首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
2.
The structure of the bluetongue virus (BTV) particle, determined by cryoelectron microscopy and image analysis, reveals a well-ordered outer shell which differs markedly from other known Reoviridae. The inner shell is known to have an icosahedral structure with 260 triangular spikes of VP7 trimers arranged on a T = 13,l lattice. The outer shell is seen to consist of 120 globular regions (possibly VP5), which sit neatly on each of the six-membered rings of VP7 trimers. "Sail"-shaped spikes located above 180 of the VP7 trimers form 60 triskelion-type motifs which cover all but 20 of the VP7 trimers. These spikes are possibly the hemagglutinating protein VP2 which contains a virus neutralization epitope. Thus, VP2 and VP5 together form a continuous layer around the inner shell except for holes on the 5-fold axis.  相似文献   

3.
4.
The structural protein VP6 of rotavirus, an important pathogen responsible for severe gastroenteritis in children, forms the middle layer in the triple-layered viral capsid. Here we present the crystal structure of VP6 determined to 2 A resolution and describe its interactions with other capsid proteins by fitting the atomic model into electron cryomicroscopic reconstructions of viral particles. VP6, which forms a tight trimer, has two distinct domains: a distal beta-barrel domain and a proximal alpha-helical domain, which interact with the outer and inner layer of the virion, respectively. The overall fold is similar to that of protein VP7 from bluetongue virus, with the subunits wrapping about a central 3-fold axis. A distinguishing feature of the VP6 trimer is a central Zn(2+) ion located on the 3-fold molecular axis. The crude atomic model of the middle layer derived from the fit shows that quasi-equivalence is only partially obeyed by VP6 in the T = 13 middle layer and suggests a model for the assembly of the 260 VP6 trimers onto the T = 1 viral inner layer.  相似文献   

5.
The three-dimensional structure of the rotavirus spike haemagglutinin viral protein 4 (VP4) has been determined to a resolution of 26 A by cryo-electron microscopy and difference analysis of intact virions and smooth (spikeless) particles. Native and spikeless virions were mixed prior to cryo-preservation so that both structures could be determined from the same micrograph, thereby minimizing systematic errors. This mixing strategy was crucial for difference map analysis since VP4 only accounts for approximately 1% of the virion mass. The VP4 spike is multi-domained and has a radial length of approximately 200 A with approximately 110 A projecting from the surface of the virus. Interactions between VP4 and cell surface receptors are facilitated by the bi-lobed head, which allows multi-site interactions, as well as the uniform distribution of the VP4 heads at maximum radius. The bi-lobed head is attached to a square-shaped body formed by two rods that have a slight left-handed helical twist. These rods merge with an angled, rod-like domain connected to a globular base approximately 85 A in diameter. The anchoring base displays pseudo 6-fold symmetry. This surprising finding may represent a novel folding motif in which a single polypeptide of VP4 contributes similar but non-equivalent domains to form the arms of the hexameric base. The VP4 spike penetrates the virion surface approximately 90 A and interacts with both outer (VP7) and inner (VP6) capsid proteins. The extensive VP4-VP7 and VP4-VP6 interactions imply a scaffolding function in which VP4 may participate in maintaining precise geometric register between the inner and outer capsids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The structure of rhesus rotavirus was examined by cryoelectron microscopy and image analysis. Three-dimensional reconstructions of infectious virions were computed at 26- and 37-A resolution from electron micrographs recorded at two different levels of defocus. The major features revealed by the reconstructions are (a) both outer and inner capsids are constructed with T = 13l icosahedral lattice symmetry; (b) 60 spikelike projections, attributed to VP4, extend at least 100 A from the outer capsid surface; (c) the outer capsid, attributed primarily to VP7, has a smoothly rippled surface at a mean radius of 377 A and is perforated by 132 aqueous holes ranging from 40-65 A in diameter; (d) the inner capsid has a "bristled" outer surface composed of 260 trimeric-shaped columns of density, attributed to VP6, which merge with a smooth, spherical shell of density at a lower, mean radius of 299 A, and which is perforated by holes in register with those in the outer capsid; (e) a "core" region contains a third, nonspherical shell of density at a mean radius of 225 A that encapsidates the double-stranded RNA genome; and (f) the space between the outer and inner capsids forms an open aqueous network that may provide pathways for the diffusion of ions and small regulatory molecules as well as the extrusion of RNA. The assignment of different viral structural proteins to specific features of the reconstruction has been tentatively made on the basis of excluded volume estimates and previous biochemical characterizations of rotavirus.  相似文献   

