首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
星形胶质细胞是大脑中一类高度异质的重要大胶质细胞,不仅在脑的发育和功能中起到重要作用,也参与多种神经病理生理学过程。多项研究表明B淋巴细胞瘤-2相关X蛋白(B-cell lymphoma-2 associated X protein,BAX)依赖性凋亡通路参与调控正常发育过程中脑内神经元的数量与分布,但是对其调控星形胶质细胞的研究则较为匮乏。本文旨在研究BAX是否参与不同脑区星形胶质细胞分布的调控。以纯合子和杂合子BAX敲除小鼠为研究对象,用SOX9免疫荧光染色法检测6周龄小鼠的大脑皮层和海马中星形胶质细胞的密度。结果显示,星形胶质细胞的密度在不同皮层分区之间以及皮层和海马之间存在显著差异,并且BAX敲除导致海马中星形胶质细胞的密度显著降低,皮层中GABA能抑制神经元密度显著升高,而皮层中星形胶质细胞的密度则未受显著影响。以上结果提示,BAX差异调控皮层星形胶质细胞与神经元,也差异调控皮层与海马中的星形胶质细胞。这项研究为了解星形胶质细胞的区域异质性和BAX在大脑发育中的功能提供了重要信息。  相似文献   

2.
《生命世界》2010,(8):6-6
尽管神经胶质细胞被认为只是为神经元提供结构和营养支持,但英国科学家近日发现,神经胶质细胞中最大的一种——星形胶质细胞在调节呼吸方面发挥着关键作用。  相似文献   

3.
脑星形胶质细胞生物学功能研究进展   总被引:32,自引:0,他引:32  
脑星形胶质细胞是中枢神经系统(CNS)内在数目占绝对优势的一类大胶质细胞,被认为在神经元的整个发育过程中起重要作用。本文主要就参与星形胶质细胞调节神经元活动的主要功能分子,星形胶质细胞在中枢神经系统的生物学功能,及其与疾病的关系作一简要回顾。  相似文献   

4.
星形胶质细胞   总被引:23,自引:0,他引:23  
目录一、星形胶质细胞的生物学特性(一 )星形胶质细胞的异质性(二 )胶质网络二、星形胶质细胞的功能(一 )分泌功能(二 )星形胶质细胞与神经的发育及再生(三 )星形胶质细胞具有对神经元微环境调控的能力(四 )免疫功能与血脑屏障调控三、星形胶质细胞功能的新近进展(一 )星形胶质细胞也具有可兴奋性(二 )星形胶质细胞与神经元的通讯或对话(三 )在突触形成和突触可塑性中的作用(四 )星形胶质细胞与神经发生胶质细胞是神经系统内数量众多的一大类细胞群体 ,约占中枢神经系统 (CNS)细胞总数的 90 % ,星形胶质细胞 (astrocyte)是其中主要的组成…  相似文献   

5.
探讨大鼠巨细胞病毒(rat cytomegalovirus,RCMV)感染大鼠星形胶质细胞后,对神经干细胞分化的影响。原代分离培养新生大鼠星形胶质细胞和胚胎海马神经干细胞,将星形胶质细胞感染RCMV后和神经干细胞在Transwell24孔共培养体系下进行共培养,同时设对照组;用免疫荧光染色等方法检测神经干细胞与感染RCMV的星形胶质细胞共培养后,其分化细胞中神经元微管相关蛋白(microtubule-associated protein 2,MAP2)和星形胶质细胞胶质纤维酸性蛋白(glial fibril—lary acidic protein,GFAP)的表达。结果发现,感染RCMV的星形胶质细胞与神经干细胞共培养时,神经干细胞分化减慢,分化成的神经元和星形胶质细胞比率低于对照组,提示星形胶质细胞感染RCMV后可抑制神经干细胞的分化,可能与RCMV影响星形胶质细胞合成和分泌各种营养因子,干扰了神经干细胞的分化进程有关。  相似文献   

