首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In northern Fennoscandia, microtine rodent populations fluctuate cyclically. The environment of an individual vole can be considered to be predictable when the risks of predation and intra- and interspecific competition change with the cycle, such that both are high during the population highs of voles. The risk of predation is also high during the vole crash. After the crash, the vole population is characterized by low intra- and interspecific competition and low predation pressure. The main predators affecting voles during the crash are the small mustelids, least weasel and stoat. The density of these specialist predators declines drastically during the winter after the vole crash. We studied experimentally the impact of the perceived presence of stoats on the breeding and mating behaviour of voles. In a series of breeding experiments with bank voles,Clethrionomys glareolus, both old and young females suppressed breeding when exposed to the odour of stoats,Mustela erminea. The weights of females decreased in both experimental and control groups, but more among the voles under odour exposition. It seems that females actively avoided copulations under high predation risk and that breeding suppression is mediated by a change in female mating behaviour. There was no change in male behaviour or physical condition between the experimental and control treatments. An alternative mechanism for the observed breeding suppression could be the one caused by decreased feeding in females mediated with low energy intake which does not allow breeding. Regardless of its mechanism, delay of breeding should increase the probability of non-breeding females to survive to the next breeding season. The females surviving the crash should gain a strong selective advantage in a predator-free environment of the subsequent breeding season, which could explain the adaptive function of this antipredatory strategy.  相似文献   

2.
We studied the effects of removal of breeding nomadic avian predators (the kestrel, Falco tinnunculus and Tengmalm's owl, Aegolius funereus) on small mammals (voles of the genera Microtus and Clethrionomys and the common shrew, Sorex araneus) during 1989–1992 in western Finland to find out if these predators have a regulating or limiting impact on their prey populations. We removed potential breeding sites of raptors from five manipulation areas (c. 3 km2 each), whereas control areas had nest-boxes in addition to natural cavities and stick-nests. Densities of small mammals were monitored by snap-trapping in April, June, and August, and densities of mammalian predators (the least weasel, Mustela nivalis nivalis, the stoat, M. erminea and the red fox, Vulpes vulpes) by snow tracking in early spring and late autumn. The yearly mean number of raptor breeding territories was 0.2–1.0 in reduction areas and 3.0–8.2 in control areas. Breeding raptors alone did not regulate prey populations in the long term, but probably caused short-term changes in the population dynamics of both the main prey, the sibling vole (Microtus rossiaemeridionalis) and an alternative prey (the common shrew). The densities of an alternative prey, the bank vole (Clethrionomys glareolus) decreased in raptor reduction areas, most likely due to increased least weasel predation pressure in the absence of breeding avian predators.  相似文献   

3.
We studied the predation rate and prey selection of the least weasel ( Mustela nivalis nivalis ) on its two most common prey species in boreal environments, the bank vole ( Clethrionomys glareolus ) and the field vole ( Microtus agrestis ), in large outdoor enclosures. We also studied the response of weasels to odours of the two species in the laboratory. The enclosure experiment was conducted using constant vole densities (16 voles/ha) but with varying relative abundance of the two species. Weasels showed higher predation rates on bank voles, and males had higher predation rate than females. Females killed disproportionately more of the more abundant prey species, but they preferred bank voles to field voles when both were equally available. Overall, the predation rate also increased with increasing abundance of bank voles. Therefore our results are in agreement with earlier laboratory results showing preference for bank voles, even if no intrinsic preference for odours of either species was observed in our laboratory study. We suggest that the least weasel hunts according to prey availability, prey aggregation and suitability of hunting habitat, and that this causes the observed dependence of least weasels on field voles and emphasises the role of the field vole in the vole-weasel interaction in cyclic vole populations. Furthermore, our results suggest that predation by weasels may facilitate the coexistence of the two vole species via predator switching, and that it may cause the observed synchrony in dynamics between vole species.  相似文献   

