首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
For breastfed infants, human milk is more than a source of nutrients; it furnishes a wide array of proteins, peptides, antibodies, and other components promoting neonatal growth and protecting infants from viral and bacterial infection. It has been proposed that most biological processes are performed by protein complexes. Therefore, identification and characterization of human milk components including protein complexes is important for understanding the function of milk. Using gel filtration, we have purified a stable high molecular mass (~1000 kDa) multiprotein complex (SPC) from 15 preparations of human milk. Light scattering and gel filtration showed that the SPC was stable in the presence of high concentrations of NaCl and MgCl2 but dissociated efficiently under the conditions that destroy immunocomplexes (2 M MgCl2, 0.5 M NaCl, and 10 mM DTT). Such a stable complex is unlikely to be a casual associate of different proteins. The relative content of the individual SPCs varied from 6% to 25% of the total milk protein. According to electrophoretic and mass spectrometry analysis, all 15 SPCs contained lactoferrin (LF) and α‐lactalbumin as major proteins, whereas human milk albumin and β‐casein were present in moderate or minor amounts; a different content of IgGs and sIgAs was observed. All SPCs efficiently hydrolyzed Plasmid supercoiled DNA and maltoheptaose. Some freshly prepared SPC preparations contained not only intact LF but also small amounts of its fragments, which appeared in all SPCs during their prolonged storage; the fragments, similar to intact LF, possessed DNase and amylase activities. LF is found in human epithelial secretions, barrier body fluids, and in the secondary granules of leukocytes. LF is a protein of the acute phase response and nonspecific defense against different types of microbial and viral infections. Therefore, LF complexes with other proteins may be important for its functions not only in human milk. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Lactoferrin (LF) is a main iron-transfering glycoprotein of human barrier body fluids, blood and milk. LF, a protein of the acute phase, is responsible for nonspecific cells defense against microbial and viral infection and cancer diseases. LF is an important component of the passive immunity of newborns system. LF, an extremely polyfunctional protein, is the object of intensive investigations. In this work electrophoretically homogeneous LF from human milk was prepared. Affinity chromatography of LF on Blue Sepharose separated the protein into several distinct isoforms with different affinities to this resin. Two of this isoforms possess nucleoside-5'-triphosphate-hydrolyzing activity. Using several methods including in-gel ATPase activity assays, we show that ATP (and others NTP) hydrolysis is an intrinsic property of LF, and that LF is the major ATPase of human milk. It was shown that ATP-hydrolyzing site is located in C-lobe of LF.  相似文献   

4.
5.
Immunization of rabbits with DNase I leads to the production of antiidiotypic Abs with DNase activity. It is not known at present whether antiidiotypic Abs against DNA-hydrolyzing enzymes can possess RNase activity. Here we show that immunization of healthy rabbits with bovine DNase I produces IgGs with intrinsic DNase and RNase activities. Electrophoretically and immunologically homogeneous polyclonal IgGs were obtained by sequential chromatography of the immune sera on Protein A-Sepharose and gel filtration. Affinity chromatography on DNA cellulose using elution of Abs with different concentrations of NaCl and an acidic buffer separated catalytic IgGs into four Ab subfractions, three of which demonstrated only DNase activity while one subfraction hydrolyzed RNA faster than DNA. The serum of patients with many different autoimmune (AI) diseases contains small fractions of antibodies (Abs) interacting with immobilized DNA, which possess both DNase and RNase activities. Our data suggest that a fraction of abzymes from AI patients hydrolyzing both DNA and RNA can contain a subfraction of Abs against DNase I.  相似文献   

6.
Lactoferrin (LF) is an 80-kDa globular glycoprotein with high affinity for metal ions, particularly for iron. This protein possesses many biological functions, including the binding and release of iron and serves as one of the important components of the innate immune system, where it acts as a potent inhibitor of several pathogens. LF has efficacious antibacterial and antiviral activities against a wide range of Gram-positive and Gram-negative bacteria and against both naked and enveloped DNA and RNA viruses. In its antiviral pursuit, LF acts predominantly at the acute phase of the viral infection or even at the intracellular stage, as in hepatitis C virus infection. LF inhibits the entry of viral particles into host cells, either by direct attachment to the viral particles or by blocking their cellular receptors. This wide range of activities may be attributed to the capacity of LF to bind iron and its ability to interfere with the cellular receptors of both hosts and pathogenic microbes.  相似文献   

