首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Li JG  Chen C  Liu-Chen LY 《Biochemistry》2007,46(38):10960-10970
We examined glycosylation of FLAG-hKOR expressed in CHO cells and determined its functional significance. FLAG-hKOR was resolved as a broad and diffuse 55-kDa band and a less diffuse 45-kDa band by immunoblotting, indicating that the receptor is glycosylated. Endoglycosidase H cleaved the 45-kDa band to approximately 38 kDa but did not change the 55-kDa band, demonstrating that the 45-kDa band is N-glycosylated with high-mannose or hybrid-type glycan. Peptide-N-glycosidase F digestion of solubilized hKOR or incubation of cells with tunicamycin resulted in two species of 43 and 38 kDa, suggesting that the 43-kDa band is O-glycosylated. FLAG-hKOR was reduced to lower Mr bands by neuraminidase and O-glycosidase, indicating that the hKOR contains O-linked glycan. Mutation of Asn25 or Asn39 to Gln in the N-terminal domain reduced the Mr by approximately 5 kDa, indicating that both residues were glycosylated. The double mutant hKOR-N25/39Q was resolved as a 43-kDa (mature form) and a 38-kDa (intermediate form) band. When transiently expressed, hKOR-N25/39Q had a lower expression level than the wild type. In CHO cells stably expressing the hKOR-N25/39Q, pulse-chase experiments revealed that the turnover rate constants (ke) of the intermediate and mature forms were approximately 3 times those of the wild type. In addition, the maturation rate constant (ka) of the 43-kDa form of hKOR-N25/39Q was 6 times that of the mature form of the wild type. The hKOR-N25/39Q mutant showed increased agonist-induced receptor phosphorylation, desensitization, internalization, and downregulation, without changing ligand binding affinity or receptor-G protein coupling. Thus, N-glycosylation of the hKOR plays important roles in stability and trafficking along the biosynthesis pathway of the receptor protein as well as agonist-induced receptor regulation.  相似文献   

3.
The biosynthesis and processing of the vacuolar (lysosomal) acid trehalase (molecular mass about 220 kDa) was followed in vivo using mutants conditionally defective in the secretory pathway. A precursor of 41 kDa was found in sec61 mutant cells deficient in translocation of secretory protein precursors into the lumen of the endoplasmic reticulum. Endoglycosidase H and N-glycosidase F treatment of purified acid trehalase in vitro resulted in a 41 kDa band, indicating that the precursor form found in sec61 mutant cells corresponds to the carbohydrate-free form of the enzyme. sec 18 mutant cells, blocked in the delivery of secretory proteins from the endoplasmic reticulum to the Golgi body accumulate a form with a molecular mass of 76 kDa which probably corresponds to a partially glycosylated precursor of the mature acid trehalase. This precursor partially disappears in favour of the appearance of a higher molecular weight component of 180 kDa in sec7 mutants which are blocked in the delivery step of secretory proteins from the Golgi body to the vacuole. In wild-type cells the fully glycosylated mature form of acid trehalase of about 220 kDa was observed accompanied by some 180 kDa and 76 kDa material.  相似文献   

4.
The synthesis and secretion of beta-hexosaminidase was studied in wild type and secretion-deficient Tetrahymena thermophila cells by metabolic labelling and immunoprecipitation. beta-Hexosaminidase is synthesized as a Mr 79,000 polypeptide which is within 10 min converted into a Mr 59,000 form. The Mr 59,000 polypeptide is further processed (within 20 min) into at least three major mature forms of Mr 58,000-54,000, which are almost quantitatively secreted into the culture medium within 1-2 h after their synthesis. Both precursor and mature forms contain asparagine-linked oligosaccharide chains which are cleavable by endoglucosaminidase F, but not by endoglucosaminidase H. Neither [32P]orthophosphate nor [35S]sulphate are incorporated into immunoprecipitable precursor and mature beta-hexosaminidases, suggesting the absence of a phosphorylated recognition marker. Biosynthesis and processing of beta-hexosaminidase is apparently unaltered in the secretory mutant MS-1; however the processed polypeptides remain cellular bound in the mutant, indicating that the mutation affects a late event in the secretion pathway of lysosomal enzymes.  相似文献   