4.
In small rodent populations with wide-amplitude fluctuations and low-density bottlenecks, the individuals that survive through the bottlenecks may gain major fitness advantages as they will be the founders of the following population expansion. Most hypotheses assume that there exists a physical or behavioural refuge from increased predation risk, and that the survivors are most likely individuals adapted to use such refuges. A recent hypothesis suggests that survival probability is habitat-dependent so that some otherwise sub-optimal habitats provide a spatial refuge from predation risk by the main predator(s). We used spatially replicated long-term (1981–2004) trapping and tracking data of voles (field vole Microtus agrestis and sibling vole M. rossiaemeridionalis) and their main predators (weasel Mustela nivalis and stoat M. erminea) to test predictions based on this hypothesis. We did not find support for the hypothesis. We did not find marked phase-dependent differences in the habitat-level distribution of Microtus voles. Habitat types with low Microtus vole abundance had, on average, comparable predator activity than the main Microtus vole habitats, indicating that there were no habitat-level refuges from predators. There appeared to be no permanent site-level refuges: the spatial distribution of voles varied from one bottleneck to another. This suggests that survival through bottlenecks is at least partly determined by chance events. We propose that in this kind of systems, where relatively short-lived prey are hunted by nomadic or widely ranging predators, short-term anti-predator responses may increase survival prospects as efficiently as more costly anti-predator adaptations, and there is no apparent need to maintain special adaptations to bottleneck situations that occur at infrequent intervals.Co-ordinating editor: J. Tuomi  相似文献   

5.
Reproductive output and the growth of captive voles were quantified under high and low avian predation risk in a semi-natural experiment. Voles were exposed to Eurasian kestrels (Falco tinnunculus), the main avian predator of vole species studied (Clethrionomys glareolus, Microtus agrestis and M. rossiaemeridionalis). Vole pairs were housed in cages settled under nest-boxes occupied by breeding kestrels or in control cages settled under empty nest-boxes for 2 weeks. The experiment was conducted in mid-summer when kestrels had half-grown nestlings, because in that time hunting adults and begging nestlings produce noise and scats which may indicate significant predation threat to voles housed underneath the nest-boxes. The risk of kestrel predation did not have any obvious impact on pregnancy rates, mean litter sizes, or growth rates of kestrel-exposed voles compared with control voles studied. These results indicate that the risk of avian predation does not depress the reproductive investment of voles. Received: 3 November 1997 / Accepted: 16 February 1998  相似文献   

6.
Summary We studied responses of stoats and least weasels to fluctuating vole abundances during seven winters in western Finland. Density indices of mustelids were derived from snow-tracking, diet composition from scat samples, and vole abundances from snap-trapping. Predation rate was estimated by the ratio of voles to mustelids and by the vole kill rate by predators (density of predator x percentage of voles in the diet). We tested the following four predictions of the hypothesis that small mustelids cause the low phase of the microtine cycle. (1) The densities of predators should lag well behind the prey abundances, as time lags tend to have destabilizing effects. The densities of stoats fluctuated in accordance with the vole abundances, whereas the spring densities of least weasels tracked the vole abundances with a half-year lag and the autumn densities with a 1-year lag. (2) Predators should not shift to alternative prey with declining vole densities. The yearly proportion of Microtus voles (the staple prey) in the diet of stoats varied widely (range 16–82%) and was positively correlated with the winter abundance of these voles. In contrast, the same proportion in the food of least weasels was independent of the vole abundance. (3) The ratio of voles to small mustelids should be smallest in poor vole years and largest in good ones. This was also observed. (4) Vole densities from autumn to spring should decrease more in those winters when vole kill rates are high than when they are low. The data on least weasels agreed with this prediction. Our results from least weasels were consistent with the predictions of the hypothesis, but stoats behaved like semi-generalist predators. Accordingly, declines and lows in the microtine cycle may be due to least weasel predation, but other extrinsic factors may also contribute to crashes.  相似文献   

