首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
数据源、时间范围、空间尺度等的差异导致许多物候变化对陆地生态系统碳收支影响的研究缺少可比性。该文基于4级碳通量填充数据, 采用相对阈值方法提取了两个北美典型温带阔叶林站Harvard Forest (HF)和University of Michigan Biological Station (UMBS)共20年的物候参数(返青期、枯黄期和生长季长度), 并研究了物候变化对生态系统生产力的影响。结果表明: 1)生长季长度的延长对年累积总初级生产力(GPP)有显著贡献, 但由于呼吸作用(RE)的干扰, 生长季长度变化对年净生态系统生产力(NEP)的影响并不显著; 2)返青期的提前对上半年生态系统总初级生产力的贡献最为显著, 二者的相关系数分别为0.76 (HF)和0.93 (UMBS); 3)枯黄期的延迟对生产力的影响并不显著; 4)随着春季返青期的提前或秋季枯黄期的延迟, 上、下半年GPPRE的累积量虽均有增加趋势, 但由于各自增加的幅度不确定, 导致年NEP与二者的响应关系复杂。  相似文献   

2.
中国东北城乡植被物候时空变化及其对地表温度的响应   总被引:1,自引:0,他引:1  
胡召玲  戴慧  侯飞  李二珠 《生态学报》2020,40(12):4137-4145
以中国东北地区的沈阳、长春、哈尔滨3个大城市及其周边的乡村为研究单元,在像元尺度上采用小波变换法对长时间序列中分辨率成像光谱仪(Moderate-resolution Imaging Spectroradiometer, MODIS)增强植被指数(Enhanced Vegetation Index, EVI)数据滤除噪声数据后重建平滑的EVI曲线,基于EVI曲线,采用动态阈值法提取出研究区2009—2016年植被关键物候期参数指标,即植被生长季开始时间(Start of Growing Season, SOS)和结束时间(End of Growing Season, EOS),分析各研究单元植被物候时空变化特征及其对地表温度的响应特征。结果表明:各研究单元SOS和EOS值的空间分布图存在明显的城乡差异。每一个像元所属的实际位置距离城区中心越近,其SOS值越小,EOS值越大,表明植被生长季开始日期早结束日期晚,整个植被生长期时间变长。各研究单元植被物候参数指标的年际变化趋势具有一定的相似性,即SOS随时间均呈现出提前趋势,且城区和乡村的SOS年际变化趋势保持一致,变化速率各不相同。研究区2012年的SOS值是研究时段内的最大值,从植被物候期反映来看,该年是一个最冷年,这与当年受寒潮影响,出现暴雪,低温等极端天气的气候现象相吻合。各研究单元年均地表温度(Land Surface Temperature,LST)与对应的植被关键物候期参数均有显著的相关性,SOS与LST呈显著负相关,EOS与LST呈高度正相关。即植被物候同期的平均温度越高,植被生长季的起始时间越早,结束时间越晚。  相似文献   

3.
2003-2018年米仓山地区植被物候时空变化及对气候的响应   总被引:1,自引:0,他引:1  
邵周玲  周文佐  李凤  周新尧  杨帆 《生态学报》2021,41(9):3701-3712
植被物候直接反映了植被对环境变化响应的动态过程,对研究植被与气候的关系具有重要意义。基于遥感植被时序数据,探讨秦巴山区典型山地-米仓山地区植被物候变化及其对气候的响应。利用MODIS NDVI时序数据,采用动态阈值法获取米仓山地区植被物候参数;借助于Theil Sen斜率、Mann Kendall趋势检验方法结合植被类型数据分析研究区物候时空变化;采用偏相关方法分析物候变化与气温和降水之间的关系。结果表明:(1)米仓山地区植被生长季始期(SOS)主要集中在第80-110d,海拔每上升100m,SOS大约推迟0.6d;生长季末期(EOS)主要集中在第250-300d;生长季长度(LOS)主要集中在130-210d。除低海拔区域受人类活动影响物候波动较大外,EOS和LOS随海拔变化存在2000m分界线,其下物候随海拔升高物候明显推迟或缩短,其上物候变化趋于平缓。(2)16a来植被SOS呈提前趋势,提前幅度为0.47d/a,提前的像元占74.03%,其中,达到显著提前的像元占12.21%(P<0.1);EOS整体呈提前趋势,提前幅度为0.22d/a;LOS略有延长,延长幅度为0.26d/a。(3)区域常绿型森林植被SOS晚于同垂直带的落叶型森林植被;草地、常绿阔叶灌木林SOS提前趋势最明显,变化率分别为-0.80、-0.71d/a;EOS提前趋势最明显的是针阔混交林和落叶阔叶林。(4) SOS主要受3月平均气温和4月降水的影响,3月平均气温升高以及4月降水增加导致SOS提前;EOS主要受10月降水的负向影响。  相似文献   