5.
Mutant LF-1 of the green alga Scenedesmus obliquus has been described by Metz and co-workers (Metz, J. G., Pakrasi, H., Seibert, M., and Arntzen, C. J. (1986) FEBS Lett. 205, 269-274) to be inactive for light-driven oxygen evolution, despite a functional Photo-system II reaction center. A polypeptide, D1, implicated in the ligation of the primary photoreactants of photosystem II, was shown to migrate with an apparent higher molecular mass on LDS-PAGE in the mutant than in the wild-type (WT) strain. We show here that polypeptide D1 is synthesized in a precursor form in Scenedesmus WT. Following synthesis and insertion into the thylakoid membrane, a 1.5-2-kDa oligopeptide is clipped off with a half-time of 1-2 min, yielding the mature 34-kDa form of the polypeptide. No processing of polypeptide D1 from mutant LF-1 was observed to take place. We show here that polypeptide D1 of LF-1 displays an identical proteolytic fingerprint pattern to the precursor D1 polypeptide of the wild-type strain. These both have molecular masses about 1.5-2 kDa higher than that of the mature WT polypeptide. A polyclonal antibody elicited by a synthetic oligopeptide (14-mer), predicted from the psbA gene nucleotide sequence to be homologous to the COOH terminus of the precursor D1 of spinach, cross-reacts only with D1 of mutant LF-1 and not with mature D1 of spinach, Chlamydomonas, or of Scenedesmus WT. This observation demonstrates that the greater molecular mass of polypeptide D1 from mutant LF-1 and of Scenedesmus WT precursor D1 is derived from a COOH-terminal extension. We conclude that the LF-1 mutant lacks the appropriate nuclear-encoded protease which processes polypeptide D1 at its COOH terminus from the precursor to the mature form. Such processing would appear to be a necessary step toward the stable incorporation of manganese into the oxygen-evolving site.  相似文献   

6.
The codon of the catalytic serine in the active site of the vacuolar serine proteinase yscB (PrB) was changed to alanine, yielding the mutant gene prb1-Ala519. Following replacement of the wild-type PRB1 allele with prb1-Ala519, only a 73-kDa molecule was detected by immunoprecipitation with PrB-specific antiserum. The size of the mutant molecule corresponds to the unprocessed cytoplasmic precursor (pre-super-pro-PrB), as detected in sec61 mutants, when translocation into the endoplasmic reticulum is blocked. However, the mutant molecule is completely translocated into the secretory pathway, as indicated by protection from proteinase K digestion in spheroplast lysates in the absence of detergent. When N-glycosylation was inhibited in prb1-Ala519 mutant cells by tunicamycin, a smaller molecule of about 71 kDa appeared consistent with single N-glycosylation and signal-sequence cleavage of the translocated mutant PrB molecule in the endoplasmic reticulum. Thus, the active-site mutation prevents the wild-type processing of the N-glycosylated 73-kDa precursor of PrB to the 41.5 kDa pro-PrB in the endoplasmic reticulum. In order to characterize the processing of wild-type super-pro-PrB in more detail, we generated antibodies against the non-enzymatic superpeptide domain of the 73-kDa precursor expressed in Escherichia coli. We find that, in addition to pro-PrB, a distinct protein (superpeptide) with a mobility of about 41 kDa in SDS/PAGE is generated in the endoplasmic reticulum. Pulse-chase experiments indicate rapid degradation of the 41-kDa superpeptide in wild-type cells. Correspondingly, the superpeptide was virtually undetectable by immunoblotting wild-type cell extracts. In contrast, no degradation of radioactively labeled 41-kDa superpeptide was observed within 60 min in mutant strains deficient in the vacuolar proteinase yscA (PrA), in which maturation of vacuolar pro-PrB to active PrB is blocked. Accordingly, superpeptide antigenic material was readily detected by immunoblotting cell extracts and enriched in vacuolar preparations of PrA deficient mutant cells. These results indicate that the superpeptide and pro-PrB travel to the vacuole, where the superpeptide is rapidly degraded upon pro-PrB activation to PrB. Using purified vacuoles, rapid degradation of the superpeptide was reconstituted in vitro by addition of either mature PrA or mature PrB. However, the PrA-triggered in vitro degradation of the superpeptide required PrB activity, as this process was inhibited in the presence of the PrB inhibitor chymostatin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The adenosine deaminase-binding protein has previously been localized to the cell surface of human fibroblasts (Andy, R. J., and Kornfeld, R. (1982) J. Biol. Chem. 257, 7922-7925). In this study we examine the biosynthesis of binding protein in human fibroblasts, human hepatoma HepG2 cells, and a human kidney tumor cell line. Binding protein immunoprecipitated from radioiodinated detergent-extracted fibroblast membranes has a molecular weight of 120,000 when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. An additional band of Mr 100,000 is also present which we believe is a result of proteolysis of the 120,000 band. Purified soluble kidney binding protein has an Mr of 112,000. Binding protein from fibroblasts pulse-labeled with [35S]methionine for 15 min migrates as a 110-kDa band on sodium dodecyl sulfate-polyacrylamide gels. Within 30-60 min of chase, the intensity of the 110-kDa band is diminished, and a 120-kDa band has appeared. Binding protein reaches the cell surface of fibroblasts within 30-60 min of chase. The same results are obtained with the other cell lines studied. Thus, binding protein is initially synthesized as a precursor of 110 kDa which chases into a 120-kDa mature form. The shift of 10 kDa is probably due to processing of its oligosaccharide chains since soluble kidney-binding protein contains 7-9 complex N-linked chains. Upon endoglycosidase H treatment, the 110,000 precursor shifts to a Mr of 89,000 while the 120,000 mature band shifts to 115,000, consistent with the presence of 7-9 high mannose chains on the precursor and 1-2 high mannose chains on the mature form. These results and the presence of complex N-linked chains on binding protein were confirmed by lectin affinity chromatography of glycopeptides derived from [2-3H]mannose-labeled binding protein. Analysis of [6-3H]glucosamine-labeled binding protein indicates the presence of 1 sialic acid residue per chain.  相似文献   