7.
Competing species benefit from eavesdropping on each other's signals by learning about shared resources or predators. But conspicuous signals are also open to exploitation by eavesdropping predators and should also pose a threat to other sympatric prey species. In western Finland, sibling voles Microtus rossiameridionalis and field voles M. agrestis compete for food and space, and both species rely upon scent marks for intraspecific communication. Both vole species are prey to a range of terrestrial scent hunting predators such as least weasels, however, the competitively superior sibling voles are taken preferentially. We tested in large out‐door enclosures whether field voles eavesdrop on the signals of its competitor, and whether they behave as though this eavesdropping carries a risk of predation. We presented field voles with scent marks from unknown conspecifics and sibling voles and measured their visitation, activity and scent marking behaviours at these scents under high (weasel present) and low (weasel absent) predation risk. Field voles readily visited both field and sibling vole scents under both high and low predation risk; however their activity at sibling vole scent marks declined significantly under increased predation risk. In contrast, predation risk did not affect field voles’ activity at conspecific scents. Thus, field voles were compelled to maintain eavesdropping on heterospecific scents under an increased risk of predation, however they compensated for this additional risk by reducing their activity at these risky scents. Scent marking rates declined significantly under high predation risk. Our results therefore reveal a hidden complexity in the use of social signals within multi‐species assemblages that is clearly sensitive to the potential for increased predation risk. The predation risks of interspecific eavesdropping demonstrated here represents a significant generalisation of the concept of associational susceptibility.  相似文献   

8.
How, and where, a prey species survives predation by a specialist predator during low phases of population fluctuations or a cycle, and how the increase phase of prey population is initiated, are much-debated questions in population and theoretical ecology. The persistence of the prey species could be due mainly to habitats that act as refuges from predation and/or due to anti-predatory behaviour of individuals. We present models for the former conjecture in two (and three) habitat systems with a specialist predator and its favoured prey. The model is based on dispersal of prey between habitats with high reproductive output but high risk of predation, and less productive habitats with relatively low risk of predation. We illustrate the predictions of our model using parameters from one of the most intriguing vertebrate predator–prey systems, the multi-annual population cycles of boreal voles and their predators. We suggest that cyclic population dynamics could result from a sequence of extinction and re–colonization events. Field voles (Microtus agrestis), a key vole species in the system, can be hunted to extinction in their preferred meadow habitat, but persist in sub-optimal wet habitats where their main predator, the least weasel (Mustela nivalis nivalis) has a low hunting efficiency. Re–colonization of favourable habitats would occur after the predator population crashes. At the local scale, the model suggests that the periodicity and amplitude of population cycles can be strongly influenced by the relative availability of risky and safe habitats for the prey. Furthermore, factors like intra-guild predation may lead to reduced predation pressure on field voles in sub-optimal habitats, which would act as a refuge for voles during the low phase of their population cycles. Elasticity analysis suggested that our model is quite robust to changes in most parameters but sensitive to changes in the population dynamics of field voles in the optimal grassland habitat, and to the maximum predation rate of weasels.  相似文献   

9.
P. Jonsson  E. Koskela  T. Mappes 《Oecologia》2000,122(4):487-492
Predator-prey interactions between small mammals and their avian and mammalian predators have attracted much attention. However, large-scale field experiments examining small-mammal antipredatory responses under the risk of predation by mammals are rare. As recently pointed out, the scale of experiments may cause misleading results in studies of decision-making under predation risk. We studied the effect of small mustelid predators on the spacing behaviour of the gray-tailed vole (Microtus canicaudus) and the bank vole (Clethrionomys glareolus) in two separate field enclosure experiments. The experiments were conducted during the breeding season in North America and northern Europe, where small mustelids have been suggested to be important mammalian predators of voles. As in most of the earlier laboratory studies, predation risk was simulated using fresh mustelid faeces and urine. This made it possible to compare the results from experiments at different spatial scales. We did not find any effect of increased predation risk on spacing behaviour (mean and/or maximum distance moved and home range size) or trappability in either vole species. Simulated predation risk did not affect the breeding of females in gray-tailed voles, as has previously been shown in bank voles. The results disagree with most of the studies conducted in laboratory conditions with small mammals. We discuss whether this discrepancy could be caused by differences in the scale of the experiments. Received: 12 April 1999 / Accepted: 7 October 1999  相似文献   