4.
Changes in vegetative growing seasons are dominant indicators of the dynamic response of ecosystems to climate change. Therefore, knowledge of growing seasons over the past decades is essential to predict ecosystem changes. In this study, the long‐term changes in the growing seasons of temperate vegetation over the Northern Hemisphere were examined by analyzing satellite‐measured normalized difference vegetation index and reanalysis temperature during 1982–2008. Results showed that the length of the growing season (LOS) increased over the analysis period; however, the role of changes at the start of the growing season (SOS) and at the end of the growing season (EOS) differed depending on the time period. On a hemispheric scale, SOS advanced by 5.2 days in the early period (1982–1999) but advanced by only 0.2 days in the later period (2000–2008). EOS was delayed by 4.3 days in the early period, and it was further delayed by another 2.3 days in the later period. The difference between SOS and EOS in the later period was due to less warming during the preseason (January–April) before SOS compared with the magnitude of warming in the preseason (June–September) before EOS. At a regional scale, delayed EOS in later periods was shown. In North America, EOS was delayed by 8.1 days in the early period and delayed by another 1.3 days in the later period. In Europe, the delayed EOS by 8.2 days was more significant than the advanced SOS by 3.2 days in the later period. However, in East Asia, the overall increase in LOS during the early period was weakened in the later period. Admitting regional heterogeneity, changes in hemispheric features suggest that the longer‐lasting vegetation growth in recent decades can be attributed to extended leaf senescence in autumn rather than earlier spring leaf‐out.  相似文献   

5.
新疆植被物候时空变化特征   总被引:8,自引:5,他引:3  
基于MODIS-NDVI数据,提取新疆2001—2016年典型植被物候期,分析新疆不同生态分区的山地-绿洲系统植被物候期的时空演变趋势和空间分异特征,并结合同期气象数据,探讨植被物候与气候变化的响应关系。结论为:(1)新疆植被物候具有明显的纬向分布和垂直地带性分布特征,海拔在物候的地域分异中扮演着重要作用。新疆植被生长季开始时间(Start of season,SOS)集中于3月中旬至5月上旬,生长季结束时间(End of season,EOS)集中于10月中旬至12月下旬。(2)与全球大背景下典型植被物候特征变化趋势相反,新疆植被SOS呈推迟趋势,推迟幅度为1.9d/10a;EOS呈提前趋势,提前幅度为3.66d/10a;生长季长度(Length of season,LEN)呈缩短趋势,缩短幅度为5.6d/10a。除东疆地区外,全疆及不同分区均呈现出绿洲及平原SOS较早,山地区域较迟;全疆及不同分区均呈现出山地EOS结束较早,绿洲结束较迟;除东疆地区外,全疆及不同分区的LEN均为绿洲及平原区域山地,同样显示出垂直地带性分布的特征。(3)通过冗余分析(Redundancy analysis,RDA)解释了物候特征与气象因子关系的绝大部分信息,生长季开始时间受春季气温、前一年冬季降水量和日照时数的显著影响。夏季和秋季降水量是新疆植被生长季结束时间的重要影响因素,在总体上受气温和日照时数的影响较小。  相似文献   

