首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Bone formation is a developmental process requiring the differentiation of mesenchymal stem cells into osteoblasts. It is established that Runx2 tightly regulates osteoblast differentiation and bone formation. Fos-related antigen Fra-1 is an essential factor for bone formation. Current evidence does not support a relationship between Fra-1 and Runx2 in osteogenesis. Here, we explored the possibility that Runx2 regulates Fra-1 expression during osteogenic differentiation of C2C12 myogenic progenitor cells. Expression of Fra-1 was induced rapidly after activation of Runx2 in a Tet-on stable C2C12 cell-line (C2C12/Runx2Dox sub-line). Transient transfection assay showed that Runx2 activates Fra-1 promoter-reporter activity, suggesting that Fra-1 may be a direct target of Runx2. To determine the minimal region of the Fra-1 promoter that was activated by Runx2, a series of Fra-1 promoter deletion constructs were made. By transient transfection assay, we defined the minimal region to the proximal 342 bp (?84 to +258). Two potential Runx2-binding sites (at positions +139 and +208) were predicted within this region. Mutation of the Runx2 motif at position +208 significantly decreased Fra-1 promoter activity compared to wild type, whereas mutation of Runx2 at position +139 had no effect. Electrophoretic mobility shift assay (EMSA) demonstrated the existence of one atypical Runx2-binding element at position +208, and chromatin immunoprecipitation (ChIP) assay revealed that Runx2 bound to the native Fra-1 promoter in vivo via this site. Finally, forced expression of Fra-1 resulted in upregulation of alkaline phosphatase (ALP), a marker of early osteoblast differentiation. Together, these results indicate that Fra-1 is a direct target of Runx2 during osteogenic differentiation of C2C12 myogenic progenitor cells.  相似文献   

3.
BackgroundSome microRNAs (miRNAs) are involved in osteogenic differentiation. In recent years, increasing evidences have revealed that exosomes contain specific miRNAs. However, the effect and mechanism of miR-23a-5p-containing exosomes in osteoblast remain largely unclear.MethodsWe extracted exosomes from RANKL-induced RAW 264.7 cells, and identified exosomes via transmission electron microscopy, western blot and flow cytometry analysis. In addition, exosome secretion was inhibited by GW4869 and Rab27a siRNAs. miR-23a-5p expression was analyzed by qRT-PCR, and the related protein levels were examined by western blot assay. Furthermore, the number and distribution of osteoclasts were detected by TRAP staining, and early osteogenesis was evaluated by ALP staining. Combination of YAP1 and Runx2 was verified by Co-IP assay, and the regulation of miR-23a-5p and Runx2 was measured by dual luciferase reporter assay.ResultsWe successfully extracted exosomes from RANKL-induced RAW 264.7 cells, and successfully verified exosomes morphology. We also indicated that miR-23a-5p was highly expressed in exosomes from RANKL-induced RAW 264.7 cells, and osteoclast-derived miR-23a-5p-containing exosomes inhibited osteoblast activity, while its inhibition weakened osteoclasts. In mechanism, we demonstrated that Runx2 was a target gene of miR-23a-5p, YAP interacted with Runx2, and YAP or Runx2 inhibited MT1DP expression. In addition, we proved that knockdown of MT1DP facilitated osteogenic differentiation by regulating FoxA1 and Runx2.ConclusionsWe demonstrated that osteoclast-derived miR-23a-5p-containing exosomes could efficiently suppress osteogenic differentiation by inhibiting Runx2 and promoting YAP1-mediated MT1DP. Therefore, we suggested miR-23a-5p in exosomes might provide a novel mechanism for osteoblast function.  相似文献   