10.
In prey communities with shared predators, variation in prey vulnerability is a key factor in shaping community dynamics. Conversely, the hunting efficiency of a predator depends on the prey community structure, preferences of the predator and antipredatory behavioural traits of the prey. We studied experimentally, under seminatural field conditions, the preferences of a predator and the antipredatory responses of prey in a system consisting of two Myodes species of voles, the grey-sided vole (M. rufocanus Sund.) and the bank vole (M. glareolus Schreb.), and their specialist predator, the least weasel (Mustela nivalis nivalis L.). To quantify the preference of the weasels, we developed a new modelling framework that can be used for unbalanced data. The two vole species were hypothesised to have different habitat-dependent vulnerabilities. We created two habitats, open and forest, to provide different escape possibilities for the voles. We found a weak general preference of the weasels for the grey-sided voles over the bank voles, and a somewhat stronger preference specifically in open habitats. The weasels clearly preferred male grey-sided voles over females, whereas in bank voles, there was no difference. The activity of voles changed over time, so that voles increased their movements immediately after weasel introduction, but later adjusted their movements to times of lowered predation risk. Females that were more active had an elevated mortality risk, whereas in the case of males, the result was the opposite. We conclude that, in vulnerability to predation, the species- or habitat-specific characteristics of these prey species are playing a minor role compared to sex-specific characteristics.  相似文献   

11.
In territorial microtines intra-specific density dependent processes can limit the maturation of individuals during the summer of their birth. This may have demographic consequences by affecting the number and the age distribution of breeding individuals in the population. Little is known about this process on a community level, though populations of many northern microtine species fluctuate in synchrony and are known to interfere socially with each other. We experimentally studied the influence of the field vole Microtus agrestis on maturation, breeding, space use and survival of weanling bank voles, Clethrionomys glareolus. Two additive competition experiments on bank vole populations were conducted in large outdoor enclosures, half of them additionally housing a field vole population. In a mid-summer experiment low population density and absence of older breeding females minimised intra-specific competition. Survival was not affected by the presence of field voles. Season had a significant effect on both the probability of maturation and breeding of the weanlings. Competition with field voles significantly delayed breeding, and coupled with seasonal effects decreased the probability of breeding. In a late-summer experiment breeding and survival of bank vole weanlings were studied for three weeks as part of a high density breeding bank vole population. Weanlings did not mature at all nor were their space use and survival affected by the presence of field voles. Our results show that competition with other species can also have an impact on breeding of immatures. In an extreme seasonal environment, even a short delay of breeding may decrease survival chances of offspring. Seasonal and competition effects together may thus limit the contribution of year born females to reproductive output of the population. Other studies have shown that adult breeding bank voles suffer lower survival in the presence of field voles, but this study showed no survival effects on the weanlings. Thus it might be beneficial for weanlings to stay immature especially in the end of the breeding season and postpone reproduction to the next breeding season if densities of competing species are high.  相似文献   

12.
Steen H  Mysterud A  Austrheim G 《Oecologia》2005,143(3):357-364
Inter-specific competition, facilitation and predation influence herbivore assemblages, but no study has experimentally explored the interactions between large ungulates and small rodents. In a fully replicated, landscape scale experiment, we manipulated densities of domestic sheep in mountain pastures in Norway. We then determined population growth and densities of rodents by live trapping in each of the areas with different sheep densities. We found that the (summer) population growth rate and autumn density of the field vole (Microtus agrestis) was lower at high sheep density. This provides the first experimental evidence of negative interactions between an ungulate and small rodent species. There was no effect on the bank vole (Clethrionomys glareolus), whose diet differs from sheep. Sheep density, therefore, potentially alters the pattern of inter-specific population synchrony amongst voles. Our study shows that negative interactions between large ungulates and small rodents may be species-specific and negative population consequences for the rodent population appear above threshold ungulate densities.Electronic supplementary material is available for this article at  相似文献   

