首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 131 毫秒
1.
Enrichment of soil samples for organisms able to utilize the herbicide bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) as a nitrogen source yielded bacterial isolates capable of rapidly metabolizing this compound. One isolate, identified as Klebsiella pneumoniae subsp. ozaenae, could completely convert 0.05% bromoxynil to 3,5-dibromo-4-hydroxybenzoic acid and use the liberated ammonia as a sole nitrogen source. Assays of cell extracts of this organism for the ability to produce ammonia from bromoxynil revealed the presence of a nitrilase (EC 3.5.51) activity. The enzyme could not utilize 3,5-dibromo-4-hydroxybenzamide as a substrate, and no 3,5-dibromo-4-hydroxybenzamide could be detected as a product of bromoxynil transformation. Comparison of related aromatic nitriles as substrates demonstrated that the Klebsiella enzyme is highly specific for bromoxynil.  相似文献   

2.
Enrichment of soil samples for organisms able to utilize the herbicide bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) as a nitrogen source yielded bacterial isolates capable of rapidly metabolizing this compound. One isolate, identified as Klebsiella pneumoniae subsp. ozaenae, could completely convert 0.05% bromoxynil to 3,5-dibromo-4-hydroxybenzoic acid and use the liberated ammonia as a sole nitrogen source. Assays of cell extracts of this organism for the ability to produce ammonia from bromoxynil revealed the presence of a nitrilase (EC 3.5.51) activity. The enzyme could not utilize 3,5-dibromo-4-hydroxybenzamide as a substrate, and no 3,5-dibromo-4-hydroxybenzamide could be detected as a product of bromoxynil transformation. Comparison of related aromatic nitriles as substrates demonstrated that the Klebsiella enzyme is highly specific for bromoxynil.  相似文献   

3.
It was found in field, and laboratory experiments that of 50 ppm of the herbicide bromoxynil (3,5-dibromo-4-hydroxybenzonitrile added to grey forest soil 20-80% were still detected after three months). Bromoxynil did not influence (except for a short-termed stimulation of the number of bacteria) the amount and composition of the basic groups of soil microorganisms. In enrichment cultures of soil microorganisms metabolie products of bromoxynil decomposition (3,5-dibromo-4-hydroxybenzamide and 3,5-dibromo-4-hydroxybenzoic acid) were detected and a stimulating effect of cosubstratos on its decomposition was demonstrated. Bromoxynil concentration, aeration conditions and the presence of cosubstrates (ribose in particular) influenced the rate and degree of the decomposition process inPsevdomonas putida. In addition to the degradation products mentioned above, production of methoxylated and partially dehalogenated aromatic compounds was detected.  相似文献   

4.
Biological conversion of the herbicide bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) was studied in a batch culture ofPseudomonas putida by using HPLC. The process had a cometabolic character and proceeded only in the presence of another, simultaneously metabolizable, carbon and energy source. The intensity of degradation correlated with the growth rate, the degradation stopping when the cosubstrate becomes exhausted or the pH value of the medium falls below 6.5. In a medium with glucose, no lag phase longer than one day was observed concerning growth, sugar and herbicide consumption and formation of metabolic herbicide derivatives (3,5-dibromo-4-hydroxybenzamide and 3,5-dibromo-4-hydroxybenzoic acid). In a medium with ribose, the initial lag of the above processes took 2 d. No formation of other degradation products was detected. Growth inhibition was proportional to the concentration of bromoxynil. Translated by Č. Novotny  相似文献   

5.
An enzyme (nitrilase) that converts the herbicide bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) to its metabolite 3,5-dibromo-4-hydroxybenzoic acid was shown to be plasmid encoded in the natural soil isolate Klebsiella ozaenae. The bromoxynil-specific nitrilase was expressed in Escherichia coli by direct transfer and stable maintenance in E. coli of a naturally occurring 82-kilobase K. ozaenae plasmid. Irreversible loss of the ability to metabolize bromoxynil both in E. coli and K. ozaenae was associated with the conversion of the 82-kilobase plasmid to a 68-kilobase species. In E. coli this conversion was the result of a host recA+-dependent recombinational event. A gene, designated bxn, encoding the bromoxynil-specific nitrilase was constitutively expressed in K. ozaenae and E. coli and subcloned on a 2.6-kilobase PstI DNA segment. The polarity and the location of the gene were determined by assaying hybrid constructs of the bromoxynil-specific nitrilase gene fused with the heterologous lac promoter.  相似文献   

