首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Ka‘ena Point Natural Area Reserve on O‘ahu hosts one of the largest seabird colonies in the main Hawaiian Islands and supports three species of endangered plants. In order to stop chronic predation by invasive alien mammals on native species, a peninsula-style predator-proof fence was constructed around a 20-ha portion of the reserve in 2011. Multi-species predator removal efforts began upon fence completion; diphacinone poison in bait boxes spaced 25 m apart was used to remove black rats, house mice, and small Indian mongooses. House mice also were removed with multiple-catch live traps spaced 12.5 m apart. Feral cats were removed with padded leg-hold traps. Feral cats and mongooses were eradicated in 1 month, black rats were eradicated in 2.5 months, and house mice were eradicated in about 9 months. Since eradication, incursions of cats and mongoose have been rare (1/7.2 months), but incursion frequency has been higher for black rats (1/56 days) and house mice (1/36–47 days). Buffer predator control was conducted to limit predator access and prevent reinvasion around the fence ends along the shoreline. Even with the high initial fence cost and ongoing predator incursion management, this method is expected to become more cost effective than previous predator control efforts after 16 years. Record numbers of Wedge-tailed shearwaters and Laysan albatrosses have fledged from the reserve after predator eradication, and regeneration of native plants and invertebrates is being observed. With careful planning and persistence, predator fences can be a cost-effective method of protecting natural resources, and multiple species of predators can be eradicated with traps and first-generation anti-coagulents.  相似文献   

2.

Invasive alien species (IAS) are the major cause of native species extinctions on islands worldwide. To mitigate or eliminate IAS impacts, eradication is often the best alternative. However, IAS removal may result in cascading effects, through increase in prey abundance, mesopredator release, or competitor release. Our objective is to determine which ecological processes may influence the relative abundance of invasive carnivores and rodents on an insular system. We find that feral cat and mustelids relative abundance was strongly related by prey abundance, and for the feral cat, abundance was also controlled by habitat; these results suggest that bottom-up control through environmental filtering could be the mechanism explaining predator abundance. For rodents, we find that the abundance of the black rat was mostly controlled by the abundance of Norway rat and house mice, and food availability; the Norway rat by the abundance of black rat, a house mice and of mustelid predators; and house mouse by the other rodents and food availability. These results suggest that several mechanisms could be concurrently controlling abundance of these species; competition and predation for Norway rat, and competition and bottom-up control by environmental filtering for the other two rodents. While different factors explain the abundance of invasive species within the same functional group, food resource availability is, in general, the main controller of abundance of invasive rodents and carnivores in the Azores. Therefore, IAS management actions in these islands should focus on limiting the access to food resources and shelter, mainly near to human populations.

  相似文献   

3.
For maintaining social and financial support for eradication programs of invasive species, quantitative assessment of recovery of native species or ecosystems is important because it provides a measurable parameter of success. However, setting a concrete goal for recovery is often difficult owing to lack of information prior to the introduction of invaders. Here, we present a novel approach to evaluate the achievement level of invasive predator management based on the carrying capacity of endangered species estimated using long‐term monitoring data. In Amami‐Oshima Island, Japan, where the eradication project of introduced small Indian mongoose is ongoing since 2000, we surveyed the population densities of four endangered species threatened by the mongoose (Amami rabbit, the Otton frog, Amami tip‐nosed frog, and Amami Ishikawa's frog) at four time points ranging from 2003 to 2011. We estimated the carrying capacities of these species using the logistic growth model combined with the effects of mongoose predation and environmental heterogeneity. All species showed clear tendencies toward increasing their density in line with decreased mongoose density, and they exhibited density‐dependent population growth. The estimated carrying capacities of three endangered species had small confidence intervals enough to measure recovery levels by the mongoose management. The population density of each endangered species has recovered to the level of the carrying capacity at about 20–40% of all sites, whereas no individuals were observed at more than 25% of all sites. We propose that the present approach involving appropriate monitoring data of native organism populations will be widely applicable to various eradication projects and provide unambiguous goals for management of invasive species.  相似文献   

4.

