首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Spectrins are major proteins in the cytoskeletal network of most cells. In Drosophila, βHeavy‐Spectrin encoded by the karst gene functions together with Crb during photoreceptor morphogenesis. However, the roles of two other Spectrins (α‐ and β‐Spectrins) in developing photoreceptor cells have not been studied. Here, we analyzed the effects of spectrin mutations on developing eyes to determine their roles in photoreceptor morphogenesis. We found that the Spectrins are dispensable for retinal differentiation in eye imaginal discs during larval stage. However, photoreceptors deficient in α‐ or β‐Spectrin display dramatic apical membrane expansions including Crb and show morphogenesis defects during pupal eye development, suggesting that α‐ and β‐Spectrins are specifically required for photoreceptor polarity during pupal eye development. Karst localizes apically, whereas β‐Spectrin is preferentially distributed in the basolateral region. We show that overexpression of β‐Spectrin causes a strong shrinkage of apical membrane domains, and loss of β‐Spectrin causes an expansion of apical domains, implying an antagonistic relationship between β‐Spectrin and Karst. These results indicate that Spectrins are required for controlling photoreceptor morphogenesis through the modulations of cell membrane domains. genesis 47:744–750, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
3.
Cell–cell interactions within the tumour microenvironment have crucial roles in epithelial tumorigenesis. Using Drosophila genetics, we show that the oncoprotein Src controls tumour microenvironment by Jun N‐terminal kinase (JNK)‐dependent regulation of the Hippo pathway. Clones of cells with elevated Src expression activate the Rac‐Diaphanous and Ras‐mitogen‐activated protein kinase (MAPK) pathways, which cooperatively induce F‐actin accumulation, thereby leading to activation of the Hippo pathway effector Yorkie (Yki). Simultaneously, Src activates the JNK pathway, which antagonizes the autonomous Yki activity and causes propagation of Yki activity to neighbouring cells, resulting in the overgrowth of surrounding tissue. Our data provide a mechanism to explain how oncogenic mutations regulate tumour microenvironment through cell–cell communication.  相似文献   

4.
Epithelial tissues are composed of polarized cells with distinct apical and basolateral membrane domains. In the Drosophila ovarian follicle cell epithelium, apical membranes are specified by Crumbs (Crb), Stardust (Sdt), and the aPKC-Par6-cdc42 complex. Basolateral membranes are specified by Lethal giant larvae (Lgl), Discs large (Dlg), and Scribble (Scrib). Apical and basolateral determinants are known to act in a mutually antagonistic fashion, but it remains unclear how this interaction generates polarity. We have built a computer model of apicobasal polarity that suggests that the combination of positive feedback among apical determinants plus mutual antagonism between apical and basal determinants is essential for polarization. In agreement with this model, in vivo experiments define a positive feedback loop in which Crb self-recruits via Crb-Crb extracellular domain interactions, recruitment of Sdt-aPKC-Par6-cdc42, aPKC phosphorylation of Crb, and recruitment of Expanded (Ex) and Kibra (Kib) to prevent endocytic removal of Crb from the plasma membrane. Lgl antagonizes the operation of this feedback loop, explaining why apical determinants do not normally spread into the basolateral domain. Once Crb is removed from the plasma membrane, it undergoes recycling via Rab11 endosomes. Our results provide a dynamic model for understanding how epithelial polarity is maintained in Drosophila follicle cells.  相似文献   

5.
First identified in Drosophila, the Crumbs (Crb) proteins are important in epithelial polarity, apical membrane formation, and tight junction (TJ) assembly. The conserved Crb intracellular region includes a FERM (band 4.1/ezrin/radixin/moesin) binding domain (FBD) whose mammalian binding partners are not well understood and a PDZ binding motif that interacts with mammalian Pals1 (protein associated with lin seven) (also known as MPP5). Pals1 binds Patj (Pals1-associated tight-junction protein), a multi-PDZ-domain protein that associates with many tight junction proteins. The Crb complex also binds the conserved Par3/Par6/atypical protein kinase C (aPKC) polarity cassette that restricts migration of basolateral proteins through phosphorylation. Here, we describe a Crb3 knockout mouse that demonstrates extensive defects in epithelial morphogenesis. The mice die shortly after birth, with cystic kidneys and proteinaceous debris throughout the lungs. The intestines display villus fusion, apical membrane blebs, and disrupted microvilli. These intestinal defects phenocopy those of Ezrin knockout mice, and we demonstrate an interaction between Crumbs3 and ezrin. Taken together, our data indicate that Crumbs3 is crucial for epithelial morphogenesis and plays a role in linking the apical membrane to the underlying ezrin-containing cytoskeleton.  相似文献   

