首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 178 毫秒
1.
2.
mRNA surveillance pathways selectively clear defective mRNAs from the cell. As such, these pathways serve as important modifiers of genetic disorders. Nonsense-mediated decay (NMD), the most intensively studied surveillance pathway, recognizes mRNAs with premature termination codons (PTCs). In mammalian systems the location of a PTC more than 50 nucleotides 5' to the terminal exon-exon junction is a critical determinant of NMD. However, mRNAs with nonsense codons that fulfill this requirement but are located very early in the open reading frame can effectively evade NMD. The unexpected resistance of such mRNAs with AUG-proximal PTCs to accelerated decay suggests that important determinants of NMD remain to be identified. Here, we report that an NMD-sensitive mRNA can be stabilized by artificially tethering the cytoplasmic poly(A) binding protein 1, PABPC1, at a PTC-proximal position. Remarkably, the data further suggest that NMD of an mRNA with an AUG-proximal PTC can also be repressed by PABPC1, which might be brought into proximity with the PTC during cap-dependent translation and 43S scanning. These results reveal a novel parameter of NMD in mammalian cells that can account for the stability of mRNAs with AUG-proximal PTCs. These findings serve to expand current mechanistic models of NMD and mRNA translation.  相似文献   

3.
Nonsense-mediated mRNA decay (NMD) is a surveillance pathway that recognizes and rapidly degrades mRNAs containing premature termination codons (PTC). The strength of the NMD response appears to reflect multiple determinants on a target mRNA. We have previously reported that mRNAs containing PTCs in close proximity to the translation initiation codon (AUG-proximal PTCs) can substantially evade NMD. Here, we explore the mechanistic basis for this NMD resistance. We demonstrate that translation termination at an AUG-proximal PTC lacks the ribosome stalling that is evident in an NMD-sensitive PTC. This difference is associated with demonstrated interactions of the cytoplasmic poly(A)-binding protein 1, PABPC1, with the cap-binding complex subunit, eIF4G and the 40S recruitment factor eIF3 as well as the ribosome release factor, eRF3. These interactions, in combination, underlie critical 3'-5' linkage of translation initiation with efficient termination at the AUG-proximal PTC and contribute to an NMD-resistant PTC definition at an early phase of translation elongation.  相似文献   

4.
5.
6.
Inconsistent with prevailing models for nonsense-mediated mRNA decay (NMD) in mammals, the mRNA levels of immunoglobulin-mu (Ig-mu) genes with premature termination codons (PTCs) in the penultimate exon are still reduced by NMD when the intron furthest downstream is deleted. As in yeast, this exon junction complex-independent NMD of Ig-mu mRNAs depends on the distance between the termination codon and the poly(A) tail and suggests an evolutionarily conserved mode of PTC recognition.  相似文献   

7.
Eukaryotic mRNAs harboring premature translation termination codons are recognized and rapidly degraded by the nonsense-mediated mRNA decay (NMD) pathway. The mechanism for discriminating between mRNAs that terminate translation prematurely and those subject to termination at natural stop codons remains unclear. Studies in multiple organisms indicate that proximity of the termination codon to the 3' poly(A) tail and the poly(A) RNA-binding protein, PAB1, constitute the critical determinant in NMD substrate recognition. We demonstrate that mRNA in yeast lacking a poly(A) tail can be destabilized by introduction of a premature termination codon and, importantly, that this mRNA is a substrate of the NMD machinery. We further show that, in cells lacking Pab1p, mRNA substrate recognition and destabilization by NMD are intact. These results establish that neither the poly(A) tail nor PAB1 is required in yeast for discrimination of nonsense-codon-containing mRNA from normal by NMD.  相似文献   