13.
Indirect interaction between two competing species via a shared predator may be an important determinant of population and community dynamics. We studied the effect of predation risk imposed by the least weasel Mustela nivalis nivalis on space use, foraging and activity of two competing vole species, the grey-sided vole Myodes rufocanus, and the bank vole Myodes glareolus. The experiment was conducted in a large indoor arena, consisting of microhabitat structures providing food, shelter, trees for refuge and separated areas with high and low predation risk. Voles were followed for 5 days: 2 days before, 1 day during and 2 days after the presence of weasel. Our results suggest an effect of weasel presence on the vole community. Voles of both species shifted their activity from risky to less risky areas, climbed trees more often and were less active. Seed consumption was not affected by weasel presence. The time spent in the risky and less risky area did not differ between species, but bank voles spent more time in trees than grey-sided voles. Males of both species were more exposed to predation risk than females, i.e. generally spent more time in the risky area. Proportion of time spent in the risky area, the use of area, trees and food stations were sex dependent. Activity and use of trees were species dependent. We found no evidence for despotic distribution between our two species, although bank voles seemed to be more affected by coexistence, since they lost weight during the experiment. Based on our results we conclude that predator response was largely similar between species, while the sex-specific responses dominated. Besides a stronger escape response in the bank vole, the strongest individual differences were sex specific, i.e. males were more prone to take risks in space use and activity.  相似文献   

14.
Large predators may affect the hunting efficiency of smaller ones directly by decreasing their numbers, or indirectly by altering their behaviour. Either way this may have positive effects on the density of shared prey. Using large outdoor enclosures, we experimentally studied whether the presence of the Tengmalm's owl Aegolius funereus affects the hunting efficiency of the smallest member of the vole-eating predator guild, the least weasel Mustela nivalis, as measured by population responses of coexisting prey species, the field vole Microtus agrestis and the sibling vole M. levis . We compared the density and survival probability of vole populations exposed to no predation, weasel predation or combined predation by a weasel and an owl. The combined predation of both owl and weasel did not result in obvious changes in the density of sibling and field vole populations compared to the control populations without predators, while predation by least weasel alone decreased the densities of sibling voles and induced a similar trend in field vole densities. Survival of field voles was not affected by predator treatment while sibling vole survival was lower in predator treated populations than in control populations. Our results suggest that weasels are intimidated by avian predators, but without changing the effects of predators on competitive situations between the two vole species. Non-lethal effects of intraguild predation therefore will not necessarily change competitive interactions between shared prey species.  相似文献   

15.
Spacing behaviour of female mammals is suggested to depend on the distribution and abundance of food. In addition, food limitation has been found to constrain the reproductive success of females. However, whether females maximize their reproductive success by adjusting space use in relation to current food availability and reproductive effort (e.g. litter size) has not been experimentally studied. We examined these questions by manipulating simultaneously food resources (control vs. food supplementation) and litter sizes (control vs. plus two pups) of territorial female bank voles (Clethrionomys glareolus) in large outdoor enclosures. Females with supplementary food had smaller home ranges (foraging area) and home range overlaps than control females, whereas litter size manipulation had no effect on space use. In contrast, the size of territory (exclusive area) was not affected by food supplementation or litter size manipulation. As we have previously shown elsewhere, extra food increases the reproductive success of bank vole females in terms of size and proportion of weaned offspring. According to the present data, greater overlap of female home ranges had a negative effect on reproductive success of females, particularly on survival of offspring. We conclude that higher food availability increases the reproductive success of bank vole females, and this effect may be mediated through lower vulnerability of offspring to direct killing and/or detrimental effects from other females in the population. Moreover, it seems that when density of conspecifics is controlled for, home range sizes of females, but not territoriality, is related to food resources in Clethrionomys voles.  相似文献   

16.
We investigated the functional response of the least weasel ( Mustela nivalis nivalis ) in a series of experiments conducted in large outdoor enclosures (0.5 ha). Radiocollared Microtus voles were released in the enclosures at different densities (4, 8, 16 and 100/ha) three days before the release of a radiocollared weasel. During the three-day experiment every vole killed was replaced with another one as soon as possible to retain constant prey density. The results demonstrated type II functional response with the predation rate reaching 50% of the asymptotic rate at a vole density of 15 individuals per ha. More voles were killed at the highest densities than would be expected from the known energy demands of weasels. Female and male voles were killed in proportion to their abundances in the enclosures, and no difference in predation risk was detected between voles released in the enclosure before the weasel (residents) and during the experiment (transients).  相似文献   