6.
神经病理痛是由于躯体感觉系统的损伤或疾病所引起的疼痛。胶质细胞主要包括中枢神经系统的星形胶质细胞和小胶质细胞,以及外周神经系统的施旺细胞和卫星胶质细胞。胶质细胞在神经受损后被激活,发生形态变化并上调特定蛋白表达,通过与神经元的相互作用,在神经病理痛的初始和维持阶段发挥重要作用。本文综述近年来胶质细胞参与神经病理痛的研究成果。  相似文献   

7.
本研究从大鼠大脑皮质分离、纯化星形胶质细胞,再经培养后收集星形胶质细胞的无血清条件培养液。用盖玻片培养法与快速自动比色微量分析法研究了星形胶质细胞条件培养液对小脑皮质神经元生存以及神经元活力的影响。发现星形胶质细胞条件培养液能够明显提高小脑皮质神经元的体外存活率,增强神经元的活力。表明星形胶质细胞具有神经营养性作用。  相似文献   

8.
在中枢神经系统 ,成年后新神经元发生主要见于两个脑区 ,即室管下区 (subventricularzone)与海马的颗粒下区 (subgranularzone)。正常情况下 ,除上述脑区外的其它脑区能够产生神经胶质细胞 ,但是不能产生神经元。为了研究神经元和 /或神经胶质细胞对来源于成年的神经干细胞分化的影响 ,Song等分离了成年大鼠海马的神经元和星形胶质细胞 ,将其分别或联合与来自成年的、依赖FGF 2的神经干细胞共培养 ,意外地发现神经元促进神经干细胞分化为少突胶质细胞 ,而星形胶质细胞则促进神经干细胞分化为神经…  相似文献   

9.
探讨脂多糖(Lipopolysaccharide,LPS)对长时间存活大鼠海马内星形胶质细胞的反应以及对神经元的影响。方法:本实验用10只健康成年雄性SD大鼠,海马CA3区注射LPS 10μ1.7和14d后,尼氏染色观察神经元的变化,免疫组织化学染色结合图像分析方法观察海马CA3区注射部位胶质纤维酸性蛋白(glial fibrillary acidic protein GFAP)、的表达变化。结果:脂多糖可促进海马星形胶质细胞的活化,但并不能引起海马区神经元的损伤。结论:星形胶质细胞在脑损伤后的脑内炎症反应起了一定的作用,但并不能引起神经元的损伤。  相似文献   

10.
星型胶质细胞在突触形成、神经元代谢、神经递质传递等方面起重要作用,其退行性病变可引起突触蛋白水平降低、神经元体积减小及神经递质传递异常,进而引起神经精神性疾病的发生。抑郁症患者前额叶皮层、海马、杏仁核以及前扣带回等多个脑区均有星型胶质细胞密度减低,提示星形胶质细胞与抑郁症发病密切相关。研究表明,能量和营养支持、谷氨酸(glutamate,Glu)转运和代谢、N-甲基-D-天(门)冬氨酸(N-methyl-D-aspartate,NMDA)受体活性调节以及炎症反应异常等星形胶质细胞功能障碍参与抑郁症的发生。本文就星形胶质细胞功能障碍在抑郁症发病机理中的作用进行综述。  相似文献   

11.
For 24 h after total gamma-radiation of mature Wistar male rats (180-210 g) in the dose of 150 Gy, ultrastructural rearrangements of the cerebral sensomotor cortex are presented as small destructive changes in neurons, neuroglia and vascular endothelium. Total combination of the changes in ultrastructure of the blood capillaries and perivascular astrocytes makes it possible to suppose that permeability of the microvascular bed wall is increased. At this period, together with the destructive changes there are evidently certain compensatory-restorative processes, developing in the cerebral tissue. It is possible to suppose that already during the first hours after the radiation the ultrastructural changes of neurons are resulted not only from the direct effect of radiation, but from certain influences of the radiation damage of neuroglia and microvessels.  相似文献   