6.
本研究以额济纳绿洲四道桥超级站为研究区,结合2018—2019年涡度通量、气象数据和2017—2020年Sentinel-2遥感影像,分析通量塔总初级生产力(GPP)与环境因子的关系,评估12种遥感植被指数对柽柳灌丛长势模拟和关键物候参数提取的适用性。采用7参数双逻辑斯蒂函数(DL-7)+全局模型函数(GMF)拟合GPP和各植被指数生长曲线,并逐年提取生长季始期(SOS)、生长季峰期(POS)和生长季末期(EOS)3种关键物候参数。结果表明: 有效积温(GDD)和土壤含水量是影响柽柳灌丛物候动态的主要环境因子。与2018年相比,2019年由于气温较低,SOS前的积温累积速率较慢,柽柳灌丛需要更长时间的热量积累来进入生长季,从而导致2019年SOS比2018年晚。在SOS与POS之间,2018和2019年水热条件相似,但2019年POS比2018年晚8 d,可能是2019年SOS较晚所致。POS以后,2019年较高的GDD和较低的土壤含水量使柽柳灌丛遭受水分胁迫,导致其生长季后期时间缩短。标准化的Sentinel-2植被指数与10:00—14:00 GPP均值的线性回归结果表明,宽波段植被指数中的增强型植被指数和窄波段植被指数中的叶绿素红边指数、倒红边叶绿素指数、红边归一化植被指数(NDVI705)能够较好地反映与柽柳灌丛GPP具有较高的一致性。柽柳灌丛SOS和EOS的遥感提取结果表明,Sentinel-2窄波段植被指数比宽波段植被指数的准确性更高,尤其是修正叶绿素吸收反射率指数提取SOS最准确,MERIS陆地叶绿素指数提取EOS最准确;Sentinel-2宽波段植被指数提取POS的准确性更高,尤其是两波段增强型植被指数和植被近红外反射率指数最准确。综合所有物候参数来看,NDVI705综合表现最佳。  相似文献   

7.
The influence of urbanization on vegetation phenology is gaining considerable attention due to its implications for human health, cycling of carbon and other nutrients in Earth system. In this study, we examined the relationship between change in vegetation phenology and urban size, an indicator of urbanization, for the conterminous United States. We studied more than 4500 urban clusters of varying size to determine the impact of urbanization on plant phenology, with the aids of remotely sensed observations since 2003–2012. We found that phenology cycle (changes in vegetation greenness) in urban areas starts earlier (start of season, SOS) and ends later (end of season, EOS), resulting in a longer growing season length (GSL), when compared to the respective surrounding urban areas. The average difference of GSL between urban and rural areas over all vegetation types, considered in this study, is about 9 days. Also, the extended GSL in urban area is consistent among different climate zones in the United States, whereas their magnitudes are varying across regions. We found that a tenfold increase in urban size could result in an earlier SOS of about 1.3 days and a later EOS of around 2.4 days. As a result, the GSL could be extended by approximately 3.6 days with a range of 1.6–6.5 days for 25th ~ 75th quantiles, with a median value of about 2.1 days. For different vegetation types, the phenology response to urbanization, as defined by GSL, ranges from 1 to 4 days. The quantitative relationship between phenology and urbanization is of great use for developing improved models of vegetation phenology dynamics under future urbanization, and for developing change indicators to assess the impacts of urbanization on vegetation phenology.  相似文献   

