首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
细胞或质体中部正确分裂位点的选择是MinD蛋白与其他Min蛋白(MinC/E)相互作用的结果,MinD蛋白在原核细胞以及植物叶绿体的分裂过程中发挥着重要的作用。细胞中MinD蛋白浓度的明显升高可影响正常细胞的分裂过程而产生丝状体细胞。为了研究叶绿体分裂蛋白CrMinD的保守功能,构建了衣藻CrMinD-gfp的原核表达重组质粒进行了原核功能验证。试验结果表明,衣藻CrMinD蛋白的过量表达严重影响了大肠杆菌的分裂,其在原核细胞中运动和定位与用GFP标记的原核细胞MinD蛋白具有相似性。更进一步证明了叶绿体分裂同源物CrMinD蛋白与原核细胞MinD蛋白有着相似的功能,是一个进化上功能保守的蛋白。同时,这一结果也为研究植物细胞中质体的分裂机制奠定了一定的基础。  相似文献   

2.
近年来,由于抗生素的滥用,耐药性细菌广泛出现,对人体健康的威胁日益严峻.随着临床用药的选择不断减少,迫切需要开发新的抗菌药物,特别是新作用机制的抗菌分子来对抗出现的耐药菌.细胞分裂温度敏感.突变体Z (filamenting temperature-setnsitive mutant Z,FtsZ)作为细菌分裂的必需蛋白质,是目前研究最热门的作用靶点之一.FtsZ是一高度保守的蛋白质,在大多数原核细胞的细胞分裂中发挥着关键作用,本文回顾了细菌分裂蛋白的结构特点及其生物学功能,并综述了以FtsZ为靶点的抗菌药物研究的进展.  相似文献   

3.
质体来源于早期具光合能力的原核生物与原始真核生物的内共生事件。原核起源的蛋白以及真核寄主起源的蛋白共同参与了质体的分裂过程。以原核生物的细胞分裂蛋白为蓝本,近些年在植物中陆续鉴定出几种主要的原核生物细胞分裂蛋白的同源物,如FtsZ、MinD和MinE蛋白。然而,除此之外,原核细胞大多数分裂相关因子在植物中找不到其同源物,但却鉴定了许多真核寄主来源的分裂相关蛋白。当前研究的重点是剖析各种质体分裂蛋白协同作用的机制,业已证明MinD和Mine的协同作用保证了FtsZ(Z)环的正确定位。尽管经典的FtsZ的抑制因子MinC在植物中不存在,但实验表明ARC3在拟南芥中具有类似MinC的功能。ARC3蛋白与真核起源的蛋白如ARC5、ARTEMIS、FZL和PD环以及其它原核起源的蛋白如ARC6和GC1等共同构成了一个复杂的植物质体分裂调控系统。  相似文献   

4.
高等植物质体的分裂   总被引:3,自引:0,他引:3  
质体来源于早期具光合能力的原核生物与原始真核生物的内共生事件。原核起源的蛋白以及真核寄主起源的蛋白共同参与了质体的分裂过程。以原核生物的细胞分裂蛋白为蓝本, 近些年在植物中陆续鉴定出几种主要的原核生物细胞分裂蛋白的同源物, 如FtsZ、MinD和MinE蛋白。然而, 除此之外, 原核细胞大多数分裂相关因子在植物中找不到其同源物, 但却鉴定了许多真核寄主来源的分裂相关蛋白。当前研究的重点是剖析各种质体分裂蛋白协同作用的机制, 业已证明MinD和MinE的协同作用保证了FtsZ(Z)环的正确定位。尽管经典的FtsZ的抑制因子MinC在植物中不存在, 但实验表明ARC3在拟南芥中具有类似MinC的功能。ARC3蛋白与真核起源的蛋白如ARC5、ARTEMIS、FZL和PD环以及其它原核起源的蛋白如ARC6和GC1等共同构成了一个复杂的植物质体分裂调控系统。  相似文献   

5.
衣藻CrMinD基因的网上克隆及其进化分析   总被引:3,自引:1,他引:2  
细菌细胞正常分裂时,在其中部形成介导细胞分裂的环状复合物结构。该环状复合物至少由10多种蛋白组成。其中,FtsZ蛋白最早在细胞中部组装成环状结构Z环,其他分裂相关蛋白再先后与Z环相结合,行使其分裂功能。Fts蛋白为原核细胞骨架蛋白,与真核生物的微管蛋白具有共同的进化祖先。在大肠杆菌细胞中共有三个潜在的细胞分裂位点,一在中部,另外两个分部在两极。正常情况下仅有中部的分裂位点得到应用。FtsZ环正确定位于细胞中部的潜在分裂位点与MinD蛋白密切相关。当minD基因突变时FtsZ蛋白则在细胞两极组装成Z环,最终导致细胞分裂异常,产生不含基因组的小细胞(Mincell)。    相似文献   

