首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 233 毫秒
1.
细菌Ⅵ型分泌系统的研究进展   总被引:1,自引:0,他引:1  
李俊  俞盈  王豪举 《微生物学报》2011,51(3):291-296
Ⅵ型分泌系统(Type Ⅵ secretion system,T6SS)是最近发现的一种新的分泌系统,广泛存在于革兰氏阴性菌变形菌门细菌中,主要由构成分泌系统的结构蛋白、形成跨膜管道结构的转位蛋白、分泌蛋白以及一些对分泌系统起辅助功能的蛋白组成。T6SS能够增强细菌对外界环境的适应性,介导细菌对宿主细胞的致病力以及其他功能。  相似文献   

2.
蛋白质分泌系统是细菌与外界交流的重要工具。革兰氏阴性细菌的Ⅵ型蛋白分泌系统(T6SS)可以转运分泌蛋白至细菌和真核细胞内,在菌间竞争中发挥重要作用,是细菌的一种重要的生存适应性武器。分泌蛋白主要包括起到运载作用的结构蛋白和有细胞毒性的效应蛋白这两类。本文主要从效应蛋白的视角讨论T6SS如何识别并转运效应蛋白的作用机理,回顾了以VgrG和PAAR为端部载体蛋白的转运途径、依赖端部运输的效应蛋白、T6SS伴侣蛋白等重要发现的背景和过程,并综述了T6SS分泌途径的新进展。  相似文献   

3.
细菌通过其分泌系统将特定的效应蛋白输送到外界环境或进入靶细胞中,从而在细菌和宿主、细菌和微生物群落的相互作用中占据适应性优势。Ⅵ型分泌系统(The type VI secretion system,T6SS)是革兰氏阴性菌中广泛存在的大分子分泌装置,其结构和功能类似于可收缩的噬菌体尾针样,通过细胞间直接接触将细菌各种酶或毒素效应蛋白转运到原核和真核生物中,从而介导细菌间竞争以及对宿主的致病过程。有些效应蛋白还可通过非接触依赖的方式进入胞外环境来帮助细菌获取稀缺金属离子,并且它们对应激条件下细胞内金属稳态的维持至关重要。这篇综述总结了Ⅵ型分泌系统的结构、组装及其分泌的效应蛋白,并重点阐述了Ⅵ型分泌系统在多种金属离子转运机制中作用的研究进展,有助于理解T6SS在细菌间相互作用和细菌感染过程中发挥的重要作用。  相似文献   

4.
蛋白质分泌系统是细菌与外界交流的重要工具。革兰氏阴性细菌的Ⅵ型蛋白分泌系统(T6SS)可以转运分泌蛋白至细菌和真核细胞内,在菌间竞争中发挥重要作用,是细菌的一种重要的生存适应性武器。分泌蛋白主要包括起到运载作用的结构蛋白和有细胞毒性的效应蛋白这两类。本文主要从效应蛋白的视角讨论T6SS如何识别并转运效应蛋白的作用机理,回顾了以VgrG和PAAR为端部载体蛋白的转运途径、依赖端部运输的效应蛋白、T6SS伴侣蛋白等重要发现的背景和过程,并综述了T6SS分泌途径的新进展。  相似文献   

5.
穆丽丽  牛犇  赵勇 《微生物学报》2019,59(4):621-631
致病菌借助分泌系统将特异蛋白直接注入宿主细胞内,破坏宿主细胞内的多种信号通路,是导致细菌定殖和感染的有效途径。作为一种重要的食源性致病菌,副溶血性弧菌(Vibrio parahaemolyticus)的Ⅲ型分泌系统(Type Ⅲ secretion system,T3SS)和Ⅵ型分泌系统(Type Ⅵ secretion system,T6SS)是其对宿主细胞产生致病性的重要因素。本文综述了副溶血性弧菌T3SS和T6SS效应物在致病力中的具体作用,以及相关调控机理,为进一步了解由副溶血性弧菌导致的病症,研究其致病机理以及寻找致病性靶标提供参考。  相似文献   