8.
日光诱导叶绿素荧光对亚热带常绿针叶林物候的追踪   总被引:1,自引:0,他引:1  
周蕾  迟永刚  刘啸添  戴晓琴  杨风亭 《生态学报》2020,40(12):4114-4125
植被物候期(春季返青和秋季衰老)是表征生物响应和陆地碳循环的基础信息。由于常绿针叶林冠层绿度的季节变动较弱,遥感提取常绿针叶林的物候信息存在着较大的不确定性,是目前区域物候监测中的难点。利用MODIS植被指数(归一化植被指数NDVI和增强型植被指数EVI)、GOME-2日光诱导叶绿素荧光(SIF)和通量数据(总初级生产力GPP)估算2007—2011年亚热带常绿针叶林物候期,用来比较三类遥感指数估算常绿针叶林物候的差异。结果表明:基于表征光合作用物候的通量GPP数据估算得到5年内亚热带常绿针叶林生长季开始时间(SOS_(GPP))为第63天,生长季结束时间(EOS_(GPP))为第324天,生长季长度为272天;基于反映植被光合作用特征的SIF曲线获得物候信息要滞后GPP物候期,其中生长季开始时间滞后19天,生长季结束时间滞后2天;基于传统植被指数NDVI和EVI的物候期滞后GPP物候期的时间要大于SIF滞后期,其中植被指数SOS滞后SOS_(GPP)31天,植被指数EOS滞后EOS_(GPP)10—17天。虽然基于3种遥感指数估算的春季和秋季物候都滞后于通量GPP的物候期,但是卫星SIF的物候信息能够更好地捕捉常绿针叶林的生长阶段。同时,春季温度是影响森林生长季开始时间的最重要因素;秋季水分和辐射是影响生长季结束时间的关键因素。由此可见,SIF估算的亚热带常绿针叶林的春季和秋季物候的滞后时间要短于传统植被指数,能更好地追踪常绿林光合作用的季节性,为深入研究陆地生态系统碳循环及其对气候变化的响应提供重要的基础。  相似文献   

9.
Monitoring land surface phenology (LSP) is important for understanding both the responses and feedbacks of ecosystems to the climate system, and for representing these accurately in terrestrial biosphere models. Moreover, by shedding light on phenological trends at a variety of scales, LSP provides the potential to fill the gap between traditional phenological (field) observations and the large‐scale view of global models. In this study, we review and evaluate the variability and evolution of satellite‐derived growing season length (GSL) globally and over the past three decades. We used the longest continuous record of Normalized Difference Vegetation Index data available to date at global scale to derive LSP metrics consistently over all vegetated land areas and for the period 1982–2012. We tested GSL, start‐ and end‐of‐season metrics (SOS and EOS, respectively) for linear trends as well as for significant trend shifts over the study period. We evaluated trends using global environmental stratification information in place of commonly used land cover maps to avoid circular findings. Our results confirmed an average lengthening of the growing season globally during 1982–2012 – averaging 0.22–0.34 days yr?1, but with spatially heterogeneous trends. About 13–19% of global land areas displayed significant GSL change, and over 30% of trends occurred in the boreal/alpine biome of the Northern Hemisphere, which showed diverging GSL evolution over the past three decades. Within this biome, the ‘Cold and Mesic’ environmental zone appeared as an LSP change hotspot. We also examined the relative contribution of SOS and EOS to the overall changes, finding that EOS trends were generally stronger and more prevalent than SOS trends. These findings constitute a step towards the identification of large‐scale phenological drivers of vegetated land surfaces, necessary for improving phenological representation in terrestrial biosphere models.  相似文献   

10.
1982-2013年内蒙古地区植被物候对干旱变化的响应   总被引:7,自引:0,他引:7  
黄文琳  张强  孔冬冬  顾西辉  孙鹏  胡畔 《生态学报》2019,39(13):4953-4965
气候变化引起的植被物候变化正在大幅度改变生态系统,研究植被物候对干旱的响应对保护内蒙古的生态系统具有重要意义。根据1:100万植被区划,把内蒙古划分为8个植被分区,利用多时间尺度气象标准化降水蒸散指数(SPEI)和NDVI3g时序数据所反演的物候指标,分析内蒙古植被物候的时空变化及其对干旱的响应规律。结果显示:1)在1982年至2013年间,内蒙古植被受到不同时间尺度下干旱的高度控制,尤其是时间尺度干旱的影响(SPEI-3);2)对于整个研究区,生长季开始(SOS)呈提前趋势,生长季结束(EOS)呈延后趋势,生长季长度(LOS)呈延长趋势,像元比例分别为63.79%、59.77%和62.83%;3)内蒙古除荒漠植被类型地区外,同年春季和夏季初期干旱对SOS均具有延迟作用,同年秋季干旱对EOS均具有延迟作用 ;4) 不同植被类型对干旱强度指数的响应程度存在差异,响应程度集中在-10d/0.1-10d/0.1(例如,1d/0.1表示干旱强度指数每增大0.1,会导致物候指数延迟1 d,而-1d/0.1表示干旱强度指数每增大0.1,会导致物候指数提前1 d)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号