6.
FtsZ蛋白在原核细胞以及植物细胞叶绿体的分裂过程中发挥着重要作用。为了研究叶绿体分裂装置的进化 ,运用RT PCR方法从莱茵衣藻中克隆了叶绿体分裂相关基因CrFtsZ3。由于已经从衣藻细胞中克隆了一个ftsZ基因 ,所以CrFtsZ3的克隆表明衣藻中已经存在两类不同的 ftsZ基因 ,这说明 ftsZ基因的复制与分歧发生于绿藻的分化之前。序列分析结果显示 ,CrFtsZ3所编码的蛋白质具有FtsZ蛋白的典型模体。进一步的原核表达与定位分析表明CrFtsZ3 GFP融合蛋白沿着宿主菌体的纵轴方向有规律地聚集成荧光点或荧光带 ,并且CrFtsZ3蛋白过量表达明显干挠了宿主菌正常的细胞分裂过程 ,说明衣藻CrFtsZ3蛋白能够识别宿主细胞内的分裂位点并影响细胞分裂过程 ,从而初步验证了它的生物学功能  相似文献   

7.
桑昱  陶晶  姚玉峰 《微生物学报》2013,53(4):321-327
细菌细胞的分裂调控机制一直是人们研究的热点.在细胞中部形成一个隔膜,这一看似简单的过程是一个多因子参与调控的过程.Z环(FtsZ ring)是分裂体的支架,Z环形成的位置不仅是隔膜形成的位置还决定着细胞分裂位点,Z环在不正确的位置形成会导致细胞不均等分裂.目前研究已经发现了细胞分裂的多种调控包括Min系统、类核闭塞、MipZ蛋白,通过不同机制可以有效避免Z环的组装,从而阻止了分裂体在不正确的位置形成.就目前研究的Z环形成的过程以及影响Z环定位的调控机制作一综述.  相似文献   

8.
叶绿体增殖调控机制研究进展   总被引:1,自引:0,他引:1  
叶绿体为内共生起源的细胞器。利用电镜观察发现叶绿体分裂时具有中央缢缩现象,并且缢缩过程中存在环状结构。在大肠杆菌中,FtsZ蛋白最早在分裂位点组成一个环状结构(Z-环,FtsZ protein ring),其他分裂相关蛋白再与之结合,共同组成一个复杂的分裂装置,最终导致原核细胞分裂的完成。其分裂位点的选择受到min操纵子(包括MinC,MinD。MinE基因)的精细调控。叶绿体分裂的分子调控机制与原核细胞类似。原核起源与真核起源的分裂相关蛋白组成分裂复合体,确保叶绿体的正常分裂。  相似文献   

9.
细菌细胞分裂位点的调控机制及其研究进展   总被引:2,自引:0,他引:2  
大肠杆菌细胞内共有3个潜在的分裂位点,一个在细胞中部,另外两个位于细胞的两极。正常情况下,细菌仅利用中部的分裂位点以二分裂方式进行细胞的对称分裂。大肠杆菌细胞分裂时,中部潜在分裂位点的选择受到min操纵子(含minC、minD、minE3个基因)的精细调控。minC基因所编码的MinC蛋白是细胞分裂的抑制因子,与具有ATPase活性的MinD蛋白结合后被激活。在MinE蛋白的作用下,MinC和MinD蛋白在大肠杆菌细胞的两极问来回振荡。整个振荡周期中,MinC蛋白在细胞两极的两个潜在分裂位点处所停留的时间较长,分裂复合物无法正常组装,因而细胞两极的潜在分裂位点被屏蔽;而MinC蛋白在细胞中部的分裂位点所停留的时间较短,不能有效地抑制分裂复合物的组装,因此,各种细胞分裂蛋白在中部的分裂位点组装形成稳定的分裂复合物,使正常的细胞分裂得以进行。  相似文献   