6.
The soil actinobacteria Rhodococcus rhodochrous PA-34, Rhodococcus sp. NDB 1165 and Nocardia globerula NHB-2 grown in the presence of isobutyronitrile exhibited nitrilase activities towards benzonitrile (approx. 1.1–1.9 U mg?1 dry cell weight). The resting cell suspensions eliminated benzonitrile and the benzonitrile analogues chloroxynil (3,5-dichloro-4-hydroxybenzonitrile), bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) and ioxynil (3,5-diiodo-4-hydroxybenzonitrile) (0.5 mM each) from reaction mixtures at 30°C and pH 8.0. The products were isolated and identified as the corresponding substituted benzoic acids. The reaction rates decreased in the order benzonitrile ? chloroxynil > bromoxynil > ioxynil in all strains. Depending on the strain, 92–100, 70–90 and 30–51% of chloroxynil, bromoxynil and ioxynil, respectively, was hydrolyzed after 5 h. After a 20-h incubation, almost full conversion of chloroxynil and bromoxynil was observed in all strains, while only about 60% of the added ioxynil was converted into carboxylic acid. The product of ioxynil was not metabolized any further, and those of the other two herbicides very slowly. None of the nitrilase-producing strains hydrolyzed dichlobenil (2,6-dichlorobenzonitrile). 3,5-Dibromo-4-hydroxybenzoic acid exhibited less inhibitory effect than bromoxynil both on luminescent bacteria and germinating seeds of Lactuca sativa. 3,5-Diiodo-4-hydroxybenzoic acid only exhibited lower toxicity than ioxynil in the latter test.  相似文献   

7.
Chen L  Cai T  Wang Q 《Current microbiology》2011,62(6):1710-1717
A fluoroglycofen ethyl-degrading bacterium, MBWY-1, was isolated from the soil of an herbicide factory. This isolated strain was identified as Mycobacterium phocaicum based on analysis of its 16S rRNA gene sequence and its morphological, physiological, and biochemical properties. The strain was able to utilize fluoroglycofen ethyl as its sole source of carbon for growth and could degrade 100 mg l−1 of fluoroglycofen ethyl to a non-detectable level within 72 h. The optimum temperature and pH for fluoroglycofen ethyl degradation by strain MBWY-1 were 30°C and 7.0, respectively. Five metabolites produced during the degradation of fluoroglycofen ethyl and were identified by mass spectrometry as {5-[2-chloro-4-(trifluoromethyl) phenoxy]-2-nitrophenylacyl} hydroxyacetic acid, acifluorfen, 5-[2-chloro-4-(trifluoromethyl) phenoxy]-2-nitrobenzoate, 5-[2-chloro-4-(trifluoromethyl) phenoxy]-2-hydroxyl, and 3-chloro-4-hydroxyl benzotrifluoride. Identification of the metabolites allowed to propose the degradation pathway of fluoroglycofen ethyl by strain MBWY-1. The inoculation of strain MBWY-1 into soil treated with fluoroglycofen ethyl resulted in a higher fluoroglycofen ethyl degradation rate than in uninoculated soil regardless of whether the soil was sterilized or nonsterilized.  相似文献   

8.
The inactivation of the herbicide ioxynil by contact with soil has been investigated. Shaking solutions of the sodium salt with acid soils led to a precipitation of the herbicide. With alkaline soils, a small amount of ioxynil became adsorbed on the soil particles. With unsterilized soils, hydrolysis to 3,5-diiodo-4-hydroxybenzoic acid occurred, with 3,5-diiodo-4-hydroxy-benzamide as an intermediate product. Liberation of iodide ion in this system was also demonstrated. The phytotoxicity of ioxynil is enhanced by exposure of treated plants to light. The reduction in chlorophyll level of bean leaf tissue treated with ioxynil and other dihalogenohydroxybenzonitriles when exposed to light has been determined. Evidence is presented showing that although ioxynil is poorly translocated in the dwarf bean plant, its degradation products appear in the shoots of these plants after the herbicide has been supplied through the roots.  相似文献   