7.
A polyfunctional protein lactoferrin (LF) which is present in human barrier fluids, blood and milk and this protein of acute phase is responsible for nonspecific cells defense against microbial and viral infection and cancer diseases. Using the methods of small-angle X-ray scattering and light-scattering it was shown that LF in solution exists in oligomeric state. The level of LF oligomerization depends upon its concentration and time of keeping of no frozen neutral protein solutions. At the concentrations comparable with those in human milk (1-6 mg/ml) the average inertial radius values (Rg) of LF can reach 100-450 angstroms, while Rg for monomer LF form is 26.7 angstroms. LF was shown to complex with different nucleotides and hydrolyze them. The addition of ATP and AMP to LF demonstrating any level of oligomerization leads to increase of oligomerization processes and enhancement of the Rg values up to 600-700 angstroms According to different models of LF monomer association to its oligomeric forms (sphere, plate, cylinder) the oligomeric complexes demonstrate high Rg values which can contain from several tens up to several thousands of LF monomers. A possible role of LF oligomerization for different biological functions of the protein is discussed.  相似文献   

8.
Lactoferrin (LF) is an iron‐binding glycoprotein found predominantly in milk and in granulocytes. LF is extremely polyfunctional protein some biological functions of which are determined by its capacity to bind iron, but many other functions are iron‐independent. In this article we show for the first time that LF interacts with a number of various mononucleotides.  相似文献   

9.
Immunization of animals with DNA leads to the production of anti-DNA antibodies (Abs) demonstrating both DNase and RNase activities. It is currently not known whether anti-RNA Abs can possess nuclease activities. In an attempt to address this question, we have shown that immunization of three rabbits with complex of RNA with methylated BSA (mBSA) stimulates production of IgGs with RNase and DNase activities belonging to IgGs, while polyclonal Abs from three non-immunized rabbits and three animals immunized with mBSA are catalytically inactive. Affinity chromatography of IgGs from the sera of autoimmune (AI) patients on DNA-cellulose usually demonstrates a number of fractions, all of which effectively hydrolyze both DNA and RNA, while rabbit catalytic IgGs were separated into Ab subfractions, some of which demonstrated only DNase activity, while others hydrolyzed RNA faster than DNA. The enzymic properties of the RNase and DNase IgGs from rabbits immunized with RNA distinguish them from all known canonical RNases and DNases and DNA- and RNA-hydrolyzing abzymes (Abzs) from patients with different AI diseases. In contrast to RNases and AI RNA-hydrolyzing Abs, rabbit RNase IgGs catalyze only the first step of the hydrolysis reaction but cannot hydrolyze the formed terminal 2',3'-cyclophosphate. The data indicate that Abzs of AI patients hydrolyzing nucleic acids in part may be Abs against RNA and its complexes with proteins. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Lactoferrin Is the Major Deoxyribonuclease of Human Milk   总被引:1,自引:0,他引:1  
Lactoferrin is the major iron-transferring protein of human barrier fluids such as blood and milk. It is a polyfunctional protein capable of binding DNA exposed on the surface of various cells. Electrophoretically homogenous lactoferrin was prepared by sequential chromatography of human milk proteins on DEAE-cellulose, heparin-Sepharose, and Sepharose containing immobilized anti-lactoferrin antibodies. By subsequent chromatography on Blue Sepharose the resulting lactoferrin was fractionated into several subfractions with different affinity for the sorbent, and this was associated with separation of additional lactoferrin peaks with DNase activity from the main peak. By various techniques, in particular, by in situ testing the DNase activity of lactoferrin in a DNA-containing gel after SDS-electrophoresis, hydrolysis of DNA was for the first time shown to be an intrinsic property of lactoferrin. The substrate specificity of lactoferrin in hydrolysis of DNA was different from specificities of known human DNases. Hydrolysis of DNA was activated by bivalent metal ions and also by ATP and NAD. Unlike the main fraction of lactoferrin with the highest affinity for Blue Sepharose, all protein subfractions with DNase activity were cytotoxic and suppressed growth of human and mouse tumor cell lines.  相似文献   

11.
Blood of healthy donors contains low concentrations of autoantibodies to its own components, including DNA and RNA. Increased concentrations of antibodies to DNA and RNA have been found in blood of people and animals with autoimmune diseases and viral and bacterial infections. Detection of different antibodies with catalytic activities, including abzymes with DNase and RNase activities, is the earliest indicator of the development of some autoimmune diseases. This review reveals possible mechanisms of generation of anti-DNA and anti-RNA antibodies without catalytic activities and abzymes in normal organisms and in organisms with different pathologies. A possible role of these autoantibodies and the reasons of their exceptional diversity in normal organisms and in organisms with different autoimmune diseases are discussed.  相似文献   

