首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 101 毫秒
1.
Considerable research has been devoted to understanding how plant invasions are influenced by properties of the native community and to the traits of exotic species that contribute to successful invasion. Studies of invasibility are common in successionally stable grasslands, but rare in recently disturbed or seral forests. We used 16 yr of species richness and abundance data from 1 m2 plots in a clearcut and burned forest in the Cascade Range of western Oregon to address the following questions: 1) is invasion success correlated with properties of the native community? Are correlations stronger among pools of functionally similar taxa (i.e. exotic and native annuals)? Do these relationships change over successional time? 2) Does exotic abundance increase with removal of potentially dominant native species? 3) Do the population dynamics of exotic and native species differ, suggesting that exotics are more successful colonists? Exotics were primarily annual and biennial species. Regardless of the measure of success (richness, cover, biomass, or density) or successional stage, most correlations between exotics and natives were non‐significant. Exotic and native annuals showed positive correlations during mid‐succession, but these were attributed to shared associations with bare ground rather than to direct biotic interactions. At peak abundance, neither cover nor density of exotics differed between controls and plots from which native, mid‐successional dominants were removed. Tests comparing nine measures of population performance (representing the pace, magnitude, and duration of population growth) revealed no significant differences between native and exotic species. In this early successional system, local richness and abundance of exotics are not explained by properties of the native community, by the presence of dominant native species, or by superior colonizing ability among exotics species. Instead natives and exotics exhibit individualistic patterns of increase and decline suggesting similar sets of life‐history traits leading to similar successional roles.  相似文献   

2.
Exotic plants pose a threat to restoration success in post‐agricultural bottomlands, but little information exists on their dynamics during succession of actively restored sites. We hypothesized that exotic assemblages would establish during succession and that their compositional trends during succession time would mirror those published for native species in other systems, with an early peak in herbaceous richness followed by a decline as woody species establish. In the summer of 2008, we sampled 16 sites across an 18‐year chronosequence of restored forests, with an additional four mature forest stands for comparison, within the Cypress Creek NWR, Illinois, U.S.A. We identified all vascular plant species and quantified canopy openness at three canopy strata, and soil texture and chemistry. Trends in exotic assemblages were significantly correlated with canopy openness at all strata. Richness of exotic and native herbaceous species was related to stand age and consistent with a Weibull regression model. Native and exotic herbaceous cover followed an exponential decay model. Woody native richness over time conformed to a logistic model; woody exotics exhibited no relationship with stand age and were present in sites of all ages. Our results indicate that although their rates of decline differ, herbaceous exotics and natives exhibit similar successional dynamics; therefore, herbaceous exotics may not pose a lasting threat to restoration success in reforested floodplains. Woody exotics can establish across a range of successional stages and persist under closed canopy conditions. Bottomland restorations are vulnerable to the invasion and expansion of exotic plant species even after canopy closure.  相似文献   

3.
The delivery of environmental flows for biodiversity benefits within regulated river systems can potentially contribute to exotic weed spread. This study explores whether exotic plants of a floodplain forest in Victoria, Australia, are characterised by specific functional groups and associated plant traits linked to altering hydrological conditions over time. Permanently marked 20 × 20 m2 plots from five wetland sites in Eucalyptus camaldulensis floodplain forest were sampled twice, first in the early 1990s (1993–1994) and then 15 years later (2007–2008). Species cover abundance data for understorey vegetation communities were segregated by season and analysed using ordination analysis. Exotic species richness was modelled as a function of site flooding history and native species richness using general linear models. Site ordinations by detrended correspondence analysis showed differential community compositions between survey dates, but native and exotic species were not clearly differentiated in terms of DCA1 scores. Most exotics belonged to functional groups containing annual species that germinate and reproduce under drier conditions. Exotics reproducing under wetter conditions were in the minority, predominantly perennial and capable of both sexual and asexual reproduction. Site flooding history and native species richness significantly predicted exotic species richness. Vegetation changes are partially structured by reduced flood frequency favouring increased abundance of exotic, sexually reproducing annuals at drier sites. Sites of low flood frequency are more sensitive to future exotic weed invasion and will require targeted management effort. Flow restoration is predicted to benefit propagule dispersal of species adopting dual regeneration strategies, which are predominantly natives in this system.  相似文献   

