首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 150 毫秒
1.
2.
Stem cells are a population of cells that has infinite or long-term self-renewal ability and can produce various kinds of descendent cells.Transforming growth factor β(TGF-β) family is a superfamily of growth factors,including TGF-β1,TGF-β2 and TGF-β3,bone morphogenetic proteins,activin/inhibin,and some other cytokines such as nodal,which plays very important roles in regulating a wide variety of biological processes,such as cell growth,differentiation,cell death.TGF-β,a pleiotropic cytokine,has been proved to be differentially involved in the regulation of multi-lineage differentiation of stem cells,through the Smad pathway,non-Smad pathways including mitogen-activated protein kinase pathways,phosphatidylinositol-3-kinase/AKT pathways and Rholike GTPase signaling pathways,and their cross-talks.For instance,it is generally known that TGF-β promotes the differentiation of stem cells into smooth muscle cells,immature cardiomyocytes,chondrocytes,neurocytes,hepatic stellate cells,Th17 cells,and dendritic cells.However,TGF-β inhibits the differentiation of stem cells into myotubes,adipocytes,endothelial cells,and natural killer cells.Additionally,TGF-β can provide competence for early stages of osteoblastic differentiation,but at late stages TGF-β acts as an inhibitor.The three mammalian isoforms(TGF-β1,2 and 3) have distinct but overlapping effects on hematopoiesis.Understanding the mechanisms underlying the regulatory effect of TGF-β in the stem cell multi-lineage differentiation is of importance in stem cell biology,and will facilitate both basic research and clinical applications of stem cells.In this article,we discuss the current status and progress in our understanding of different mechanisms by which TGF-β controls multi-lineage differentiation of stem cells.  相似文献   

3.
Although IL-12 plays a critical role in priming Th1 and cytotoxic T lymphocyte(CTL) responses, Toll-like receptor(TLR) signaling only induces low amounts of IL-12 in dendritic cells and macrophages, implying the existence of stringent regulatory mechanisms. In this study, we sought to uncover the mechanisms underlying TLR-induced IL-12 expression and the Th1 response. By systemic screening, we identified a number of protein kinases involved in the regulation of TLRinduced IL-12 expression. In particular, PI3 K, ERK, and m TOR play critical roles in the TLR-induced Th1 response by regulating IL-12 and IL-10 production in innate immune cells. Moreover, we identified c-fos as a key molecule that mediates m TOR-regulated IL-12 and IL-10 expression in TLR signaling. Mechanistically, m TOR plays a crucial role in c-fos expression, thereby modulating NFκB binding to promoters of IL-12 and IL-10. By controlling the expression of a special innate gene program, m TOR can specifically regulate the TLR-induced T cell response in vivo. Furthermore, blockade of m TOR by rapamycin efficiently boosted TLR-induced antigen-specific T and B cell responses to HBV and HCV vaccines. Taken together, these results reveal a novel mechanism through which m TOR regulates TLR-induced IL-12 and IL-10 production, contributing new insights for strategies to improve vaccine efficacy.  相似文献   

4.
In 1975, Holliday and Pugh as well as Riggs independently hypothesized that DNA methylation in eukaryotes could act as a hereditary regulation mechanism that influences gene expression and cell differentiation. Interest in the study of epigenetic processes has been inspired by their reversibility as well as their potentially preventable or treatable consequences. Recently, we have begun to understand that the features of DNA methylation are not the same for all cells.Major differences have been found between differentiated cells and stem cells.Methylation influences various pathologies, and it is very important to improve the understanding of the pathogenic mechanisms. Epigenetic modifications may take place throughout life and have been related to cancer, brain aging, memory disturbances, changes in synaptic plasticity, and neurodegenerative diseases,such as Parkinson's disease and Huntington's disease. DNA methylation also has a very important role in tumor biology. Many oncogenes are activated by mutations in carcinogenesis. However, many genes with tumor-suppressor functions are "silenced" by the methylation of CpG sites in some of their regions.Moreover, the role of epigenetic alterations has been demonstrated in neurological diseases. In neuronal precursors, many genes associated with development and differentiation are silenced by CpG methylation. In addition,recent studies show that DNA methylation can also influence diseases that do not appear to be related to the environment, such as IgA nephropathy, thus affecting,the expression of some genes involved in the T-cell receptor signaling. In conclusion, DNA methylation provides a whole series of fundamental information for the cell to regulate gene expression, including how and when the genes are read, and it does not depend on the DNA sequence.  相似文献   