8.
Carbonic anhydrase (CA) of Chlamydomonas reinhardtii is a glycoprotein of 35 kDa which is localized outside the plasma membrane. The activity of CA was increased when the CO2 concentration during photoautotrophic growth was decreased to air level. After decreasing the CO2 concentration from 4% to 0.04%, several polypeptides including CA were induced continuously or transiently. To investigate the biosynthesis and intracellular processing of CA, the cells of wall-less mutant CW-15, which secretes CA into the culture medium, were pulse-labeled with radioactive arginine, chased, and radioactive proteins were immunoprecipitated with anti-CA serum. A 42-kDa polypeptide with isoelectric point (pI) of 7.1-7.3 was first synthesized. Within 5 min the molecular mass of this polypeptide was decreased to 35 kDa and it was then secreted into the culture medium within 30 min. This indicates that the former is the precursor form and the latter the mature form of CA. The primary translation product from poly(A)-rich RNA in a cell-free reticulocyte lysate system from a rabbit was a 38-kDa polypeptide. This was cotranslationally converted into the 42-kDa precursor in vitro in the presence of dog pancreatic microsomal membranes. As the 42-kDa precursor had a high affinity to concanavalin A, it was assumed to have a high-mannose-type oligosaccharide. The mature enzyme had a pI of 6.1-6.2 and was composed of more than two isoforms, which had a complex-type oligosaccharide with low affinity to concanavalin A. Chemical deglycosylation of the mature enzyme by trifluoromethanesulfonic acid indicated that the molecular mass of the polypeptide moiety was 32 kDa and the difference between this and the primary translation product suggests that cleavage of the polypeptide occurs during its biosynthesis.  相似文献   