17.
Diet composition of a generalist predator, the red fox (Vulpes vulpes) in relation to season (winter or summer) and abundance of multi-annually cyclic voles was studied in western Finland from 1983 to 1995. The proportion of scats (PS; a total of 58 scats) including each food category was calculated for each prey group. Microtus voles (the field vole M. agrestis and the sibling vole M. rossiaemeridionalis) were the main prey group of foxes (PS = 0.55) and they frequently occurred in the scats both in the winter and summer (PSs 0.50 and 0.62, respectively). There was a positive correlation between the PSs of Microtus voles in the winter diet of foxes and the density indices of these voles in the previous autumn. Other microtine rodents (the bank vole Clethrionomys glareolus, the water vole Arvicola terrestris and the muskrat Ondatra zibethicus) were consumed more in winter than in summer. The unusually high small mustelid predation by red foxes (PS = approx. 0.10) in our study area gives qualitative support for the hypothesis on the limiting impact of mammalian predators on least weasel and stoat populations. None of the important prey groups was preyed upon more at low than at high densities of main prey (Microtus voles). This is consistent with the notion that red foxes are generalist predators that tend to opportunistically subsist on many prey groups. Among these prey groups, particularly hares and birds (including grouse), were frequently used as food by foxes.  相似文献   

18.
The effect of diet quality on gut anatomy in British voles (Microtinae)   总被引:2,自引:2,他引:0  
Three species of British voles, the bank vole Clethrionomys glareolus, the field vole Microtus agrestis and the water vole Arvicola terrestris were maintained on diets of seed and plant leaf material to investigate changes in gut anatomy. C. glareolus and M. agrestis showed significant changes in most regions of the gut; they developed longer and heavier tracts when on a highfibre diet. This response may be important in enabling these animals to withstand seasonal changes in diet quality.  相似文献   

19.
Blood parasites of small mammals living in Białowieża Forest (eastern Poland) were investigated between 1996 and 2002. The following haemoparasite species were found:Trypanosoma (Herpetosoma) evotomys in bank voleClethrionomys glareolus; T. (H.) microti in root voleMicrotus oeconomus; Babesia microti in root vole;Hepatozoon erhardovae in bank vole andHepatozoon sp. in root vole. Some non-identifiedBartonella species were found in bank vole, root vole, field voleMicrotus agrestis, yellow-necked mouseApodemus flavicollis, common shrewSorex araneus, Eurasian water shrewNeomys fodiens, and Mediterranean water shrewN. anomalus. The prevalence and diversity of blood parasites were lower in shrews than small rodents. Totally, 52.0% of bank voles, 50.0% of root voles, 32.5% of common shrews, and 41.2% of Eurasian water shrews were infected with any of the blood parasites. Mixed infections were seldom observed in bank vole (17.3% of investigated individuals) and root vole (14.7%). No animals were infected with three or four parasites simultaneously. Infection of Białowieża small mammals with haemoparasites seemed to be similar to those described in other temperate forest regions rather than boreal ones. Infection rates of rodent species seem to be higher in their typical habitats: for bank vole it was the highest in mixed forest, whereas for root vole in sedge swamp. The results suggest that Arvicolidae play a greater role than Muridae or Soricidae in maintenance ofBabesia andHepatozoon foci in natural environments of central Europe.  相似文献   

20.
Breeding suppression hypothesis (BSH) predicts that, in several vole species, females will suppress breeding in response to high risk of mustelid predation; compared to breeding females, suppressing females would gain higher chances of survival. Seminal evidence for BSH was obtained in the laboratory, but attempts to replicate breeding suppression under field conditions were less conclusive. We tested whether breeding suppression occurs in common voles (Microtus arvalis), and how population density and predation risk combined affect voles’ reproductive activity. We found that, in contrast to males, female common voles suppress reproductive activity when faced with high predation risk. Population size was not reduced despite breeding suppression. A model of the interaction between predation risk and population density revealed that predator-induced breeding suppression depends on the density of conspecifics. We concluded that breeding suppression is a viable adaptation only at low vole densities, when per capita predation risk is high. Finally, we identified the key issues of experimental design required for the consistency of future studies on breeding suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号