investigation.  相似文献   

19.
近年来,随着水体富营养化程度加剧,蓝藻水华现象时有发生,蓝藻及其释放的藻毒素对生态环境和人类健康构成严重威胁.本文概述了常见藻毒素的分类及其主要理化性质,总结了生物接触氧化、生物滤池和生物-生态耦合等工艺对藻毒素的去除性能与机制,分析了生物处理工艺的反应条件(温度、pH和水力停留时间)、原水性质及营养限制等影响因素,并对藻毒素去除机理、新工艺研发等方面进行了展望.  相似文献   

20.
In non‐Western civilizations, cyanobacteria have been part of the human diet for centuries. Today, microalgae and cyanobacteria are either produced in controlled cultivation processes or harvested from the natural habitats and marketed as food supplements around the world. Cyanobacteria produce a vast array of different biologically active compounds, some of which are expected to be used in drug development. The fact that some of the active components from cyanobacteria potentially have anticancer, antimicrobial, antiviral, anti‐inflammatory, and other effects is being used for marketing purposes. However, introduction of these products in the form of whole biomass for alimentary purposes raises concerns regarding the potential toxicity and long‐term effects on human health. Here, we review data on the use of cyanobacteria and microalgae in human nutrition and searched for available information on legislature that regulates the use of these products. We have found that, although the quality control of these products is most often self‐regulated by the manufacturers, different governmental agencies are introducing strict regulations for placing novel products, such as algae and cyanobacteria, on the market. The existing regulations require these products to be tested for the presence of toxins, such as microcystin; however, other, sometimes novel, toxins remain undetected, and their long‐term effects on human health remain unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号