9.
We examined the biosynthesis and post-translational processing of the brain-derived neurotrophic factor precursor (pro-BDNF) in cells infected with a pro-BDNF-encoding vaccinia virus. Metabolic labeling, immunoprecipitation, and SDS-polyacrylamide gel electrophoresis reveal that pro-BDNF is generated as a 32-kDa precursor that is N-glycosylated and glycosulfated on a site, within the pro-domain. Some pro-BDNF is released extracellularly and is biologically active as demonstrated by its ability to mediate TrkB phosphorylation. The precursor undergoes N-terminal cleavage within the trans-Golgi network and/or immature secretory vesicles to generate mature BDNF (14 kDa). Small amounts of a 28-kDa protein that is immunoprecipitated with BDNF antibodies is also evident. This protein is generated in the endoplasmic reticulum through N-terminal cleavage of pro-BDNF at the Arg-Gly-Leu-Thr(57)- downward arrow-Ser-Leu site. Cleavage is abolished when Arg(54) is changed to Ala (R54A) by in vitro mutagenesis. Blocking generation of 28-kDa BDNF has no effect on the level of mature BDNF and blocking generation of mature BDNF with alpha(1)-PDX, an inhibitor of furin-like enzymes, does not lead to accumulation of the 28-kDa form. These data suggest that 28-kDa pro-BDNF is not an obligatory intermediate in the formation of the 14-kDa form in the constitutive secretory pathway.  相似文献   

10.
Rice ( Oryza sativa L.) accumulates prolamines and glutelins as its major storage proteins. Glutelins are synthesized on rough endoplasmic reticulum as 57-kDa precursors; they are then sorted into protein storage vacuoles where they are processed into acidic and basic subunits. We report a novel rice glutelin mutant, W379 , which accumulates higher levels of the 57-kDa glutelin precursor. Genetic analysis revealed that the W379 phenotype is controlled by a single recessive nuclear gene. Using a map-based cloning strategy, we identified this gene, OsVPE1 , which is a homolog of the Arabidopsis βVPE gene. OsVPE1 encodes a 497-amino-acid polypeptide. Nucleotide sequence analysis revealed a missense mutation in W379 that changes Cys269 to Gly. Like the wild-type protein, the mutant protein is sorted into vacuoles; however, the enzymatic activity of the mutant OsVPE1 is almost completely eliminated. Further, we show that OsVPE1 is incorrectly cleaved, resulting in a mature protein that is smaller than the wild-type mature protein. Taken together, these results demonstrate that OsVPE1 is a cysteine protease that plays a crucial role in the maturation of rice glutelins. Further, OsVPE1 Cys269 is a key residue for maintaining the Asn-specific cleavage activity of OsVPE1.  相似文献   

11.
We have studied by electron microscopy and immunocytochemistry the formation of secretory granules containing adrenocorticotropic hormone (ACTH) in murine pituitary cells of the AtT20 line. The first compartment in which condensed secretory protein appears is a complex reticular network at the extreme trans side of the Golgi stacks beyond the TPPase-positive cisternae. Condensed secretory protein accumulates in dilated regions of this trans Golgi network. Examination of en face and serial sections revealed that "condensing vacuoles" are in fact dilations of the trans Golgi network and not detached vacuoles. Only after presumptive secretory granules have reached an advanced stage of morphological maturation do they detach from the trans Golgi network. Frequently both the dilations of the trans Golgi network containing condensing secretory protein and the detached immature granules in the peri-Golgi region have surface coats which were identified as clathrin by immunocytochemistry. Moreover both are the site of budding (or fusion) of coated vesicles, some of which contain condensed secretory protein. The mature granules below the plasma membrane do not, however, have surface coats. Immunoperoxidase labeling with an antiserum specific for ACTH and its precursor polypeptide confirmed that many of the coated vesicles associated with the trans Golgi network contain ACTH. The involvement of the trans Golgi network and coated vesicles in the formation of secretory granules is discussed.  相似文献   