8.
It has been reported that eukaryotic organisms have a nonsense-mediated mRNA decay (NMD) system to exclude aberrant mRNAs that produce truncated proteins. NMD is an RNA surveillance pathway that degrades mRNAs possessing premature translation termination codons (PTCs), thus avoiding production of possibly toxic truncated proteins. Three interacting proteins, UPF1, UPF2 and UPF3, are required for NMD in mammals and yeasts, and their amino acid sequences are well conserved among most eukaryotes, including plants. In this study, 'The Arabidopsis Information Resource' database was searched for mRNAs with premature termination codons. We selected five of these mRNAs and checked for the presence of PTCs in these mRNAs when translated in vivo. As a result we identified aberrant mRNAs produced by alternative splicing for each gene. These genes produced at least one alternative splicing variant including a PTC (PTC+) and another variant without a PTC (PTC-). We analyzed their PTC+/PTC- ratios in wild-type Arabidopsis and upf3 mutant plants and showed that the PTC+/PTC- ratios were higher in atupf3 mutant plants than wild-type plants and that the atupf3 mutant was less able to degrade mRNAs with premature termination codons than wild-type plants. This indicated that the AtUPF3 gene is required by the plant NMD system to obviate aberrantly spliced mRNA.  相似文献   

9.
Nonsense-mediated mRNA decay (NMD) represents a key mechanism to control the expression of wild-type and aberrant mRNAs. Phosphorylation of the protein UPF1 in the context of translation termination contributes to committing mRNAs to NMD. We report that translation termination is inhibited by UPF1 and stimulated by cytoplasmic poly(A)-binding protein (PABPC1). UPF1 binds to eRF1 and to the GTPase domain of eRF3 both in its GTP- and GDP-bound states. Importantly, mutation studies show that UPF1 can interact with the exon junction complex (EJC) alternatively through either UPF2 or UPF3b to become phosphorylated and to activate NMD. On this basis, we discuss an integrated model where UPF1 halts translation termination and is phosphorylated by SMG1 if the termination-promoting interaction of PABPC1 with eRF3 cannot readily occur. The EJC, with UPF2 or UPF3b as a cofactor, interferes with physiological termination through UPF1. This model integrates previously competing models of NMD and suggests a mechanistic basis for alternative NMD pathways.  相似文献   

10.
Nonsense-mediated mRNA decay (NMD) degrades mRNAs carrying premature translation termination codons (PTCs). Although the core process and several NMD effectors are conserved among species, the involvement of a splicing-dependent signal seems to be specific for mammalian PTC definition. Still, recent data shed new light on physical parameters and mechanistic pathways involved in NMD. Here, we examine these findings, updating the roles for potential NMD players, such as the exon junction complex and the cytoplasmic poly(A)-binding protein 1 - the former acting as enhancer rather than an essential factor and the latter functioning as NMD repressor.  相似文献   

11.
Targeting of aberrant mRNAs to cytoplasmic processing bodies   总被引:12,自引:0,他引:12  
Sheth U  Parker R 《Cell》2006,125(6):1095-1109
In eukaryotes, a specialized pathway of mRNA degradation termed nonsense-mediated decay (NMD) functions in mRNA quality control by recognizing and degrading mRNAs with aberrant termination codons. We demonstrate that NMD in yeast targets premature termination codon (PTC)-containing mRNA to P-bodies. Upf1p is sufficient for targeting mRNAs to P-bodies, whereas Upf2p and Upf3p act, at least in part, downstream of P-body targeting to trigger decapping. The ATPase activity of Upf1p is required for NMD after the targeting of mRNAs to P-bodies. Moreover, Upf1p can target normal mRNAs to P-bodies but not promote their degradation. These observations lead us to propose a new model for NMD wherein two successive steps are used to distinguish normal and aberrant mRNAs.  相似文献   

12.
SMG-1, a member of the PIKK (phosphoinositide 3-kinase related kinases) family, plays a critical role in the mRNA quality control system termed nonsense-mediated mRNA decay (NMD). NMD protects the cells from the accumulation of aberrant mRNAs with premature termination codons (PTCs) that encode nonfunctional or potentially harmful truncated proteins. SMG-1 directly phosphorylates Upf1, another key component of NMD, and this phosphorylation occurs upon recognition of PTC on post-spliced mRNA during the initial round of translation. At present, a variety of tools are available that can specifically suppress NMD, and it is possible to examine the contribution of NMD in a variety of physiological and pathological conditions.  相似文献   