The question of how to program the removal of two invasive mammals, typically cats and rats, from a marine island without increasing risk to native prey species has received two general answers based on ecological theory: removal of cats must be accompanied by control of their mesopredator prey, and risk is minimized by removing both invaders simultaneously. Nonetheless, a 31-year study showed that in a 82-ha tropical marine bird sanctuary, predation on a native prey, the blue-footed booby, by a native predator, the Atlantic Central American milk snake, apparently diminished after removal of cats then increased 11-fold after the additional removal of black rats. These novel effects are explained in terms of a hypothetical three-link trophic web in which cat removal released rats to increasingly compete with or prey on the snakes that feed on hatchling boobies, and subsequent rat removal released snakes from all remaining predation. The upshot is a disturbing scenario in which approximately 200 milk snakes currently aggregate annually in roughly 1 hectare of booby colony and predate roughly forty percent of the hatchlings. Where the lowest link of an insular trophic web is a native mesopredator that feeds on native prey, the predictions of the classic mesopredator release scenario can be inverted, and removal of invasive mammals may endanger native prey species.

  相似文献   

5.
Non-native species are recognized as important components of change to food web structure. Non-native prey may increase native predator populations by providing an additional food source and simultaneously decrease native prey populations by outcompeting them for a limited resource. This pattern of apparent competition may be important for plants and sessile marine invertebrate suspension feeders as they often compete for space and their immobile state make them readily accessible to predators. Reported studies on apparent competition have rarely been examined in biological invasions and no study has linked seasonal patterns of native and non-native prey abundance to increasing native predator populations. Here, we evaluate the effects of non-native colonial ascidians (Diplosoma listerianum and Didemnum vexillum) on population growth of a native predator (bloodstar, Henricia sanguinolenta) and native sponges through long-term surveys of abundance, prey choice and growth experiments. We show non-native species facilitate native predator population growth by providing a novel temporal resource that prevents loss of predator biomass when its native prey species are rare. We expect that by incorporating native and non-native prey seasonal abundance patterns, ecologists will gain a more comprehensive understanding of the mechanisms underlying the effects of non-native prey species on native predator and prey population dynamics.  相似文献   

6.
This study documents impacts of the small Indian mongoose (Herpestes auropunctatus) on a threatened endemic fauna occurring in a biodiversity hotspot within a hotspot, the Hellshire Hills, Jamaica. We analyzed the stomach contents of 217 mongooses and supplemented this information with behavioural observations. The mongoose’s diet consists primarily of invertebrates and lizards, but bird feathers, mammal hair, and a small number of seeds were also recorded. Invertebrates and lizards accounted for 93% of identified prey items. Of special concern were the remains of threatened species such as the recently re-discovered blue-tailed galliwasp (Celestus duquesneyi), indicating that the mongoose may represent a considerable threat to this poorly known taxon. Dietary analyses did not reveal remains of the Critically Endangered Jamaican iguana (Cyclura collei), yet field observations confirmed that the mongoose is a potent predator of hatchling iguanas. Ignoring issues of sample size, this suggests that the analysis of stomach contents alone may mask important demographic impacts attributable to the mongoose (or other predator species). In other words, rare and endangered species may not be detected in diet samples, but the impact of predation may be of demographic significance for effected prey taxa. This study supports previous arguments concerning the negative impact of the mongoose on endemic insular species, and underscores the utility of employing field observations of mongoose foraging behaviour to provide important insights into the conservation implications of predation by non-native predators.  相似文献   

7.
Invasive species are a regional and global threat to biological diversity. In order to evaluate an invasive predator species’ potential to harm populations of native prey species, it is critical to evaluate the behavioral responses of all life stages of the native prey species to the novel predator. The invasion of the African clawed frog (Xenopus laevis) into southern California provides an opportunity to evaluate the predation risk and behavioral responses of native amphibians. We performed predation trials and explored prey behavioral responses to determine how this invasive predator may impact native amphibian populations using Pacific chorus frogs (Pseudacris regilla) as a representative native California prey species. We found that X. laevis will readily prey upon larval and adult life stages of P. regilla. Behavior trials indicated that both larval and adult P. regilla exhibit prey response behaviors and will spatially avoid the novel invasive predator. The results suggest that native anurans may have a redundant predator response in both the larval and adult life stages, which could reduce the predatory impact of X. laevis but also drive emigration of native amphibians from invaded habitat.  相似文献   