10.
ftsZ基因是控制细胞分裂的关键基因,其蛋白能够在分裂位点形成一个环状结构而影响细胞分裂.为了研究木薯质体分裂与木薯淀粉品质形成的关系,根据木薯基因组数据库上的预测序列,设计引物,从木薯基因组中分离了与质体分裂相关的ftsZ家族3个新基因(ftsZ1,ftsZ2,ftsZ3).分别将它们与荧光蛋白基因(GFP)融合,构建了3个原核表达载体pET-fisZ1-GFP、pET-fisZ2-GFP、pET-fisZ3-GFP,并转化大肠杆菌BL21(DE3).通过荧光显微镜观察菌体的表型和分裂,初步鉴定了木薯质体分裂相关基因ftsZ家族对细胞分裂的作用.结果显示:尽管木薯与大肠杆菌的亲缘关系较远,ftsZ基因的同源性较低,但是两者表现出相似的功能,木薯ftsZ基因的表达能严重影响大肠杆菌细胞分裂.这一结果为进一步研究木薯ftsZ家族基因的功能奠定了基础.  相似文献   

11.
Perhaps the biggest single task facing a bacterial cell is to divide into daughter cells that contain the normal complement of chromosomes. Recent technical and conceptual breakthroughs in bacterial cell biology, combined with the flood of genome sequence information and the excellent genetic tools in several model systems, have shed new light on the mechanism of prokaryotic cell division. There is good evidence that in most species, a molecular machine, organized by the tubulin-like FtsZ protein, assembles at the site of division and orchestrates the splitting of the cell. The determinants that target the machine to the right place at the right time are beginning to be understood in the model systems, but it is still a mystery how the machine actually generates the constrictive force necessary for cytokinesis. Moreover, although some cell division determinants such as FtsZ are present in a broad spectrum of prokaryotic species, the lack of FtsZ in some species and different profiles of cell division proteins in different families suggests that there are diverse mechanisms for regulating cell division.  相似文献   

12.
FtsZ is a tubulin homolog essential for prokaryotic cell division. In living bacteria, FtsZ forms a ringlike structure (Z-ring) at the cell midpoint. Cell division coincides with a gradual contraction of the Z-ring, although the detailed molecular structure of the Z-ring is unknown. To reveal the structural properties of FtsZ, an understanding of FtsZ filament and bundle formation is needed. We develop a kinetic model that describes the polymerization and bundling mechanism of FtsZ filaments. The model reveals the energetics of the FtsZ filament formation and the bundling energy between filaments. A weak lateral interaction between filaments is predicted by the model. The model is able to fit the in vitro polymerization kinetics data of another researcher, and explains the cooperativity observed in FtsZ kinetics and the critical concentration in different buffer media. The developed model is also applicable for understanding the kinetics and energetics of other bundling biopolymer filaments.  相似文献   

13.
With the emergence of multidrug-resistant bacterial strains, there is a dire need for new drug targets for antibacterial drug discovery and development. Filamentous temperature sensitive protein Z (FtsZ), is a GTP-dependent prokaryotic cell division protein, sharing less than 10% sequence identity with the eukaryotic cell division protein, tubulin. FtsZ forms a dynamic Z-ring in the middle of the cell, leading to septation and subsequent cell division. Inhibition of the Z-ring blocks cell division, thus making FtsZ a highly attractive target. Various groups have been working on natural products and synthetic small molecules as inhibitors of FtsZ. This review summarizes the recent advances in the development of FtsZ inhibitors, focusing on those in the last 5 years, but also includes significant findings in previous years.  相似文献   

14.
Cell division is a fundamental process for both eukaryotic and prokaryotic cells. In bacteria, cell division is driven by a dynamic, ring-shaped, cytoskeletal element (the Z-ring) made up of polymers of the tubulin-like protein FtsZ. It is thought that lateral associations between FtsZ polymers are important for function of the Z-ring in vivo, and that these interactions are regulated by accessory cell division proteins such as ZipA, EzrA and ZapA. We demonstrate that the putative Escherichia coli ZapA orthologue, YgfE, exists in a dimer/tetramer equilibrium in solution, binds to FtsZ polymers, strongly promotes FtsZ polymer bundling and is a potent inhibitor of the FtsZ GTPase activity. We use linear dichroism, a technique that allows structure analysis of molecules within linear polymers, to reveal a specific conformational change in GTP bound to FtsZ polymers, upon bundling by YgfE. We show that the consequences of FtsZ polymer bundling by YgfE and divalent cations are very similar in terms of GTPase activity, bundle morphology and GTP orientation and therefore propose that this conformational change in bound GTP reveals a general mechanism of FtsZ bundling.  相似文献   