6.
沙门菌致病岛2 Ⅲ型分泌系统研究进展   总被引:1,自引:0,他引:1  
沙门菌(Salmonella)是革兰氏阴性的兼性胞内菌,可引起其广泛宿主的一系列疾病,严重时可导致全身性感染,威胁生命安全。沙门菌致病岛2(SPI2)是与沙门菌全身性感染密切相关的重要毒力基因簇,其编码的Ⅲ型分泌系统2(T3SS2)在沙门菌侵入宿主细胞后开始组装合成,经该装置分泌的多种效应蛋白对沙门菌在宿主细胞内的生存和增殖起着重要作用。近些年来,与沙门菌T3SS2相关的研究一直都是病原微生物领域关注的焦点之一。本文简要综述了SPI2的基因特征、SPI2基因表达的调控、T3SS2的结构和组成、T3SS2的效应蛋白及与T3SS2相关的疫苗研究等方面的主要研究进展。  相似文献   

7.
细菌Ⅵ型分泌系统的调控与功能研究进展   总被引:1,自引:0,他引:1  
Ⅵ型分泌系统(TypeⅥSecretion System,T6SS)是近年来研究较多的一种细菌分泌系统,广泛存在于革兰氏阴性菌中,在细菌的毒力、定殖、扩散及竞争遗传中发挥着重要的作用。本文综述了细菌T6SS的结构、调控以及生物学功能的最新研究进展,以期为基于T6SS的抗菌药物研制及细菌感染的诊断与防控提供新思路。  相似文献   

8.
朱平  吕均  薛娟  杨瑾  孟昆  李姗 《微生物学通报》2019,46(10):2763-2771
病原细菌感染对人类健康构成了严重的威胁,一类具有III型分泌系统(Type III secretion system,T3SS)的肠道致病细菌可以通过T3SS将效应蛋白“注射”到宿主细胞中,模拟和操纵宿主细胞的多种信号转导通路,包括细胞凋亡、细胞自噬和炎症反应等,从而有效地逃逸宿主的防御,增强感染性和致病性。本文综述了肠道病原菌T3SS效应蛋白在调控宿主炎症反应中NF-κB和MAPK通路的最新研究进展。  相似文献   

9.
安影  董涛 《微生物学报》2023,63(9):3428-3440
蛋白分泌作为细胞之间传递信号的途径之一,在微生物生存竞争中也扮演着重要的角色。革兰氏阴性菌可以通过Ⅵ型分泌系统(type Ⅵ secretion system, T6SS)将效应蛋白传递至胞外或原核和真核微生物中,从而介导微生物间的竞争或宿主-细菌的相互作用,最终建立竞争优势。本文主要总结了T6SS的结构与组成,并重点对效应蛋白的装配以及其与免疫蛋白的作用机制的研究进展进行阐述,为以后靶向T6SS抗菌药物的研制提供新思路。  相似文献   

10.
作为一种对抗真核细胞和原核细胞的强有力细菌武器,Ⅵ型分泌系统(type Ⅵ secretion system,T6SS)广泛存在于革兰氏阴性菌中。铜绿假单胞菌是一种对多种抗生素具有耐药性并能够在人体引发急性和慢性感染的条件致病菌,它编码3套独立的T6SS,分别为H1-、H2-和H3-T6SS。T6SS通过介导细菌间竞争、生物被膜的形成、金属离子的摄取以及与真核宿主细胞之间的相互作用,对铜绿假单胞菌在毒力和适应环境方面发挥重要作用。本文主要对铜绿假单胞菌T6SS的组装、效应蛋白的分泌、功能及调控机制展开综述,旨在为T6SS的研究提供一定的参考,并为铜绿假单胞菌感染的预防和治疗提供一定的指导。  相似文献   