6.
Analysis of the mechanisms that control epithelial polarization has revealed that cues for polarization are mediated by transmembrane proteins that operate at the apical, lateral, or basal surface of epithelial cells. Whereas for any given epithelial cell type only one or two polarization systems have been identified to date, we report here that the follicular epithelium in Drosophila ovaries uses three different polarization mechanisms, each operating at one of the three main epithelial surface domains. The follicular epithelium arises through a mesenchymal-epithelial transition. Contact with the basement membrane provides an initial polarization cue that leads to the formation of a basal membrane domain. Moreover, we use mosaic analysis to show that Crumbs (Crb) is required for the formation and maintenance of the follicular epithelium. Crb localizes to the apical membrane of follicle cells that is in contact with germline cells. Contact to the germline is required for the accumulation of Crb in follicle cells. Discs Lost (Dlt), a cytoplasmic PDZ domain protein that was shown to interact with the cytoplasmic tail of Crb, overlaps precisely in its distribution with Crb, as shown by immunoelectron microscopy. Crb localization depends on Dlt, whereas Dlt uses Crb-dependent and -independent mechanisms for apical targeting. Finally, we show that the cadherin-catenin complex is not required for the formation of the follicular epithelium, but only for its maintenance. Loss of cadherin-based adherens junctions caused by armadillo (beta-catenin) mutations results in a disruption of the lateral spectrin and actin cytoskeleton. Also Crb and the apical spectrin cytoskeleton are lost from armadillo mutant follicle cells. Together with previous data showing that Crb is required for the formation of a zonula adherens, these findings indicate a mutual dependency of apical and lateral polarization mechanisms.  相似文献   

7.
Enteropathogenic Escherichia coli (EPEC) uses a type III secretion system to inject effector proteins into host intestinal epithelial cells causing diarrhoea. EPEC infection redistributes basolateral proteins β1‐integrin and Na+/K+ ATPase to the apical membrane of host cells. The Crumbs (Crb) polarity complex (Crb3/Pals1/Patj) is essential for epithelial cell polarisation and tight junction (TJ) assembly. Here, we demonstrate that EPEC displaces Crb3 and Pals1 from the apical membrane to the cytoplasm of cultured intestinal epithelial cells and colonocytes of infected mice. In vitro studies show that EspF, but not Map, alters Crb3, whereas both effectors modulate Pals1. EspF perturbs polarity formation in cyst morphogenesis assays and induces endocytosis and apical redistribution of Na+/K+ ATPase. EspF binds to sorting nexin 9 (SNX9) causing membrane remodelling in host cells. Infection with ΔespF/pespFD3, a mutant strain that ablates EspF binding to SNX9, or inhibition of dynamin, attenuates Crb3 endocytosis caused by EPEC. In addition, infection with ΔespF/pespFD3 has no impact on Na+/K+ ATPase endocytosis. These data support the hypothesis that EPEC perturbs apical–basal polarity in an EspF‐dependent manner, which would contribute to EPEC‐associated diarrhoea by disruption of TJ and altering the crucial positioning of membrane transporters involved in the absorption of ions and solutes.  相似文献   