8.
Native biodiversity is threatened by invasive species in many terrestrial and marine systems, and conservation managers have demonstrated successes by responding with eradication or control programs. Although invasive species are often the direct cause of threat to native species, ecosystems can react in unexpected ways to their removal or reduction. Here, we use theoretical models to predict boom‐bust dynamics, where the removal of predatory or competitive pressure from a native herbivore results in oscillatory population dynamics (boom‐bust), which can endanger the native species’ population in the short term. We simulate control activities, applied to multiple theoretical three‐species Lotka‐Volterra ecosystem models consisting of vegetation, a native herbivore, and an invasive predator. Based on these communities, we then develop a predictive tool that—based on relative parameter values—predicts whether control efforts directed at the invasive predator will lead to herbivore release followed by a crash. Further, by investigating the different functional responses, we show that model structure, as well as model parameters, are important determinants of conservation outcomes. Finally, control strategies that can mitigate these negative consequences are identified. Managers working in similar data‐poor ecosystems can use the predictive tool to assess the probability that their system will exhibit boom‐bust dynamics, without knowing exact community parameter values.  相似文献   

9.
Introduced rodents are responsible for ecosystem changes in islands around the world. In the Galapagos archipelago, their effects on the native flora and fauna are adverse, including the extinction of endemic rodents in some islands and the reduction in the reproductive success of the Galapagos petrel (Pterodroma phaeopygia) in its nesting zones. Understanding the feeding behavior of introduced rodents and their trophic interactions with native and non-native species on islands, can assist in the design of management strategies and conservation plans of invasive and endemic species respectively. Four petrel nesting colonies were monitored during June 2013 on San Cristóbal Island (El Plátano, El Junco, San Joaquín, and La Comuna). The feeding habits of black rats were evaluated by analyzing stomach contents and stable isotopes in hair. Three species of introduced rodents were captured. R. rattus was the most abundant at all sites (n=43, capture success (CS) = 55.8%), followed by the house mouse, Mus musculus (n = 17, CS = 37.8%), and the Norwegian rat, R. norvegicus (n = 4, CS = 4.5%), captured only at La Comuna. The omnivorous black rat ate mostly plants (98%) and arthropods (2%). Intact seeds of Miconia robinsoniana were the main food at all sites (relative abundance=72.1%, present in 95% of the analyzed stomachs), showing the black rats’ possible role in the archipelago as endemic seed dispersers. There was no evidence of petrel’s intake; however, its possible consumption is not discarded at all. The δ15N and δ13C analysis corroborated the primarily herbivorous diet of black rats. The isotopic signatures of the three rodent species reflect the inter- and intra-specific differential use of food resources. Black rat showed a wider diet in La Comuna, which was related to a lower availability of its primary prey and its ability to adapt to the available resources in its habitat.  相似文献   

10.
Habitat heterogeneity is predicted to profoundly influence the dynamics of indirect interspecific interactions; however, despite potentially significant consequences for multi-species persistence, this remains almost completely unexplored in large-scale natural landscapes. Moreover, how spatial habitat heterogeneity affects the persistence of interacting invasive and native species is also poorly understood. Here we show how the persistence of a native prey (water vole, Arvicola terrestris ) is determined by the spatial distribution of an invasive prey (European rabbit, Oryctolagus cuniculus ) and directly infer how this is defined by the mobility of a shared invasive predator (American mink, Neovison vison ). This study uniquely demonstrates that variation in habitat connectivity in large-scale natural landscapes creates spatial asynchrony, enabling coexistence between apparent competitive native and invasive species. These findings highlight that unexpected interactions may be involved in species declines, and also that in such cases habitat heterogeneity should be considered in wildlife management decisions.  相似文献   

11.
12.
Predators can impact their prey via consumptive effects that occur through direct killing, and via non-consumptive effects that arise when the behaviour and phenotypes of prey shift in response to the risk of predation. Although predators'' consumptive effects can have cascading population-level effects on species at lower trophic levels there is less evidence that predators'' non-consumptive effects propagate through ecosystems. Here we provide evidence that suppression of abundance and activity of a mesopredator (the feral cat) by an apex predator (the dingo) has positive effects on both abundance and foraging efficiency of a desert rodent. Then by manipulating predators'' access to food patches we further the idea that apex predators provide small prey with refuge from predation by showing that rodents increased their habitat breadth and use of ‘risky′ food patches where an apex predator was common but mesopredators rare. Our study suggests that apex predators'' suppressive effects on mesopredators extend to alleviate both mesopredators'' consumptive and non-consumptive effects on prey.  相似文献   