4.
The question of whether species’ origins influence invasion outcomes has been a point of substantial debate in invasion ecology. Theoretically, colonization outcomes can be predicted based on how species’ traits interact with community filters, a process presumably blind to species’ origins. Yet, exotic plant introductions commonly result in monospecific plant densities not commonly seen in native assemblages, suggesting that exotic species may respond to community filters differently than natives. Here, we tested whether exotic and native species differed in their responses to a local community filter by examining how ant seed predation affected recruitment of eighteen native and exotic plant species in central Argentina. Ant seed predation proved to be an important local filter that strongly suppressed plant recruitment, but ants suppressed exotic recruitment far more than natives (89% of exotic species vs. 22% of natives). Seed size predicted ant impacts on recruitment independent of origins, with ant preference for smaller seeds resulting in smaller seeded plant species being heavily suppressed. The disproportionate effects of provenance arose because exotics had generally smaller seeds than natives. Exotics also exhibited greater emergence and earlier peak emergence than natives in the absence of ants. However, when ants had access to seeds, these potential advantages of exotics were negated due to the filtering bias against exotics. The differences in traits we observed between exotics and natives suggest that higher-order introduction filters or regional processes preselected for certain exotic traits that then interacted with the local seed predation filter. Our results suggest that the interactions between local filters and species traits can predict invasion outcomes, but understanding the role of provenance will require quantifying filtering processes at multiple hierarchical scales and evaluating interactions between filters.  相似文献   

5.
Differences between native and exotic species in competitive ability and susceptibility to herbivores are hypothesized to facilitate coexistence. However, little fieldwork has been conducted to determine whether these differences are present in invaded communities. Here, we experimentally examined whether asymmetries exist between native and exotic plants in a community invaded for over 200 years and whether removing competitors or herbivores influences coexistence. We found that natives and exotics exhibit pronounced asymmetries, as exotics are competitively superior to natives, but are more significantly impacted by herbivores. We also found that herbivore removal mediated the outcome of competitive interactions and altered patterns of dominance across our field sites. Collectively, these findings suggest that asymmetric biotic interactions between native and exotic plants can help to facilitate coexistence in invaded communities.  相似文献   

6.
Aim To determine why some communities are more invasible than others and how this depends on spatial scale. Our previous work in serpentine ecosystems showed that native and exotic diversity are negatively correlated at small scales, but became positively correlated at larger scales. We hypothesized that this pattern was the result of classic niche partitioning at small scales where the environment is homogeneous, and a shift to the dominance of coexistence mechanisms that depend on spatial heterogeneity in the environment at large scales. Location Serpentine ecosystem, Northern California. Methods We test the above hypotheses using the phylogenetic relatedness of natives and exotics. We hypothesized that (1) at small scales, native and exotic species should be more distantly related than expected from a random assemblage model because with biotic resistance, successful invaders should have niches that are different from those of the natives present and (2) at large scales, native and exotic species should not be more distantly related than expected. Result We find strong support for the first hypothesis providing further evidence of biotic resistance at small scales. However, at large scales, native and exotic species were also more distantly related than expected. Importantly, however, natives and exotics were more distantly related at small scales than they were at large scales, suggesting that in the transition from small to large scales, biotic resistance is relaxed but still present. Communities at large scales were not saturated in the sense that more species could enter the community, increasing species richness. However, species did not invade indiscriminately. Exotic species closely related to species already established the community were excluded. Main conclusions Native communities determine the identity of exotic invaders even at large spatial scales where communities are unsaturated. These results hold promise for predicting which species will invade a community given the species present.  相似文献   

7.
The degree to which biotic interactions influence invasion by non-indigenous species may be partly explained by the evolutionary relationship of these invaders with natives. Darwin’s naturalization hypothesis controversially proposes that non-native plants are more likely to invade if they lack close relatives in their new range. A possible mechanism for this pattern is that exotics that are more closely related to natives are more likely to share their herbivores, and thus will suffer more damage than phylogenetically isolated species. We tested this prediction using exotic plants in Ontario, Canada. We measured herbivore damage to 32 species of exotic plants in a common garden experiment, and 52 in natural populations. We estimated their phylogenetic distances from locally occurring natives in three ways: as mean distance (age) to all native plants, mean distance to native members of the same family, and distance to the closest native species. In the common garden, the proportion of leaves damaged and the average proportion of leaf area damaged declined with mean phylogenetic distance to native family relatives by late summer. Distance to native confamilials was a better predictor of damage than distance to the closest native species, while mean distance to the entire native plant community failed to predict damage. No significant patterns were detected for plants in natural populations, likely because uncontrolled site-to-site variation concealed these phylogenetic trends. To the extent that herbivory has negative demographic impacts, these results suggest that exotics that are more phylogenetically isolated from native confamilials should be more invasive; conversely, native communities should be more resistant to invasion if they harbor close familial relatives of potential invaders. However, the large scatter in this relationship suggests that these often are likely to be weak effects; as a result, these effects often may be difficult to detect in uncontrolled surveys of natural populations.  相似文献   