5.
6.
Increased IL-17-producing helper T (Thl7) cells have been observed in patients with rheumatoid arthritis (RA). The retinoic-acid-related orphan nuclear receptor (RORγt) is the master regulator of Thl7 cells. Our previous research showed that FC99 possesses anti-inflammation activity. However, to date the effects of FC99 on RORγt expression in Thl7 cell differentiation have not been investigated yet. In the present study, we found that FC99 significantly attenu- ated arthritis-like symptoms, i.e., suppressing the develop- ment of paw edema in zymosan-induced arthritis (ZIA) mice. H&E staining showed that the infdtration of inflamma- tory cells in ankle synovial tissues was significantly suppressed. FC99 also reduced the mRNA levels of pro-in- flammatory cytoklnes in ankle synovial tissues as shown by Q-PCR analysis. The protein levels of the pro-inflammatory cytoklnes in sera were also suppressed after FC99 treatment. Moreover, FC99 decreased the RORγt mRNA level in spleen tissues. Thl7 cell percentage was significantly decreased in spleens and draining lymph nodes (dLNs). The mRNA and protein levels of IL-17A and IL-23 were reduced after FC99 treatment in ZIA mice. Furthermore, in vitro experiments showed that FC99 inhibited the expression of IL-6 in LPS- induced RAW264.7 cells and BMDCs. Moreover, FC99 sig- nificantly inhibited the RORγt expression in PMA-induced CD4+ T cells and LPS-induced RAW264.7 cells. These data indicate that FC99 improves arthritis-like pathological symp- toms in vivo and in vitro, which might be related to the inhib- ition of RORγt expression in Thl7 cells. Our findings suggest that FC99 may be a potential therapeutic candidate for the treatment of RA and other inflammatory disorders.  相似文献   

7.
The presence of a relatively mature CD4 ~ CD8~- (SP) T cell subset in mouse thymus has been demonstrated. Composing of 10% of total CD4SP thymocytes, this subset is defined by the absence of 3G11 and 6C10 expression with a phenotype of CD69~( /-), HSA~(med/lo) and heterogeneous for Qa-2 expression. The proliferation capability of TCRαβ~ 3G11~- 6C10~- CD4~ CD8~- thymocytes was high while using Con A stimulus. And Con A stimulation could result in secretion of IL-4, IL-10, IL-6 and a little amount of IFNγ. IL-2 was barely detectable. This is distinct from typical Th0 type cytokines. The cells of this subset were NK1.1 negative, but strongly expressed GATA-3 mRNA. The results suggest that the CD4~ subset of 3G11~- 6C10~- NK1.1~- phenotype possesses immunocompetent cells with functions characteristic of Th2-like cytokines, which may indicate the cells at transitional status from Th0 to Th2, with a propensity to Th2.  相似文献   

8.
9.
10.
11.
12.
13.
In previous studies, we have shown that Th2 cell differentiation is diminished but Th1 cell differentiation is increased in Stat5a-deficient (Stat5a(-/-)) CD4(+) T cells. In the present study, we clarified the molecular mechanisms of Stat5a-mediated Th cell differentiation. We found that enhanced Th1 cell differentiation and the resultant IFN-gamma production played a dominant inhibitory role in the down-regulation of IL-4-induced Th2 cell differentiation of Stat5a(-/-) CD4(+) T cells. We also found that IL-12-induced Stat4 phosphorylation and Th1 cell differentiation were augmented in Stat5a(-/-) CD4(+) T cells. Importantly, the expression of suppressor of cytokine signaling (SOCS)3, a potent inhibitor of IL-12-induced Stat4 activation, was decreased in Stat5a(-/-) CD4(+) T cells. Moreover, a reporter assay showed that a constitutively active form of Stat5a but not Stat6 activated the SOCS3 promoter. Furthermore, chromatin immunoprecipitation assays revealed that Stat5a binds to the SOCS3 promoter in CD4(+) T cells. Finally, the retrovirus-mediated expression of SOCS3 restored the impaired Th cell differentiation of Stat5a(-/-) CD4(+) T cells. These results suggest that Stat5a forces the Th1/Th2 balance toward a Th2-type by preventing IL-12-induced Th1 cell differentiation through the induction of SOCS3.  相似文献   