12.
A fluorometric technique, based on the combination of RNase and DNase incubation with the use of thiazole orange (RNase/DNase method), was investigated to determine DNA and RNA concentrations in marine plankton. Tests were performed to optimize both RNase and DNase assay conditions. The RNase assay should be conducted at 37° C for 20 min with 0.5 μg·mL?1 of DNase-free RNase. An incubation at 25° C for 20 min with 10 units ·mL-1 of RNase-free DNase were the optimal conditions required for DNA digestion by DNase. The detection limits in terms of minimum biomass for reliable measurements of DNA and RNA were 7.5 and 10 μg of protein · (mL assay)?1, respectively. RNA and DNA concentration were estimated in oligotrophic water samples using the RNase/DNase and other available methods (e.g. a double fluorochrome method). The different techniques provided similar DNA estimations. However, the RNase/DNase method provided the highest sensitivity and a low variability for the estimation of RNA.  相似文献   

13.
Replication of the human herpesvirus Epstein-Barr virus drastically impairs cellular protein synthesis. This shutoff phenotype results from mRNA degradation upon expression of the early lytic-phase protein BGLF5. Interestingly, BGLF5 is the viral DNase, or alkaline exonuclease, homologues of which are present throughout the herpesvirus family. During productive infection, this DNase is essential for processing and packaging of the viral genome. In contrast to this widely conserved DNase activity, shutoff is only mediated by the alkaline exonucleases of the subfamily of gammaherpesviruses. Here, we show that BGLF5 can degrade mRNAs of both cellular and viral origin, irrespective of polyadenylation. Furthermore, shutoff by BGLF5 induces nuclear relocalization of the cytosolic poly(A) binding protein. Guided by the recently resolved BGLF5 structure, mutants were generated and analyzed for functional consequences on DNase and shutoff activities. On the one hand, a point mutation destroying DNase activity also blocks RNase function, implying that both activities share a catalytic site. On the other hand, other mutations are more selective, having a more pronounced effect on either DNA degradation or shutoff. The latter results are indicative of an oligonucleotide-binding site that is partially shared by DNA and RNA. For this, the flexible "bridge" that crosses the active-site canyon of BGLF5 appears to contribute to the interaction with RNA substrates. These findings extend our understanding of the molecular basis for the shutoff function of BGLF5 that is conserved in gammaherpesviruses but not in alpha- and betaherpesviruses.  相似文献   

14.
The general principles of recognition of nucleic acids by proteins are among the most exciting problems of molecular biology. Human lactoferrin (LF) is a remarkable protein possessing many independent biological functions, including interaction with DNA. In human milk, LF is a major DNase featuring two DNA‐binding sites with different affinities for DNA. The mechanism of DNA recognition by LF was studied here for the first time. Electrophoretic mobility shift assay and fluorescence measurements were used to probe for interactions of the high‐affinity DNA‐binding site of LF with a series of model‐specific and nonspecific DNA ligands, and the structural determinants of DNA recognition by LF were characterized quantitatively. The minimal ligands for this binding site were orthophosphate (Ki = 5 mM), deoxyribose 5'‐phosphate (Ki = 3 mM), and different dNMPs (Ki = 0.56–1.6 mM). LF interacted additionally with 9–12 nucleotides or nucleotide pairs of single‐ and double‐stranded ribo‐ and deoxyribooligonucleotides of different lengths and sequences, mainly through weak additive contacts with internucleoside phosphate groups. Such nonspecific interactions of LF with noncognate single‐ and double‐stranded d(pN)10 provided ~6 to ~7.5 orders of magnitude of the enzyme affinity for any DNA. This corresponds to the Gibbs free energy of binding (ΔG0) of ?8.5 to ?10.0 kcal/mol. Formation of specific contacts between the LF and its cognate DNA results in an increase of the DNA affinity for the enzyme by approximately 1 order of magnitude (Kd = 10 nM; ΔG0 ≈ ?11.1 kcal/mol). A general function for the LF affinity for nonspecific d(pN)n of different sequences and lengths was obtained, giving the Kd values comparable with the experimentally measured ones. A thermodynamic model was constructed to describe the interactions of LF with DNA. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Production of alpha/beta interferon in response to viral double-stranded RNA (dsRNA) produced during viral replication is a first line of defense against viral infections. Here we demonstrate that the Erns glycoprotein of the pestivirus bovine viral diarrhea virus can act as an inhibitor of dsRNA-induced responses of cells. This effect is seen whether Erns is constitutively expressed in cells or exogenously added to the culture medium. The Erns effect is specific to dsRNA since activation of NF-kappaB in cells infected with Semliki Forest virus or treated with tumor necrosis factor alpha was not affected. We also show that Erns contains a dsRNA-binding activity, and its RNase is active against dsRNA at a low pH. Both the dsRNA binding and RNase activities are required for the inhibition of dsRNA signaling, and we discuss here a model to account for these observations.  相似文献   