9.
A bacterial strain capable of utilizing a mixture containing 2-hydroxybenzoic acid (2-HBA), 3-hydroxybenzoic acid (3-HBA) and 4-hydroxybenzoic (4-HBA) acid was isolated through enrichment from a soil sample. Based on 16SrDNA sequencing, the microorganism was identified as Acinetobacter calcoaceticus. The sequence of biodegradation of the three isomers when provided as a mixture (0.025%, w/v each) was elucidated. The dihydroxylated metabolites formed from the degradation of 2-HBA, 3-HBA and 4-HBA were identified as catechol, gentisate and protocatechuate, respectively, using the cell-free supernatant and cell-free crude extracts. Monooxygenases and dioxygenases that were induced in the cells of Acinetobacter calcoaceticus in response to growth on mixture containing 2-HBA, 3-HBA and 4-HBA could be detected in cell-free extracts. These data revealed the pathways operating in Acinetobacter calcoaceticus for the sequential metabolism of monohydroxybenzoate isomers when presented as a mixture.  相似文献   

10.
Aims: To study how repeated applications of an herbicide bromoxynil to a soil, mimicking the regime used in the field, affected the degradation of the compound and whether such affects were reflected by changes in the indigenous bacterial community present. Methods and Results: Bromoxynil degradation was monitored in soil microcosms using HPLC. Its impact on the bacterial community was determined using denaturing gradient gel electrophoresis (DGGE) and quantitative PCR of five bacterial taxa (Pseudomonads, Actinobacteria, αProteobacteria, Acidobacteria and nitrifying bacteria). Three applications of 10 mg kg?1 of bromoxynil at 28‐day intervals resulted in rapid degradation, the time for removal of 50% of the compound decreasing from 6·4 days on the first application to 4·9 days by the third. Bacterial population profiles showed significant similarity throughout the experiment. With the addition of 50 mg kg?1 bromoxynil to soil, the degradation was preceded by a lag phase and the time for 50% of the compound to be degraded increased from 7 days to 28 days by the third application. The bacterial population showed significant differences 7 days after the final application of bromoxynil that correlated with an inhibition of degradation during the same period. Conclusions: These analyses highlighted that the addition of bromoxynil gave rise to significant shifts in the community diversity and its structure as measured by four abundant taxa, when compared with the control microcosm. These changes persisted even after bromoxynil had been degraded. Significance and Impact of the Study: Here we show that bromoxynil can exert an inhibitory effect on the bacterial population that results in decreased rates of degradation and increased persistence of the compound. In addition, we demonstrate that molecular approaches can identify statistically significant changes in microbial communities that occur in conjunction with changes in the rate of degradation of the compound in the soil.  相似文献   

11.
A soil strain ofStreptomyces felleus resistant to the herbicide bromoxynil (BX) and capable of supporting growth of sensitive streptomycetes on a BX-containing medium, was found to decrease the concentration of BX in the medium to one half after 10 d of incubation. Physicochemical methods showed that a co-metabolic process without any accumulation of the degradation products similar to BX was involved. Mutation experiments carried out with the strain suggest a nonchromasomal control of the resistance to BX.  相似文献   

12.
Thirty-four thermophilic Bacillus sp. strains were isolated from decayed wood bark and a hot spring water sample based on their ability to degrade vanillic acid under thermophilic conditions. It was found that these bacteria were able to degrade a wide range of aromatic acids such as cinnamic, 4-coumaric, 3-phenylpropionic, 3-(p-hydroxyphenyl)propionic, ferulic, benzoic, and 4-hydroxybenzoic acids. The metabolic pathways for the degradation of these aromatic acids at 60 degrees C were examined by using one of the isolates, strain B1. Benzoic and 4-hydroxybenzoic acids were detected as breakdown products from cinnamic and 4-coumaric acids, respectively. The beta-oxidative mechanism was proposed to be responsible for these conversions. The degradation of benzoic and 4-hydroxybenzoic acids was determined to proceed through catechol and gentisic acid, respectively, for their ring fission. It is likely that a non-beta-oxidative mechanism is the case in the ferulic acid catabolism, which involved 4-hydroxy-3-methoxyphenyl-beta-hydroxypropionic acid, vanillin, and vanillic acid as the intermediates. Other strains examined, which are V0, D1, E1, G2, ZI3, and H4, were found to have the same pathways as those of strain B1, except that strains V0, D1, and H4 had the ability to transform 3-hydroxybenzoic acid to gentisic acid, which strain B1 could not do.  相似文献   