8.
Aim Increasingly, ecologists are using evolutionary relationships to infer the mechanisms of community assembly. However, modern communities are being invaded by non‐indigenous species. Since natives have been associated with one another through evolutionary time, the forces promoting character and niche divergence should be high. On the other hand, exotics have evolved elsewhere, meaning that conserved traits may be more important in their new ranges. Thus, co‐occurrence over sufficient time‐scales for reciprocal evolution may alter how phylogenetic relationships influence assembly. Here, we examined the phylogenetic structure of native and exotic plant communities across a large‐scale gradient in species richness and asked whether local assemblages are composed of more or less closely related natives and exotics and whether phylogenetic turnover among plots and among sites across this gradient is driven by turnover in close or distant relatives differentially for natives and exotics. Location Central and northern California, USA. Methods We used data from 30 to 50 replicate plots at four sites and constructed a maximum likelihood molecular phylogeny using the genes: matK, rbcl, ITS1 and 5.8s. We compared community‐level measures of native and exotic phylogenetic diversity and among‐plot phylobetadiversity. Results There were few exotic clades, but they tended to be widespread. Exotic species were phylogenetically clustered within communities and showed low phylogenetic turnover among communities. In contrast, the more species‐rich native communities showed higher phylogenetic dispersion and turnover among sites. Main conclusions The assembly of native and exotic subcommunities appears to reflect the evolutionary histories of these species and suggests that shared traits drive exotic patterns while evolutionary differentiation drives native assembly. Current invasions appear to be causing phylogenetic homogenization at regional scales.  相似文献   

9.
Understanding priority effects, in which one species in a habitat decreases the success of later species, may be essential for restoring native communities. Priority effects can operate in two ways: size‐asymmetric competition and creation of “soil legacies,” effects on soil that may last long after the competitive effect. We examined how these two types of priority effects, competition and soil legacies, drive interactions between seedlings of native and exotic California grassland plants. We established native and exotic communities in a mesocosm experiment. After 5 weeks, we removed the plants from half the treatments (soil legacy treatment) and retained the plants in the other half (priority effect treatment, which we interpret to include both competition and soil legacies). We then added native or exotic seed as the colonizing community. After 2 months, we measured the biomass of the colonizing community. When germinating first, both natives and exotics established priority effects, reducing colonist biomass by 86 and 92%, respectively. These priority effects were predominantly due to size‐asymmetric competition. Only exotics created soil legacies, and these legacies only affected native colonizers, reducing biomass by 74%. These results imply that exotic species priority effects can affect native grassland restorations. Although most restorations focus on removing exotic seedlings, amending soil to address soil legacies may also be critical. Additionally, because native species can exclude exotics if given a head start, ensuring that natives germinate first may be a cost‐effective restoration technique.  相似文献   

10.
While exotic plant species often come to dominate disturbed communities, long-term patterns of invasion are poorly known. Here we present data from 40 yr of continuous vegetation sampling, documenting the temporal distribution of exotic plant species in old field succession. The relative cover of exotic species decreased with time since abandonment, with significant declines occurring ≥20 yr post-abandonment. The number of exotic species per plot also declined with time since abandonment while field-scale richness of exotics did not change. This suggests displacement occurring at small spatial scales. Life history types changed from short-lived herbaceous species to long-lived woody species for both native and exotic plant species. However, shrubs and lianas dominated woody cover of exotic plants while trees dominated native woody cover. The species richness of exotic and native species was positively correlated at most times. In abandoned hay fields, however, the proportion of exotic plant cover per plot was inversely related to total species richness. This relationship suggests that it is not the presence, but the abundance of exotic species that may cause a reduction in community diversity. While the development of closed-canopy forest appears to limit most introduced plant species, several shade-adapted exotic species are increasing within the fields. These invasions may cause a reversal of the patterns seen in the first 40 yr of succession and may result in further impacts on community structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号