8.
Epithelial cells are characterized by an “apical–basal” polarization. The transmembrane protein Crumbs (Crb) is an essential apical determinant which confers apical membrane identity. Previous studies indicated that Crb did not constantly reside on the apical membrane, but was actively recycled. However, the cellular mechanism(s) underlying this process was unclear. Here we showed that in Drosophila, retromer, which was a retrograde complex recycling certain transmembrane proteins from endosomes to trans-Golgi network (TGN), regulated Crb in epithelial cells. In the absence of retromer, Crb was mis-targeted into lysosomes and degraded, causing a disruption of the apical–basal polarity. We further showed that Crb co-localized and interacted with retromer, suggesting that retromer regulated the retrograde recycling of Crb. Our data presented here uncover the role of retromer in regulating apical–basal polarity in epithelial cells and identify retromer as a novel regulator of Crb recycling.  相似文献   

9.
10.
The Hippo pathway is an important regulator of organ growth and cell fate. In the R8 photoreceptor cells of the Drosophila melanogaster eye, the Hippo pathway controls the fate choice between one of two subtypes that express either the blue light-sensitive Rhodopsin 5 (Hippo inactive R8 subtype) or the green light-sensitive Rhodopsin 6 (Hippo active R8 subtype). The degree to which the mechanism of Hippo signal transduction and the proteins that mediate it are conserved in organ growth and R8 cell fate choice is currently unclear. Here, we identify Crumbs and the apical spectrin cytoskeleton as regulators of R8 cell fate. By contrast, other proteins that influence Hippo-dependent organ growth, such as the basolateral spectrin cytoskeleton and Ajuba, are dispensable for the R8 cell fate choice. Surprisingly, Crumbs promotes the Rhodopsin 5 cell fate, which is driven by Yorkie, rather than the Rhodopsin 6 cell fate, which is driven by Warts and the Hippo pathway, which contrasts with its impact on Hippo activity in organ growth. Furthermore, neither the apical spectrin cytoskeleton nor Crumbs appear to regulate the Hippo pathway through mechanisms that have been observed in growing organs. Together, these results show that only a subset of Hippo pathway proteins regulate the R8 binary cell fate decision and that aspects of Hippo signalling differ between growing organs and post-mitotic R8 cells.  相似文献   

11.
12.
The cell polarity gene,crumbs (crb), has been shown to participate in the development and degeneration of theDrosophila retina. Mutations inCRB1, the human homologue ofDrosophila crb, also result in retinitis pigmentosa and Leber congential amaurosis. In this study, we used the gain-of-function approach to delineate the roles ofcrb in developingDrosophila eye. In the third-instar larval stage, eye development is initiated with photoreceptor differentiation and positioning of photoreceptor nuclei in the apical cellular compartment of retinal epithelium. In the pupal stage, differentiated photoreceptors begin to form the photosensitive structures, the rhabdomeres, at their apical surface. UsingGMR-Gal4 to drive overexpression of the Crb protein at the third-instar eye disc, we found that differentiation of photoreceptors was disrupted and the nuclei of differentiated photoreceptors failed to occupy the apical compartment. Usinghs-Gal4 to drive Crb overexpression in pupal eyes resulted in interference with extension of the adherens junctions and construction of the rhabdomeres, and these defects were stage-dependent. This gain-of-function study has enabled us to delineate the roles of Crb at selective stages of eye development inDrosophila.  相似文献   

13.
The transmembrane protein Crumbs (Crb) and its intracellular adaptor protein Pals1 (Stardust, Sdt in Drosophila) play a crucial role in the establishment and maintenance of apical-basal polarity in epithelial cells in various organisms. In contrast, the multiple PDZ domain-containing protein Pals1-associated tight junction protein (PATJ), which has been described to form a complex with Crb/Sdt, is not essential for apical basal polarity or for the stability of the Crb/Sdt complex in the Drosophila epidermis. Here we show that, in the embryonic epidermis, Sdt is essential for the correct subcellular localization of PATJ in differentiated epithelial cells but not during cellularization. Consistently, the L27 domain of PATJ is crucial for the correct localization and function of the protein. Our data further indicate that the four PDZ domains of PATJ function, to a large extent, in redundancy, regulating the function of the protein. Interestingly, the PATJ-Sdt heterodimer is not only recruited to the apical cell-cell contacts by binding to Crb but depends on functional Bazooka (Baz). However, biochemical experiments show that PATJ associates with both complexes, the Baz-Sdt and the Crb-Sdt complex, in the mature epithelium of the embryonic epidermis, suggesting a role of these two complexes for the function of PATJ during the development of Drosophila.  相似文献   