7.
Cell attachment and membrane penetration are functions of the rotavirus outer capsid spike protein, VP4. An activating tryptic cleavage of VP4 produces the N-terminal fragment, VP8*, which is the viral hemagglutinin and an important target of neutralizing antibodies. We have determined, by X-ray crystallography, the atomic structure of the VP8* core bound to sialic acid and, by NMR spectroscopy, the structure of the unliganded VP8* core. The domain has the beta-sandwich fold of the galectins, a family of sugar binding proteins. The surface corresponding to the galectin carbohydrate binding site is blocked, and rotavirus VP8* instead binds sialic acid in a shallow groove between its two beta-sheets. There appears to be a small induced fit on binding. The residues that contact sialic acid are conserved in sialic acid-dependent rotavirus strains. Neutralization escape mutations are widely distributed over the VP8* surface and cluster in four epitopes. From the fit of the VP8* core into the virion spikes, we propose that VP4 arose from the insertion of a host carbohydrate binding domain into a viral membrane interaction protein.  相似文献   

8.
Adeno-associated virus type 2 empty capsids are composed of three proteins, VP1, VP2 and VP3, which have relative molecular masses of 87, 72 and 62 kDa, respectively, and differ in their N-terminal amino acid sequences. They have a likely molar ratio of 1:1:8 and occupy symmetrical equivalent positions in an icosahedrally arranged protein shell. We have investigated empty capsids of adeno-associated virus type 2 by electron cryo-microscopy and icosahedral image reconstruction. The three-dimensional map at 1.05 nm resolution showed sets of three elongated spikes surrounding the three-fold symmetry axes and narrow empty channels at the five-fold axes. The inside of the capsid superimposed with the previously determined structure of the canine parvovirus (Q. Xie and M.S. Chapman, 1996, J. Mol. Biol., 264, 497–520), whereas the outer surface showed clear discrepancies. Globular structures at the inner surface of the capsid at the two-fold symmetry axes were identified as possible positions for the N-terminal extensions of VP1 and VP2.  相似文献   

9.
Human astroviruses (HAstVs) are a major cause of gastroenteritis. HAstV assembles from the structural protein VP90 and undergoes a cascade of proteolytic cleavages. Cleavage to VP70 is required for release of immature particles from cells, and subsequent cleavage by trypsin confers infectivity. We used electron cryomicroscopy and icosahedral image analysis to determine the first experimentally derived, three-dimensional structures of an immature VP70 virion and a fully proteolyzed, infectious virion. Both particles display T = 3 icosahedral symmetry and nearly identical solid capsid shells with diameters of ~ 350 Å. Globular spikes emanate from the capsid surface, yielding an overall diameter of ~ 440 Å. While the immature particles display 90 dimeric spikes, the mature capsid only displays 30 spikes, located on the icosahedral 2-fold axes. Loss of the 60 peripentonal spikes likely plays an important role in viral infectivity. In addition, immature HAstV bears a striking resemblance to the structure of hepatitis E virus (HEV)-like particles, as previously predicted from structural similarity of the crystal structure of the astrovirus spike domain with the HEV P-domain [Dong, J., Dong, L., Méndez, E. &; Tao, Y. (2011). Crystal structure of the human astrovirus capsid spike. Proc. Natl. Acad. Sci. USA 108, 12681–12686]. Similarities between their capsid shells and dimeric spikes and between the sequences of their capsid proteins suggest that these viral families are phylogenetically related and may share common assembly and activation mechanisms.  相似文献   

10.
P Metcalf  M Cyrklaff    M Adrian 《The EMBO journal》1991,10(11):3129-3136
The structures of reovirus serotypes T2J (Jones), T3D (Dearing) and the T3D core particle have been determined by cryo-electron microscopy and image processing. At a resolution of 30 A the two serotypes have similar features. The core is visible within the virus structure. The outer surface of the virus particles contains 120 holes at T = 13.1 local 6-fold axes. The holes penetrate into the virus as far as the surface of the internal core shell. Protrusions extending 4 nm from the virus surface surround each hole on the outside of the virus. At the 5-fold axes on the surface of the virus flat 'penton craters' form covers over the underlying core spikes. The detailed structure of the reovirus shell is very different to that of rotavirus although both have holes at T = 13.1 axes. Little evidence was seen of reovirus fibres extending from the virus surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号