13.
Thirty-four thermophilic Bacillus sp. strains were isolated from decayed wood bark and a hot spring water sample based on their ability to degrade vanillic acid under thermophilic conditions. It was found that these bacteria were able to degrade a wide range of aromatic acids such as cinnamic, 4-coumaric, 3-phenylpropionic, 3-(p-hydroxyphenyl)propionic, ferulic, benzoic, and 4-hydroxybenzoic acids. The metabolic pathways for the degradation of these aromatic acids at 60°C were examined by using one of the isolates, strain B1. Benzoic and 4-hydroxybenzoic acids were detected as breakdown products from cinnamic and 4-coumaric acids, respectively. The β-oxidative mechanism was proposed to be responsible for these conversions. The degradation of benzoic and 4-hydroxybenzoic acids was determined to proceed through catechol and gentisic acid, respectively, for their ring fission. It is likely that a non-β-oxidative mechanism is the case in the ferulic acid catabolism, which involved 4-hydroxy-3-methoxyphenyl-β-hydroxypropionic acid, vanillin, and vanillic acid as the intermediates. Other strains examined, which are V0, D1, E1, G2, ZI3, and H4, were found to have the same pathways as those of strain B1, except that strains V0, D1, and H4 had the ability to transform 3-hydroxybenzoic acid to gentisic acid, which strain B1 could not do.  相似文献   

14.
A modified spectrophotometric method was developed to estimate ioxynil and bromoxynil residues. The method when compared with a 14C-tracer method was less sensitive but allowed rapid and accurate estimation of the herbicides. A clay loam soil with high organic matter content, which degraded ioxynil completely to CO2, also degraded bromoxynil completely. Bromoxynil degradation proceeded at a faster rate than that of ioxynil. The half-life of degradation was estimated to be 7 days for bromoxynil and 9-10 days for ioxynil. However, soil microorganisms which degraded ioxynil either completely to CO2 or partially did not seem to completely degrade bromoxynil. Degradation products from bromoxynil were detected on thin-layer chromatograms of extracts from pure cultures containing an exogenous carbon source. Complete degradation of bromoxynil and ioxynil in soil could be due to the action of different microorganisms.  相似文献   

15.
The completein vivo degradation of the herbicide bromoxynil byStreptomyces felleus and soil microorganisms was investigated. Little breakdown occurred in sterile soil. TLC techniques were used to detect two degradation products in non-sterile soil. Authors are obliged to Mrs. E. Chrastinová for technical assistance.  相似文献   

16.
A method is described for spectrophotometric monitoring the degradation of the herbicide bromoxynil by cell-free extracts of Streptomyces felleus. The method involves a decrease in absorbance at 286 nm (absorption maximum of bromoxynil) that can be ascribed most probably to the cleavage of the aromatic ring of the bromoxynil molecule. Conditions necessary for measuring this degradation together with physico-chemical features of the degradation indicate that the reaction(s) is seemingly catalyzed by an Fe2+-dependent dioxygenase whose activity was not, however, detected in cell-free extracts of a bromoxynil-sensitive mutant of S. felleus as well as other bromoxynil-sensitive streptomycete strains.  相似文献   