15.
FtsZ ring formation at the chloroplast division site in plants   总被引:15,自引:0,他引:15  
Among the events that accompanied the evolution of chloroplasts from their endosymbiotic ancestors was the host cell recruitment of the prokaryotic cell division protein FtsZ to function in chloroplast division. FtsZ, a structural homologue of tubulin, mediates cell division in bacteria by assembling into a ring at the midcell division site. In higher plants, two nuclear-encoded forms of FtsZ, FtsZ1 and FtsZ2, play essential and functionally distinct roles in chloroplast division, but whether this involves ring formation at the division site has not been determined previously. Using immunofluorescence microscopy and expression of green fluorescent protein fusion proteins in Arabidopsis thaliana, we demonstrate here that FtsZ1 and FtsZ2 localize to coaligned rings at the chloroplast midpoint. Antibodies specific for recognition of FtsZ1 or FtsZ2 proteins in Arabidopsis also recognize related polypeptides and detect midplastid rings in pea and tobacco, suggesting that midplastid ring formation by FtsZ1 and FtsZ2 is universal among flowering plants. Perturbation in the level of either protein in transgenic plants is accompanied by plastid division defects and assembly of FtsZ1 and FtsZ2 into filaments and filament networks not observed in wild-type, suggesting that previously described FtsZ-containing cytoskeletal-like networks in chloroplasts may be artifacts of FtsZ overexpression.  相似文献   

16.
Eukaryotic cell division or cytokinesis has been a major target for anticancer drug discovery. After the huge success of paclitaxel and docetaxel, microtubule-stabilizing agents (MSAs) appear to have gained a premier status in the discovery of next-generation anticancer agents. However, the drug resistance caused by MDR, point mutations, and overexpression of tubulin subtypes, etc., is a serious issue associated with these agents. Accordingly, the discovery and development of new-generation MSAs that can obviate various drug resistances has a significant meaning. In sharp contrast, prokaryotic cell division has been largely unexploited for the discovery and development of antibacterial drugs. However, recent studies on the mechanism of bacterial cytokinesis revealed that the most abundant and highly conserved cell division protein, FtsZ, would be an excellent new target for the drug discovery of next-generation antibacterial agents that can circumvent drug-resistances to the commonly used drugs for tuberculosis, MRSA and other infections. This review describes an account of our research on these two fronts in drug discovery, targeting eukaryotic as well as prokaryotic cell division.  相似文献   

17.
Plant filamentous temperature-sensitive Z (FtsZ) proteins have been reported to be involved in biological processes related to plastids. However, the precise functions of distinct isoforms are still elusive. Here, the intracellular localization of the FtsZ1-1 isoform in a moss, Physcomitrella patens, was examined. Furthermore, the in vivo interaction behaviour of four distinct FtsZ isoforms was investigated. Localization studies of green fluorescent protein (GFP)-tagged FtsZ1-1 and fluorescence resonance energy transfer (FRET) analyses employing all dual combinations of four FtsZ isoforms were performed in transient protoplast transformation assays. FtsZ1-1 is localized to network structures inside the chloroplasts and exerts influence on plastid division. Interactions between FtsZ isoforms occur in distinct ordered structures in the chloroplasts as well as in the cytosol. The results expand the view of the involvement of Physcomitrella FtsZ proteins in chloroplast and cell division. It is concluded that duplication and diversification of ftsZ genes during plant evolution were the main prerequisites for the successful remodelling and integration of the prokaryotic FtsZ-dependent division mechanism into the cellular machineries of distinct complex processes in plants.  相似文献   

18.
The cellular and subcellular localization of FtsZ, a bacterial cell division protein, were investigated in vegetative cells of the filamentous cyanobacterium Nostoc/Anabaena sp. strain PCC 7120. We show by using immunogold-transmission electron microscopy that FtsZ forms a ring structure in a filamentous cyanobacterium, similar to observations in unicellular bacteria and chloroplasts. This finding, that the FtsZ in a filamentous cyanobacterium accumulates at the growing edge of the division septa leading to the formation of the typical prokaryotic Z-ring arrangement, is novel. Moreover, an apparent cytoplasmic distribution of FtsZ occurred in vegetative cells. During the transition of vegetative cells into terminally differentiated heterocysts the cytoplasmic FtsZ levels decreased substantially. These findings suggest a conserved function of FtsZ among prokaryotes, including filamentous cyanobacteria with cell differentiation capacity, and possibly a role of FtsZ as a cytoskeletal component in the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号