11.
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative facultative food-borne pathogen that causes gastroenteritis in humans. This bacterium has evolved a sophisticated machinery to alter host cell function critical to its virulence capabilities. Central to S. Typhimurium pathogenesis are two Type III secretion systems (T3SS) encoded within pathogenicity islands SPI-1 and SPI-2 that are responsible for the secretion and translocation of a set of bacterial proteins termed effectors into host cells with the intention of altering host cell physiology for bacterial entry and survival. Thus, once delivered by the T3SS, the secreted effectors play critical roles in manipulating the host cell to allow for bacteria invasion, induction of inflammatory responses, and the assembly of an intracellular protective niche created for bacterial survival and replication. Emerging evidence indicates that these effectors are modular proteins consisting of distinct functional domains/motifs that are utilized by the bacteria to activate intracellular signalling pathways modifying host cell function. Also, recently reported are the dual functionality of secreted effectors and the concept of 'terminal reassortment'. Herein, we highlight some of the nascent concepts regarding Salmonella effectors in the context of infection.  相似文献   

12.
The Type III Secretion System (T3SS) is a multi-mega Dalton apparatus assembled from more than twenty components and is found in many species of animal and plant bacterial pathogens. The T3SS creates a contiguous channel through the bacterial and host membranes, allowing injection of specialized bacterial effector proteins directly to the host cell. In this review, we discuss our current understanding of T3SS assembly and structure, as well as highlight structurally characterized Salmonella effectors. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.  相似文献   

13.
The Type VI secretion system (T6SS) is a protein translocation nanomachine widespread among Gram‐negative bacteria and used as a means to deliver effectors directly into target bacterial or eukaryotic cells. These effectors have a wide variety of functions within target cells that ultimately help the secreting cell gain a competitive fitness advantage. Here, we discuss the different ways in which these effectors can be delivered by the T6SS and the diverse mechanisms by which they exert their noxious action upon recipient cells. We also highlight the existence of roles for T6SS effectors beyond simply the killing of neighbouring cells.  相似文献   

14.
15.
Vibrio parahaemolyticus, a Gram-negative marine bacterial pathogen, is emerging as a major cause of food-borne illnesses worldwide due to the consumption of raw seafood leading to diseases including gastroenteritis, wound infection, and septicemia. The bacteria utilize toxins and type III secretion system (T3SS) to trigger virulence. T3SS is a multi-subunit needle-like apparatus used to deliver bacterial proteins, termed effectors, into the host cytoplasm which then target various eukaryotic signaling pathways. V. parahaemolyticus carries two T3SSs in each of its two chromosomes, named T3SS1 and T3SS2, both of which play crucial yet distinct roles during infection: T3SS1 causes cytotoxicity whereas T3SS2 is mainly associated with enterotoxicity. Each T3SS secretes a unique set of effectors that contribute to virulence by acting on different host targets and serving different functions. Emerging studies on T3SS2 of V. parahaemolyticus, reveal its regulation, translocation, discovery, characterization of its effectors, and development of animal models to understand the enterotoxicity. This review on recent findings for T3SS2 of V. parahaemolyticus highlights a novel mechanism of invasion that appears to be conserved by other marine bacteria.  相似文献   

16.
Vibrio cholerae is a diverse species of Gram-negative bacteria, commonly found in the aquatic environment and the causative agent of the potentially deadly disease cholera. These bacteria employ a type VI secretion system (T6SS) when they encounter prokaryotic and eukaryotic competitors. This contractile puncturing device translocates a set of effector proteins into neighboring cells. Translocated effectors are toxic unless the targeted cell produces immunity proteins that bind and deactivate incoming effectors. Comparison of multiple V. cholerae strains indicates that effectors are encoded in T6SS effector modules on mobile genetic elements. We identified a diverse group of chimeric T6SS adaptor proteins required for the translocation of diverse effectors encoded in modules. An example for a T6SS effector that requires T6SS adaptor protein 1 (Tap-1) is TseL found in pandemic V. cholerae O1 serogroup strains and other clinical isolates. We propose a model in which Tap-1 is required for loading TseL onto the secretion apparatus. After T6SS-mediated TseL export is completed, Tap-1 is retained in the bacterial cell to load other T6SS machines.  相似文献   