17.
【目的】研究嗜盐古菌Haloferax volcanii WFD11菌株以不同芳香酸作为碳源的生长情况;鉴定其通过龙胆酸途径代谢芳香酸过程中的开环酶龙胆酸1,2-双加氧酶的基因,并对其进行生化水平的研究;初步揭示古菌和细菌代谢芳香酸的可能差异。【方法】分别以4 mmol/L的6种不同芳香酸为唯一碳源培养菌株WFD11,利用全自动生长曲线分析仪测定菌株生长情况并绘制生长曲线;利用高效液相色谱检测菌株WFD11代谢3-羟基苯甲酸的中间产物;对菌株WFD11的基因组进行生物信息学分析,寻找潜在的龙胆酸1,2-双加氧酶编码基因,并在Haloferax volcanii H1424中异源表达;通过快速纯化系统(采用Ni2+-NTA亲和层析柱)纯化异源表达的蛋白,以龙胆酸为底物通过紫外分光光度计检测粗酶液和纯化后的龙胆酸1,2-双加氧酶和相关酶学特性;通过实时定量PCR观察hag A的表达类型。【结果】菌株WFD11能以4 mmol/L的3-羟基苯甲酸和3-羟基苯丙酸为唯一碳源和能源生长;高效液相色谱检测证明菌株WFD11通过龙胆酸代谢3-羟基苯甲酸(3HBA);克隆和异源表达了龙胆酸1,2-双加氧酶基因hag A;Hag A粗酶液和纯化蛋白均具龙胆酸1,2-双加氧酶的活性,催化龙胆酸开环生成顺丁二酸单酰丙酮酸;Hag A的龙胆酸1,2-双加氧酶比活力为0.024 8 U/mg,且其活性不依赖于Fe2+;荧光定量PCR实验结果证明hag A是组成型表达。【结论】嗜盐古菌H.volcanii WFD11可能是通过龙胆酸途径代谢芳香酸类物质,为进一步研究古菌和细菌代谢芳香酸的可能差异打下了基础。  相似文献   

18.
A Klebsiella ozaenae nitrilase which converts the herbicide bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) to 3,5-dibromo-4-hydroxybenzoic acid has been expressed at 5-10% of the total protein in Escherichia coli from a cloned K. ozaenae DNA segment and purified 10.3-fold to homogeneity. The purified polypeptide is molecular weight 37,000 in size, but the active form of the enzyme is composed of two identical subunits. The purified enzyme exhibits a pH optimum of 9.2 and a temperature optimum of 35 degrees C. The purified enzyme is also quite sensitive to thiol-specific reagents. The nitrilase is highly specific for bromoxynil as substrate with a Km of 0.31 mM and Vmax of 15 mumol of NH3 released/min/mg protein. Analysis of bromoxynil-related substrates indicates the enzyme exhibits preference for compounds containing two meta-positioned halogen atoms. Nucleotide sequence analysis of a 1,212-base pair PstI-HincII DNA segment containing the locus (bxn) encoding the bromoxynil-specific nitrilase reveals a single open reading frame encoding a polypeptide 349 amino acids in length. The predicted sequence of the purified enzyme was derived from the nucleotide sequence of the bxn gene.  相似文献   

19.
Aerobic bacteria degrading o-nitrobenzaldehyde (ONBA) were isolated from activated sludges. One of the isolates, ONBA-17, was identified as Pseudomonas sp. The isolate could grow on ONBA as its sole source of carbon and nitrogen. Further studies demonstrated that the strain was a moderately halophilic bacterium and capable of degrading benzoic acid, 2-nitrophenol, 2-aminophenol, 4-hydroxybenzoic acid, and 4-dimetylaminobenzaldehyde. It could completely degrade 100 mg L−1 ONBA at a range of pH 6–8 in 48 h at 30°C, and up to 400 mg L−1 after 288 h. The strain showed potential to be a good candidate for biotreatment of industrial wastewaters containing ONBA due to its salt-tolerance ability, multiresistance to some heavy metals and antibiotics, and the abilities of degradation of aromatic compounds. These findings may help in developing a process for ONBA-containing industrial wastewater treatment.  相似文献   

20.
Bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) was continuously added to chernozem (Haplic typic) soil inoculated with a suspension ofPseudomonas putida capable of cometabolic decomposition of the compound in a heterocontinuous-flow cultivation setup. In the steady state, when glucose or ribose were simultaneously added, 90 and 47% of the added herbicide was degraded per day, respectively. If the saccharides were absent, only 10–27% of the herbicide was decomposed. Addition and removal of glucose feeding resulted in an increase and decrease, respectively, of the degradation intensity, irrespective of the amount of the bacterial decomposers present. Two degradation products, 3,5-dibromo-4-hydroxy-benzamide and 3,5-dibromo-4-hydroxybenzoic acid, were formed during cultivation. The total amount of bromine-containing compounds was reduced only in the presence of glucose. Translated by Č. Novotny  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号