14.
15.
The Crumbs (Crb) complex is a key regulator of epithelial cell architecture where it promotes apical membrane formation. Here, we show that binding of the FERM protein Yurt to the cytoplasmic domain of Crb is part of a negative-feedback loop that regulates Crb activity. Yurt is predominantly a basolateral protein but is recruited by Crb to apical membranes late during epithelial development. Loss of Yurt causes an expansion of the apical membrane in embryonic epithelia and photoreceptor cells similar to Crb overexpression and in contrast to loss of Crb. Analysis of yurt crb double mutants suggests that these genes function in one pathway and that yurt negatively regulates crb. We also show that the mammalian Yurt orthologs YMO1 and EHM2 bind to mammalian Crb proteins. We propose that Yurt is part of an evolutionary conserved negative-feedback mechanism that restricts Crb complex activity in promoting apical membrane formation.  相似文献   

16.
The Hippo pathway has been implicated in controlling organ size and tumorigenesis and the underlying molecular mechanisms have attracted intensive attentions. In this work, we identified dSmurf as a new regulator of Wts, a core component of the Hippo pathway, in Drosophila. Our data revealed that Wts and dSmurf colocalize to cytoplasm and physically form an immunoprecipitated complex in S2 cells. Sufficient knock-down of dSmurf increases the protein abundance of Wts and thus increases phosphorylation level at S168 of Yki, the key downstream target of Wts in the Hippo pathway. Genetic epistasis assays showed that halving dosage of dSmurf dominantly enhances the phenotype caused by overexpression of Wts and restrains Yki activity in Drosophila eyes. Our works defines a novel role of dSmurf in animal development through modulating Wts turnover and thereby Hippo signal transduction, implying that targeting dSmurf may be a promising therapeutic strategy to manipulate the Hippo pathway in pathological conditions.  相似文献   

17.
Drosophila Hippo signaling regulates Wts activity to phosphorylate and inhibit Yki in order to control tissue growth. CK2 is widely expressed and involved in a variety of signaling pathways. In this study we report that Drosophila CK2 promotes Wts activity to phosphorylate and inhibit Yki activity, which is independent of Hpo-induced Wts promotion. In vivo, CK2 overexpression suppresses hpo mutant-induced expanded (Ex) up-regulation and overgrowth phenotype, whereas it cannot affect wts mutant. Consistent with this, knockdown of CK2 up-regulates Hpo pathway target expression. We also found that Drosophila CK2 is essential for tissue growth as a cell death inhibitor as knockdown of CK2 in the developing disc induces severe growth defects as well as caspase3 signals. Taken together, our results uncover a dual role of CK2; although its major role is promoting cell survive, it may potentially be a growth inhibitor as well.  相似文献   

18.
19.
20.
The evolutionarily conserved apical determinant Crumbs (Crb) is essential for maintaining apicobasal polarity and integrity of many epithelial tissues [1]. Crb levels are crucial for cell polarity and homeostasis, yet strikingly little is known about its trafficking or the mechanism of its apical localization. Using a newly established, liposome-based system described here, we determined Crb to be an interaction partner and cargo of the retromer complex. Retromer is essential for the retrograde transport of numerous transmembrane proteins from endosomes to the trans-Golgi network (TGN) and is conserved between plants, fungi, and animals [2]. We show that loss of retromer function results in a substantial reduction of Crb in Drosophila larvae, wing discs, and the follicle epithelium. Moreover, loss of retromer phenocopies loss of crb by preventing apical localization of key polarity molecules, such as atypical protein kinase C (aPKC) and Par6 in the follicular epithelium, an effect that can be rescued by overexpression of Crb. Additionally, loss of retromer results in multilayering of the follicular epithelium, indicating that epithelial integrity is severely compromised. Our data reveal a mechanism for Crb trafficking by retromer that is vital for maintaining Crb levels and localization. We also show a novel function for retromer in maintaining epithelial cell polarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号