14.
15.
IL-4 plays a critical role in the differentiation of TCR-stimulated naive CD4 T cells to the Th2 phenotype. In response to IL-4, the IL-4R activates a set of phosphotyrosine binding domain-containing proteins, including insulin receptor substrate 1/2, Shc, and IL-4R interacting protein, as well as Stat6. Stat6 has been shown to be required for Th2 differentiation. To determine the roles of the phosphotyrosine binding adaptors in Th2 differentiation, we prepared a retrovirus containing a mutant of the human (h)IL-4R alpha-chain, Y497F, which is unable to recruit these adaptors. The mutant hIL-4Ralpha, as well as the wild-type (WT) hIL-4Ralpha, was introduced into naive CD4 T cells. Upon hIL-4 stimulation, Y497F worked as well as the WT hIL-4Ralpha in driving Th2 differentiation, as measured by Gata3 up-regulation and IL-4 production. Furthermore, IL-4-driven cell expansion was also normal in the cells infected with Y497F, although cells infected with Y497F were not capable of phosphorylating insulin receptor substrate 2. These results suggest that the signal pathway mediated by Y497 is dispensable for both IL-4-driven Th2 differentiation and cell expansion. Both WT and Y497F hIL-4Ralpha lose the ability to drive Th2 differentiation and cell expansion in Stat6-knockout CD4 T cells. A constitutively activated form of Stat6 introduced into CD4 T cells resulted in both Th2 differentiation and enhanced cell expansion. Thus, activated Stat6 is necessary and sufficient to mediate both IL-4-driven Th2 differentiation and cell expansion in CD4 T cells.  相似文献   

16.
17.
18.
19.
Naturally occurring regulatory T (nTreg) cells express Foxp3 and were originally discovered as immune suppressors critical for self-tolerance and immune homeostasis. Through yet-to-be-defined mechanisms, nTreg cells were recently shown to convert into proinflammatory cells. Particularly, attenuation of Foxp3 expression led to Th2 conversion of nTreg cells in vivo. In this paper, we demonstrated an nTreg-specific mechanism controlling their Th2 conversion. We found that wild-type nTreg cells expressing reduced levels of Foxp3 but not those expressing no Foxp3 produced the Th2 cytokine IL-4. Intriguingly, IL-4 production by converted nTreg cells is required for Th2 differentiation of coexisting naive CD4 T cells in vivo, suggesting that Th2 conversion of nTreg cells might be critical for directing Th2 immune responses. Th2 conversion of nTreg cells was not due to their inability to become Th1 cells, because IFN-γ was produced by Foxp3-low-expressing cells when IL-4/STAT-6 signaling was abrogated. Surprisingly, however, unlike naive CD4 T cells whose IL-4 production is dependent on STAT-6, Foxp3-low-expressing cells generated IL-4 independent of STAT-6, indicating an intrinsic mechanism that favors nTreg-to-Th2 differentiation. Indeed, compared with naive CD4 T cells, nTreg expressed elevated levels of GATA-3 independent of STAT-6. And GATA-3 was required for nTreg-to-Th2 conversion. Foxp3 may account for this GATA-3 upregulation in nTreg cells, because ectopic expression of Foxp3 preferentially promoted GATA-3 but not T-bet expression. Thus, we have identified an intrinsic mechanism that imposes a Th2/Th1 imbalance and predisposes Foxp3-expressing cells to IL-4 production independent of STAT-6 signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号