13.
Introduced species have the potential to outperform natives in two primary ways: via increased rates of predation and competition, and via the introduction of new parasites against which native species often lack effective immune defences. To assess the extent to which invasive species' parasites spread to native hosts, we compared the composition of helminth parasites found in introduced black rat ( Rattus rattus ) and endemic deer mouse ( Peromyscus maniculatus ) populations on a subset of the California Channel Islands. Results suggest that the whipworm, Trichuris muris , may have spread from introduced black rats to endemic island deer mice and has continued to thrive in one island population where rats were recently eradicated. These results yield two important conservation messages: (1) although the parasites introduced with invasive species may be few, they should not be ignored as they can spread to native species, and (2) introduced parasites have the potential to remain in a system even after their founding host is extirpated. These findings underscore the importance of parasitological surveys in invasive species research and baseline data for ecosystems where exotic species are likely to invade.  相似文献   

14.
Invasive species currently account for a major threat to global biodiversity, and island ecosystems are among the most vulnerable, because of the frequency and success of species introductions on islands. Within Mediterranean islands, reptiles not only are frequently introduced species but are also among the most threatened because of these introductions. The Balearic archipelago is a good example of this, since only two of its current 16 species of reptiles are native. Thirteen years ago, the snake Hemorrhois hippocrepis was introduced by cargo in Ibiza island, and it is in expansion. Individuals obtained from an early eradication campaign showed a fast expression of phenotypic plasticity and acquired larger sizes than those of the source population, probably due to a high prey availability and predator scarcity. The species is thriving at the expense of a small variety of native and non-native prey, but the predation pressure on the endemic Podarcis pityusensis, the only native reptile in the island, is very high, as this lizard represents 56% of the prey in frequency, which might threaten its survival on the long term. Our results on the feeding ecology of the snake are of sufficient concern to justify the maintenance of actions to eradicate this invader.  相似文献   

15.
Contemporary adaptation of native prey species to invasive predators has been relatively well documented, but that of native predators to invasive prey has received less attention. Because the level of impact an invasive species will have on its predators versus its prey will determine changes in community trophic structure, it is important to understand how native predators respond to novel prey. Here we examine the response of native fence lizards to the invasion of red imported fire ants, a novel toxic prey. Examining invaded and uninvaded lizard populations, we tested whether or not aversion-learning occurs in juvenile fence lizards over successive feedings (within lifetime), how previous fire ant exposure may affect avoidance behavior (over generations), and whether population differences are consistent when prey choice exists. We also examine rates of phenotypic divergence in traits associated with the native species as both predator and prey. Aversion-learning did not occur in either population. Instead, the incidence of fire ant consumption increased over both successive feedings and generations. Lizards from the fire ant invaded population had a higher propensity to eat fire ants than fire ant-naïve lizards, even when given a choice between prey items. We found greater phenotypic divergence in traits associated with the native species as predator on, versus as prey to, fire ants. Although the strategy of eating these novel toxic prey can impose survival costs in the short term, over the longer-term, eating fire ants may cost little or even benefit survivors.  相似文献   

16.
The introduction of predator species into new habitats is an increasingly common consequence of human activities, and the persistence of native prey species depends upon their response to these novel predators. In this study, we examined whether the Largespring mosquitofish, Gambusia geiseri exhibited antipredator behavior and/or an elevation of circulating stress hormones (cortisol) to visual and chemical cues from a native predator, a novel predator, or a non‐predatory control fish. Prey showed the most pronounced antipredator response to the native predator treatment, by moving away from the stimulus, while the prey showed no significant changes in their vertical or horizontal position in response to the novel or non‐predator treatments. We also found no significant difference in water‐borne cortisol release rates following any of the treatments. Our results suggest the prey did not recognize and exhibit antipredator behavior to the novel predator, and we infer that this predator species could be detrimental if it expands into the range of this prey species. Further, our study demonstrates prey may not respond to an invasive predator that is phylogenetically, behaviorally, and morphologically dissimilar from the prey species' native predators.  相似文献   