17.
A nuclease associated with the chromatin of barley leaves hasbeen solubilized and purified 20 fold. The purified preparationhydrolyzes native or denatured DNA and RNA, but exhibits nophosphodiesterase or phosphomonoesterase activity. The ratiosof RNase and DNase activities remain essentially constant throughoutall the steps of purification. The two enzyme activities hadpH optimum of 7.0 and showed similar effects of phosphate, Zn++,Mg++ and other metal cations, EDTA, inhibitors, freezing andthawing, heat treatment and precipitation by protamine sulfateand streptomycin sulfate. RNA and DNA were degraded by the enzymein endonucleolytic fashion. (Received January 30, 1971; )  相似文献   

18.
Circular dichroism in the 300-360 nm region and fluorescence induced by intercaltating binding of ethidum bromide to both DNA and RNA components were studied in isolated HeLa nucleoli. Both DNA and RNA compoents contribute to the induced dichroic elliticity. Digestion of nucleoli by RNase or DNase shows that most of the induced ellipticity comes from the DNA component. In nucleoli with an RNA/DNA = 0.8/1.0 the RNA component gives only 20% of the total ellipticity when measured at an ethidium bromide/DNA = 0.25. Spectro-fluorometric titration shows that ethidium bromide intercalates mostly into DNA in nucleoli. Both circular dichroism and fluorescence studies indicate that both DNA and RNA components in isolated nucleoli are less accessible to intercalating binding by ethidium bromide when compared to purified nucleolar DNA, DNA in chromatin or purified ribosomal RNA. Circular dichroic measurements of intercalating binding of ethidium bromide to to nucleoli may be used to study changes in nucleoli under different physiological or pathological conditions.  相似文献   

19.
RNA primer removal during DNA replication is dependent on ribonucleotide- and structure-specific RNase H and FEN-1 nuclease activities. A specific RNase H involved in this reaction has long been sought. RNase HII is the only open reading frame in Archaeoglobus fulgidus genome, while multiple RNases H exist in eukaryotic cells. Data presented here show that RNase HII from A. fulgidus (aRNase HII) specifically recognizes RNA-DNA junctions and generates products suited for the FEN-1 nuclease, indicating its role in DNA replication. Biochemical characterization of aRNase HII activity in the presence of various divalent metal ions reveals a broad metal tolerance with a preference for Mg(2+) and Mn(2+). Combined mutagenesis, biochemical competitions, and metal-dependent activity assays further clarify the functions of the identified amino acid residues in substrate binding or catalysis, respectively. These experiments also reveal that Asp129 form a second-metal binding site, and thus contribute to activity attenuation.  相似文献   

20.
Herein, the ribonuclease H (RNase H) activity assay based on the target‐activated DNA polymerase activity is described. In this method, a detection probe composed of two functional sequences, a binding site for DNA polymerase and a catalytic substrate for RNase H, serves as a key component. The detection probe, at its initial state, suppresses the DNA polymerase activity, but it becomes destabilized by RNase H, which specifically hydrolyzes RNA in RNA/DNA hybrid duplexes. As a result, DNA polymerase recovers its activity and initiates multiple primer extension reactions in a separate TaqMan probe‐based signal transduction module, leading to a significantly enhanced fluorescence “turn‐on” signal. This assay can detect RNase H activity as low as 0.016 U mL?1 under optimized conditions. Furthermore, its potential use for evaluating RNase H inhibitors, which have been considered potential therapeutic agents against acquired immune deficiency syndrome (AIDS), is successfully explored. In summary, this approach is quite promising for the sensitive and accurate determination of enzyme activity and inhibitor screening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号