13.
14.
无义介导的mRNA降解(nonsense-mediated mRNA decay,NMD)作为真核细胞中重要RNA监控机制,识别并降解开放阅读框中含有提前终止密码子(premature termination codon,PTC)的mRNA,以避免因截短的蛋白产物积累对细胞造成毒害. NMD还调控正常生理基因的表达,暗示其在真核细胞中扮演重要角色. NMD途径的关键是PTC的识别.本文通过3种模型来分别阐述发现于哺乳动物、酵母等不同有机体的识别机制.通常由NMD因子UPF1(up-frameshift)等被招募至含PTC的mRNA上,借助这些因子组装形成“功能复合体”并激活降解.但目前对于PTC识别后的过程仍认识有限,本文通过综述NMD途径的分子机制以更好地理解其生物学意义.  相似文献   

15.
Nonsense-mediated decay does not occur within the yeast nucleus   总被引:2,自引:0,他引:2  
  相似文献   

16.
Nonsense-mediated mRNA decay (NMD) is a surveillance pathway that recognizes and selectively degrades mRNAs carrying premature termination codons (PTCs). The level of sensitivity of a PTC-containing mRNA to NMD is multifactorial. We have previously shown that human β-globin mRNAs carrying PTCs in close proximity to the translation initiation AUG codon escape NMD. This was called the ‘AUG-proximity effect’. The present analysis of nonsense codons in the human α-globin mRNA illustrates that the determinants of the AUG-proximity effect are in fact quite complex, reflecting the ability of the ribosome to re-initiate translation 3′ to the PTC and the specific sequence and secondary structure of the translated ORF. These data support a model in which the time taken to translate the short ORF, impacted by distance, sequence, and structure, not only modulates translation re-initiation, but also impacts on the exact boundary of AUG-proximity protection from NMD.  相似文献   

17.
Eukaryotic cells target mRNAs to the nonsense-mediated mRNA decay (NMD) pathway when translation terminates within the coding region. In mammalian cells, this is presumably due to a downstream signal deposited during pre-mRNA splicing. In contrast, unspliced retroviral RNA undergoes NMD in chicken cells when premature termination codons (PTCs) are present in the gag gene. Surprisingly, deletion of a 401-nt 3' UTR sequence immediately downstream of the normal gag termination codon caused this termination event to be recognized as premature. We termed this 3' UTR region the Rous sarcoma virus (RSV) stability element (RSE). The RSE also stabilized the viral RNA when placed immediately downstream of a PTC in the gag gene. Deletion analysis of the RSE indicated a smaller functional element. We conclude that this 3' UTR sequence stabilizes termination codons in the RSV RNA, and termination codons not associated with such an RSE sequence undergo NMD.  相似文献   

18.
19.
The Nonsense-mediated mRNA decay (NMD) pathway selectively degrades mRNAs harboring premature termination codons (PTCs) but also regulates the abundance of a large number of cellular RNAs. The central role of NMD in the control of gene expression requires the existence of buffering mechanisms that tightly regulate the magnitude of this pathway. Here, we will focus on the mechanism of NMD with an emphasis on the role of RNA helicases in the transition from NMD complexes that recognize a PTC to those that promote mRNA decay. We will also review recent strategies aimed at uncovering novel trans-acting factors and their functional role in the NMD pathway. Finally, we will describe recent progress in the study of the physiological role of the NMD response.  相似文献   

20.
Eukaryotic mRNAs containing premature termination codons (PTCs) are degraded by a process known as nonsense-mediated mRNA decay (NMD). NMD has been suggested to require the recognition of PTC by an mRNA surveillance complex containing UPF1/SMG-2. In multicellular organisms, UPF1/SMG-2 is a phosphoprotein, and its phosphorylation contributes to NMD. Here we show that phosphorylated hUPF1, the human ortholog of UPF1/SMG-2, forms a complex with human orthologs of the C. elegans NMD proteins SMG-5 and SMG-7. The complex also associates with protein phosphatase 2A (PP2A), resulting in dephosphorylation of hUPF1. Overexpression of hSMG-5 mutants that retain interaction with P-hUPF1 but which cannot induce its dephosphorylation impair NMD, suggesting that NMD requires P-hUPF1 dephosphorylation. We also show that P-hUPF1 forms distinct complexes containing different isoforms of hUPF3A. We propose that sequential phosphorylation and dephosphorylation of hUPF1 by hSMG-1 and PP2A, respectively, contribute to the remodeling of the mRNA surveillance complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号