12.
We have examined the synthesis, posttranslational processing, and localization of soybean P34, a member of the papain superfamily. P34 has been identified as a constituent of oil storage organelles or oil bodies isolated from seed lysates and has been assumed to be one of the oil body proteins. Electron microscopic immunocytochemistry with a monoclonal antibody demonstrated that P34 is localized in the protein storage vacuoles but not in the oil bodies. Immunocytochemical observations of partially disrupted seed cells showed that the association of P34 with oil bodies appears to occur as a consequence of cell lysis. In vitro synthesis of P34 results in the formation of a 46-kDa polypeptide that increases to 47 kDa due to core glycosylation by canine microsomes. In vivo synthesis studies in the presence and absence of tunicamycin, an inhibitor of N-linked glycosylation, indicate that pro-P34 is 47 kDa. Since the cDNA sequence of prepro-P34 contains a single putative glycosylation site in the precursor domain, we conclude that P34, like a few other vacuolar proteins, is synthesized as a glycoprotein precursor. Pulse-chase experiments showed that the processing of pro-P34 to mature P34 occurs in a single step and that this posttranslational cleavage occurs on the carboxyl side of an Asn, which is typical of seed vacuolar proteins. Pro-P34 (47 kDa) is detected in immunoblots of maturing seeds. Analysis of RNA indicates that the P34 genes are expressed only during seed maturation and that the P34 mRNA is related to other thiol protease mRNAs detectable in other organs and plants. Unlike other seed thiol proteases that are synthesized only after seed germination, P34 accumulates during seed maturation.  相似文献   

13.
The biosynthesis of nonspecific lipid transfer protein (nsLTP) was investigated. Total RNA of rat liver was translated in a rabbit reticulocyte lysate cell-free protein-synthesizing system with [35S]methionine as label. The immunoprecipitation of translation products with affinity-purified anti-nsLTP antibody yielded 14.5- and 60-kDa [35S]polypeptides. The molecular mass of the former polypeptide was approximately 1.5 kDa larger than that of the purified mature nsLTP (13 kDa). The site of synthesis of nsLTP was studied by in vitro translation of free and membrane-bound polyribosomal RNAs followed by immunoprecipitation. mRNA for both the 14.5- and 60-kDa polypeptides were found predominantly in the free polyribosomal fraction in both normal and clofibrate-treated rats. Clofibrate, a hypolipidemic drug that proliferates peroxisomes, did not increase the relative amount of nsLTP mRNA in rat liver. Pulse-chase experiments in rat hepatoma H-35 cells suggested that nsLTP was synthesized as a larger precursor of 14.5 kDa and converted to a mature form of 13 kDa. We have recently shown that nsLTP is highly concentrated in peroxisomes in rat hepatocytes [Tsuneoka et al. (1988) J. Biochem. 104, 560-564]. Taken together, these results suggest that nsLTP is synthesized as a larger precursor of 14.5 kDa on cytoplasmic free polyribosomes, then post-translationally transported to peroxisomes, where the precursor is presumably proteolytically processed to its mature form of 13 kDa. The relationship between the 13-kDa nsLTP and the 60-kDa polypeptide is also discussed.  相似文献   

14.
The biosynthesis of the prostatic form of human acid phosphatase was studied in normal embryonic lung cells, WI-38, by metabolic labeling with tritiated leucine and [32P]phosphate, followed by specific immunoprecipitation, gel electrophoresis, and fluorography. Of the total tartrate-inhibitable acid phosphatase activity in WI-38 cells, 30% is due to the prostatic form. The primary translation product that leads eventually to the mature prostatic enzyme is a precursor polypeptide of 112 kDa. The precursor polypeptide is processed to mature polypeptides of 59, 55, and 49 kDa via an intermediate 91-kDa precursor. WI-38 cells also secrete a 113-kDa peptide into the medium. The precursor and mature polypeptides are glycosylated and phosphorylated. Upon treatment with endo-beta-hexosaminidase H, the apparent molecular weighs of the polypeptides are reduced by approximately 4 kDa and phosphate is lost.  相似文献   