17.
Bacterium usually utilises type III secretion systems (T3SS) to deliver effectors directly into host cells with the aids of chaperones. Hence, it is very important to identify bacterial T3SS effectors and chaperones for better understanding of host–pathogen interactions. Edwardsiella piscicida is an invasive enteric bacterium, which infects a wide range of hosts from fish to human. Given E. piscicida encodes a functional T3SS to promote infection, very few T3SS effectors and chaperones have been identified in this bacterium so far. Here, we reported that EseK is a new T3SS effector protein translocated by E. piscicida. Bioinformatic analysis indicated that escH and escS encode two putative class I T3SS chaperones. Further investigation indicated that EscH and EscS can enhance the secretion and translocation of EseK. EscH directly binds EseK through undetermined binding domains, whereas EscS binds EseK via its N‐terminal α‐helix. We also found that EseK has an N‐terminal chaperone‐binding domain, which binds EscH and EscS to form a ternary complex. Zebrafish infection experiments showed that EseK and its chaperones EscH and EscS are necessary for bacterial colonisation in zebrafish. This work identified a new T3SS effector, EseK, and its two T3SS chaperones, EscH and EscS, in E. piscicida, which enriches our knowledge of bacterial T3SS effector–chaperone interaction and contributes to our understanding of bacterial pathogenesis.  相似文献   

18.
Secretion of bacterial effector proteins into host cells plays a key role in bacterial virulence. Yet, the dynamics of the secretion systems activity remains poorly understood, especially when machineries deal with the export of numerous effectors. We address the question of multi-effector secretion by focusing on the Legionella pneumophila Icm/Dot T4SS that translocates a record number of 300 effectors. We set up a kinetic translocation assay, based on the β-lactamase translocation reporter system combined with the effect of the protonophore CCCP. When used for translocation analysis of Icm/Dot substrates constitutively produced by L. pneumophila, this assay allows a fine monitoring of the secretion activity of the T4SS, independently of the expression control of the effectors. We observed that effectors are translocated with a specific timing, suggesting a control of their docking/translocation by the T4SS. Their delivery is accurately organized to allow effective manipulation of the host cell, as exemplified by the sequential translocation of effectors targeting Rab1, namely SidM/DrrA, LidA, LepB. Remarkably, the timed delivery of effectors does not depend only on their interaction with chaperone proteins but implies cyclic-di-GMP signaling, as the diguanylate cyclase Lpl0780/Lpp0809, contributes to the timing of translocation.  相似文献   

19.
20.
Imaging the assembly, structure and activity of type III secretion systems   总被引:1,自引:0,他引:1  
The type III secretion system (T3SS) is a sophisticated molecular machinery of Gram-negative bacteria used to 'inject' (translocate) bacterial proteins (effectors) into eukaryotic cells. For this, the T3SS has to assemble into a multiprotein complex, which is constituted of distinct parts; a basal body spanning the two bacterial membranes connected with a cytoplasmic bulb, an attached needle structure resembling a molecular syringe, and a distal needle tip structure that re-organizes into a 'translocon', which is a protein complex that inserts into the host cellular membrane. Upon engaging with eukaryotic cells, the T3SSs perform 'single-step' translocation of bacterial effector proteins across three membranes (two bacterial and one eukaryotic). Since the formulation of the major concepts of the T3SS about 15 years ago, imaging has been a major ingredient for elucidating the T3SS structure and function. Direct observation of molecular events in the context of cells will remain a key feature for better understanding of T3SS structure, regulation and function. In this review we describe how light and electron microscopy have been used to shed light on the processes of maturation and activity of the T3SS. Furthermore, we highlight recent imaging innovations with the potential to provide better insight into the T3SS structure and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号