17.
Potential consequences of the coqui frog invasion in Hawaii   总被引:5,自引:1,他引:4  
The Puerto Rican frog, Eleutherodactylus coqui, has invaded Hawaii and has negatively impacted the state's multimillion dollar floriculture, nursery and tourist industries; however, little is known about the ecological consequences of the invasion. Using data from Puerto Rico and Hawaii, the authors summarize the potential consequences of the invasion and describe future research needs. It could be predicted that the coqui would reduce the abundance of Hawaii's endemic invertebrates. However, data suggest that coquis are mostly consuming non‐native invertebrates, and not invertebrate pests, such as mosquitoes and termites. Endemic invertebrates are likely to represent a portion of the coqui diet, but it remains uncertain which endemic invertebrates are most threatened by coqui predation and whether there will be indirect effects that benefit or harm them. It could be predicted that coquis would compete with endemic birds for invertebrate prey, but there is presently little overlap in the habitats used by coquis and endemic birds. Although, coquis may make bird re‐invasion into lowland ecosystems more difficult; alternatively, coquis could serve as an additional food source for some endemic birds. Finally, it could be predicted that coquis serve as a food source for endemic‐bird predators, such as rats and mongoose, and bolster their abundance. Preliminary data suggest that coquis will not bolster rat or mongoose populations. Managing coqui populations in Hawaii has been a challenge. A population has not yet been eradicated using citric acid, the only federally approved pesticide for coquis. It is unlikely that coquis will ever be eradicated from the islands of Hawaii and Maui, where there are now hundreds of populations. Quick and severe responses to new introductions may be the only effective means of containing the spread of the coqui.  相似文献   

18.
We studied the effect of short-term hypoxia on predation by the non-native rapa whelk (Rapana venosa) on the three most common bivalve prey in northern Adriatic lagoons: the non-native ark shell (Scapharca inaequivalvis) and Manila clam (Tapes philippinarum), and the native cockle Cerastoderma glaucum. In mesocosm experiments, bivalves were offered to predator as single prey, and as multiple choice of prey. Bivalve prey showed behavioral responses when exposed to short-term hypoxia. Under normoxia, prey were consumed in almost equal numbers when offered separately, but when choice was offered to the predator R. venosa showed a marked preference for S. inaequivalvis. Short-term hypoxia increased the vulnerability of T. philippinarum, and, consequently, rapa whelks modified their predatory behavior and switched their preference to T. philippinarum. We hypothesize this to be a case of environmentally-mediated, non-reciprocal indirect interaction between the two non-native prey species, whose causes are based upon differences in specific traits of prey. Hypoxia may facilitate the coexistence of the two non-native bivalves via predator switching. The native cockle seems the net loser of the game.  相似文献   

19.
Antipredator behaviour is an important fitness component in most animals. A co-evolutionary history between predator and prey is important for prey to respond adaptively to predation threats. When non-native predator species invade new areas, native prey may not recognise them or may lack effective antipredator defences. However, responses to novel predators can be facilitated by chemical cues from the predators’ diet. The red swamp crayfish Procambarus clarkii is a widespread invasive predator in the Southwest of the Iberian Peninsula, where it preys upon native anuran tadpoles. In a laboratory experiment we studied behavioural antipredator defences (alterations in activity level and spatial avoidance of predator) of nine anurans in response to P. clarkii chemical cues, and compared them with the defences towards a native predator, the larval dragonfly Aeshna sp. To investigate how chemical cues from consumed conspecifics shape the responses, we raised tadpoles with either a tadpole-fed or starved crayfish, or dragonfly larva, or in the absence of a predator. Five species significantly altered their behaviour in the presence of crayfish, and this was largely mediated by chemical cues from consumed conspecifics. In the presence of dragonflies, most species exhibited behavioural defences and often these did not require the presence of cues from predation events. Responding to cues from consumed conspecifics seems to be a critical factor in facilitating certain behavioural responses to novel exotic predators. This finding can be useful for predicting antipredator responses to invasive predators and help directing conservation efforts to the species at highest risk.  相似文献   

20.
Despite knowledge on invasive species’ predatory effects, we know little of their influence as prey. Non‐native prey should have a neutral to positive effect on native predators by supplementing the prey base. However, if non‐native prey displace native prey, then an invader's net influence should depend on both its abundance and value relative to native prey. We conducted a meta‐analysis to quantify the effect of non‐native prey on native predator populations. Relative to native prey, non‐native prey similarly or negatively affect native predators, but only when studies employed a substitutive design that examined the effects of each prey species in isolation from other prey. When native predators had access to non‐native and native prey simultaneously, predator abundance increased significantly relative to pre‐invasion abundance. Although non‐native prey may have a lower per capita value than native prey, they seem to benefit native predators by serving as a supplemental prey resource.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号