15.
The HeFi-1 mAb recognizes a membrane protein on Hodgkin's disease cells and on a limited number of other human cells that are either tumorigenically transformed or virally activated. Herein biochemical and structural analyses of the HeFi-1 reactive membrane protein (HRMP) were done to identify its potential importance in cellular transformation in the Hodgkin's disease cell line L428, in the T cell lymphoma line HuT 78, and in several EBV-transformed lymphoblastoid cell lines. Immunoprecipitation studies demonstrated that the mature form of the HRMP had an apparent Mr of 120 kDa in tumor cells and 116 kDa in the EBV-transformed cell lines and that it was phosphorylated at both serine and tyrosine residues in all cell lines tested. The precursor to the HRMP is an 86-kDa core protein that, after processing by high mannose N-linked glycosylation, migrates with an apparent Mr of 90 kDa. This protein is then further processed to the mature 120-kDa HRMP in part by O-linked glycosylation, the addition of sialic acid residues, and by the conversion of N-linked oligosaccharides from the high mannose to the complex type. Detectable amounts of the 90-kDa molecule can be found in the membrane and, although this protein can be phosphorylated in vitro, it is not phosphorylated in intact cells. The combined results of this study suggest that the HRMP is involved in cellular metabolism and show that an unusual amount of post-translational processing of the 90-kDa precursor results in the formation, and perhaps phosphorylation, of the mature 120-kDa HRMP.  相似文献   

16.
Yeast secretory mutant sec53 cells accumulate inactive secretory glycoprotein precursors that remain associated with the endoplasmic reticulum (ER) at the restrictive temperature (37 degrees C). The possibility that precursor polypeptides fail to penetrate completely into the ER lumen was tested by examining the protease accessibility of accumulated invertase, mating pheromone precursor prepro-alpha-factor and the vacuolar protein precursor procarboxypeptidase Y in cell lysates. In all three cases, the secretory protein precursors are protected from the action of exogenous protease unless the membrane is permeabilized by including Triton X-100 or saponin in the incubation. These results suggest that the sec53 defect allows complete polypeptide translocation. Consistent with this interpretation, the precursor of invertase accumulates in a signal peptide-processed form. In addition, invertase and prepro-alpha-factor precursors contain a small amount of possibly aberrant carbohydrate. In mutant cells or in wild type cells treated with tunicamycin, a 10-kDa fragment of the N terminus of mature invertase assumes a conformation that is resistant to trypsin with or without detergent. This domain may be associated with an ER protein or may simply assume an unusual conformation as a consequence of deficient glycosyl modification.  相似文献   

17.
A Salzman  C F Wan  C S Rubin 《Biochemistry》1984,23(26):6555-6565
The biogenesis, intracellular transport, and functional properties of the insulin proreceptor and modified insulin receptors were studied in hormone-responsive 3T3-L1 adipocytes. After control cells were labeled with [35S]Met for 7 min, the principal polypeptide that was precipitated by anti-insulin receptor antibodies had a molecular weight (Mr) of 180 000. This initial precursor was rapidly converted (t1/2 = 35 min) to a 200-kilodalton (kDa) polypeptide, designated the insulin proreceptor, by the apparent posttranslational addition of N-linked, high mannose core oligosaccharide units. Mature alpha (Mr 130 000) and beta (Mr 90 000) subunits were derived from sequences within the proreceptor by proteolytic cleavage and late processing steps, and these subunits appeared on the cell surface 2-3 h after synthesis of the 180-kDa precursor. The cation ionophore monensin was used in combination with metabolic labeling, affinity cross-linking, and external proteolysis to probe aspects of proreceptor function, transit, and the development of insulin sensitivity at the target cell surface. At 5 micrograms/mL, monensin potently inhibited the proteolytic cleavage step, and the 200-kDa polypeptide accumulated. Lower concentrations of the ionophore selectively blocked late processing steps in 3T3-L1 adipocytes so that apparently smaller alpha' (Mr 120 000) and beta' (Mr 85 000) subunits were produced. Proreceptor and alpha' and beta' subunits were translocated to the cell surface, indicating that the signal for intracellular transit occurs in the 200-kDa polypeptide and is independent of the posttranslational proteolysis and late processing steps. The alpha' subunit bound insulin both at the surface of intact cells and after solubilization with Triton X-100; the beta' subunit was phosphorylated in an insulin-stimulated manner. The detergent-solubilized 200-kDa proreceptor also exhibited both functional properties. However, the proreceptor that was transported to and exposed on the cell surface was incapable of binding insulin in intact adipocytes. Thus, late processing is not essential for the expression of functions associated with mature alpha and beta subunits. In contrast, it appears that the proteolytic generation of subunits is required for the correct orientation of the hormone binding site in the plasma membrane bilayer and the development of insulin responsiveness in 3T3-L1 adipocytes.  相似文献   