4.
5.
6.
7.
8.
In this study, we demonstrate a stimulatory effect of tanshinone IIA isolated from the root of Salvia miltiorrhiza on the commitment of bi-potential mesenchymal precursor C2C12 cells into osteoblasts in the presence of bone morphogenetic protein (BMP)-2. At low concentrations, tanshinone IIA enhanced BMP-2-stimulated induction of alkaline phosphatase (ALP), an early phase biomarker of osteoblast differentiation, and mRNA expression of BMPs. ALP induction was inhibited by the BMP antagonist noggin, suggesting that tanshinone IIA enhances the osteogenic activity of BMP signaling. Furthermore, considering the tanshinone IIA-mediated enhancement of BMP-2-stimulated Smad-Runx2 activities, tanshinone IIA could enhance the osteogenic activity of BMP-2 via acceleration of Smad-Runx2 activation. Additionally, pharmacologic inhibition studies suggest the possible involvement of p38 in the action of tanshinone IIA. The p38 inhibitor SB202190 strongly and dose-dependently inhibited tanshinone IIA-enhanced ALP induction. SB202190 also dose-dependently inhibited the tanshinone IIA-induced p38 activation and combined tanshinone IIA-BMP-2-induced Smad activation. In conclusion, tanshinone IIA enhances the commitment of C2C12 cells into osteoblasts and their differentiation through synergistic cross talk between tanshinone IIA-induced p38 activation and BMP-2-induced Smad activation. These activations could subsequently induce the activation of Runx2, which induces osteogenesis via regulation of the osteogenic factors BMP and ALP expression.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
骨形态发生蛋白9(bone morphogenetic protein 9,BMP9)具有很强的诱导间充质干细胞定向成骨分化的能力.但对于其所涉及的相关分子机理了解并不深入.利用BMP9重组腺病毒感染间充质干细胞,Western blot检测ERK1/2激酶的磷酸化,ERK1/2的特异性抑制剂PD98059阻断ERK1/2活性,或以RNA干扰抑制ERK1/2表达,通过体外细胞实验和体内动物实验,初步分析和揭示ERK1/2对于BMP9诱导的间充质干细胞成骨分化的调控作用及其可能机制.结果发现:BMP9可以促进ERK1/2激酶的磷酸化,ERK1/2抑制剂PD98059可增强由BMP9诱导的碱性磷酸酶(alkaline phosphatase,ALP)活性、骨桥蛋白(osteopontin,OPN)表达和钙盐沉积,并促进由BMP9诱导的Runx2基因的表达和转录活性,以及Smad经典途径的活化;而RNA干扰导致ERK1/2基因沉默同样也可进一步促进BMP9诱导的ALP活性和钙盐沉积,并促进BMP9诱导的间充质干细胞在裸鼠皮下异位成骨.因此,BMP9可以促进ERK1/2蛋白激酶的活化,而阻断ERK1/2蛋白激酶可进一步增强BMP9诱导的成骨分化,ERK1/2极可能对于BMP9诱导的间充质干细胞成骨分化起着负向调控作用.  相似文献   

19.
近年来骨组织工程技术迅猛发展,小鼠成肌细胞C2C12因其来源广泛等优点可望成为有效的种子细胞应用于组织工程. 然而,对于C2C12细胞的成骨分化机制仍需深入研究. 为了观察Sonic hedgehog(Shh)信号通路对骨形态发生蛋白9(bone morphogenetic proteins 9,BMP9)诱导的C2C12细胞成骨分化的影响,构建过表达腺病毒Ad Shh,并作用于BMP9处理的C2C12细胞,检测碱性磷酸酶(alkaline phosphatase , ALP)的变化,茜素红S染色检测钙盐沉积,RT PCR检测Shh、骨桥蛋白(osteopontin,OPN)、骨钙素(osteocalcin,OCN)、Runx2、Dlx5、Id1和Id2基因表达,Western印迹检测Shh、OPN、OCN、Runx2和Dlx5的蛋白质表达,Micro-CT和H&E染色检测裸鼠皮下异位成骨包块情况. 结果表明,活化Shh信号通路可促进BMP9诱导的C2C12细胞早晚期成骨分化,以及裸鼠皮下异位成骨.体内外实验证明,Shh信号通路能促进BMP9诱导小鼠成肌细胞C2C12向成骨分化.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号