18.
This paper describes the identification and characterization of a new peptide growth factor. The peptide was isolated from trophoblastic brush border membranes of human placenta. The purified preparation was homogeneous and consisted of a single polypeptide of Mr 34 000 with a pI of about 6.0. This peptide stimulated DNA replication in cultured fibroblasts. The following association was seen between activity and protein: During DEAE-cellulose chromatography, both the 34-kilodalton (kDa) protein and the mitogenic activity displayed identical binding and salt dependence of elution. Nondenaturing electrophoresis at pH 8.3 revealed a comigration of the 34-kDa protein and the DNA replication stimulatory activity. Identical electrophoretic mobilities were displayed for both activity and protein at pH 7.0. These results demonstrate that the preparation is homogeneous and show that growth factor activity is intrinsic to the 34-kDa polypeptide. Binding of the 125I-labeled 34-kDa mitogen to target fibroblastic cells was specific; i.e., nanomolar concentrations of the unlabeled 34-kDa protein competed effectively with the labeled protein, whereas a variety of well-characterized growth factors and hormones were unable to compete even at micromolar levels. Thus the 34-kDa protein interacts with target cells through highly specific surface receptors. Chemical cross-linking techniques were used to investigate the identity of the receptor for the 34-kDa mitogen. Cross-linking of fibroblastic cells containing bound 125I-labeled 34-kDa protein generated a radiolabeled complex of 86 kDa in all four cell types examined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
In addition to the mature 50 amino acid transforming growth factor alpha (TGF alpha), some transformed cells appear to produce multiple higher molecular weight forms. The structure and derivation of most of these larger soluble TGF alpha species remain to be established. We previously reported that a chemically induced rat hepatocellular carcinoma cell line, JM1, secreted acid-stable proteins which bind to epidermal growth factor receptors and stimulate DNA synthesis in primary cultures of normal adult rat hepatocytes. Purification and characterization of these hepatoma-derived growth factors have indicated their relationship to TGF alpha. Two EGF-competing activities of apparent Mr 30K and 10K were separated by gel filtration of concentrated JM1-conditioned medium and further purified by ion-exchange chromatography and reverse-phase HPLC. Both growth factors were detected by a radioimmunoassay specific for TGF alpha. Western blotting with antibodies to the 50 amino acid TGF alpha revealed that the lower molecular weight factor comigrated with the synthetic 6-kDa rat TGF alpha. The higher molecular weight TGF alpha appeared on immunoblots as a diffuse band of 18-21 kDa, which converted to the mature 6-kDa form upon digestion with elastase, confirming a precursor-product relationship. However, the 18-21-kDa proteins did not react with antibodies directed against the carboxy-terminal cytoplasmic segment of the transmembrane TGF alpha precursor. Enzymatic deglycosylation of the 18-21-kDa TGF alpha species by sequential removal of sialic acids and O- and N-linked carbohydrate reduced the molecular weight to 11K. The size and soluble nature of this polypeptide suggest that it represents the extracellular domain of the transmembrane TGF alpha precursor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
tsJT60, a temperature-sensitive (ts) cell-cycle mutant of Fischer rats, is viable at both the permissive (34 degrees C) and nonpermissive (40 degrees C) temperatures. The cells grow normally in exponential growth phase at both temperatures, but when stimulated with serum from G0 phase they enter S phase at 34 degrees C but not at 40 degrees C. tsJT60 cells transformed with human adenovirus (Ad) 12 dl205, which lacks the E1B 19-kDa polypeptide gene, were lethal at 40 degrees C, whereas tsJT60 cells transformed with Ad12 wt, dl207, which lacks E1B 58-kDa protein gene, or in206B, which produces 19- to 58- kDa fused protein, were viable. Degradation of cell DNA occurred in dl205-transformed tsJT60 cultured at both 34 degrees C and 40 degrees C. Neither cytocidal phenotype nor degradation of DNA occurred in 3Y1 cells (a parental line of tsJT60) transformed with dl205. These results suggest that the lethal phenotype and degradation of DNA are related to the ts mutation in tsJT60 and also to the lack of Ad12 E1B 19kDa polypeptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号