12.
The brain of the horseshoe crab, Limulus polyphemus, harbors three populations of neuroglial cells, whose distribution and cellular details are best appreciated by a combination of silver impregnation, scanning, and transmission electron microscopy. Stellate astrocytes envelop neurons as satellite cells, permeate the neuropile, and secrete a framework of sustentacular trabeculae throughout the brain. Velate astrocytes are restricted to Kenyon cells, i.e. small association neurons, of which they harbor up to 150 per neuroglial cell. Vascular neuroglia is composed of glycogen and mitochondria-laden, interlocked cells that form an open meshwork in the hemocoelic spaces of the brain. Aside from supportive functions of neuroglia, the vascular neuroglial cells in particular seem to subserve the role of a metabolic reserve cell for the central nervous system.  相似文献   

13.
The phylogenetic development of neuroglia (astrocytes, oligodendrocytes) was investigated in homologous cortical and subcortical forebrain regions of selected vertebrates. Microglia were not considered in the current study. Four to seven brains from each species were used. Scharenberg's modification for astroglia of del Rio Hortega's silver carbonate technique was used. The analysis of neuroglia cells was based on (1) the characteristic cellular morphology found in each species, (2) a comparison of the selected regions in each animal, (3) the interrelationships of astrocytes and their relations to neurons, blood vessels, and oligodendrocytes. The predominant type of neuroglia found in the fish, frog, and lizard was the ependymal cell; however, non-ependymal glial cells were also present. The bird represented a transitional phylogenetic stage from a predominance of ependymal glial to a predominance of non-ependymal glia. A progressive increase in the morphological relationships of glial cell bodies and processes to neurons was found with ascension of the phylogenetic scale from fish through primate. Interrelations were observed between adjacent astrocytic processes and cell bodies, and between astrocytes and oligodendrocytes. The processes of adjacent glial cells also appeared to show an increase in thickness at the point of approximation. A variety of astrocytes were observed ranging from small, round-oval shaped cells to large polygonal or stellate forms. Variations in the number of astrocytic processes, their thickness, and degree of secondary branching were described, and their possible functional significance was discussed.  相似文献   

14.
We have developed a technique in which immunofluorescence is combined with in situ hybridization using cDNA and RNA probes to assess the expression and distribution of messenger RNAs (mRNA) by neurons and neuroglia in tissue cultures of the rat dentate gyrus. The probes used in this study include a cDNA probe for ribosomal RNA (rRNA) and an RNA probe (cRNA) for glial fibrillary acidic protein (GEAP), an intermediate filament protein subunit expressed by astrocytes in the central nervous system. Both ubiquitous (tubulin) and cell type-specific (MAP-2 and GEAP) antibodies were used to identify neurons and neuroglia in culture. Using this procedure, the mRNA for rRNA was found in the cell bodies and large processes of MAP-2-positive neurons and throughout the cytoplasm of GEAP-positive flat astrocytes. In process-bearing astrocytes, GEAP mRNA is concentrated in the cell body, although some hybridization also occurred in astrocyte cell processes. With this combined in situ hybridization-immunofluorescence technique, the expression and distribution of an mRNA can be examined in different immunocytochemically identified cell types under identical culture and hybridization conditions. It is also possible to determine if there is a differential subcellular distribution of an mRNA in a single cell and if the distribution of the mRNA reflects the distribution of the protein itself. Finally, this technique can be utilized to verify the specificity of probes for cell type-specific mRNAs and to determine appropriate hybridization conditions to produce a specific signal.  相似文献   

15.
Summary The accessory hyperstriatum of normal domestic fowl (Gallus domesticus) was fixed with aldehydes followed by osmication and studied by electron microscopy. The relationships among neurons, neuroglia, and their processes is reported. Large and smaller neurons, astrocytes, and oligodendroglia are identified and their fine structure described. Most axonal endings contain spheroidal presynaptic vesicles, but a few terminals with flattened vesicles also are seen. Symmetrical and asymmetrical synaptic specializations of axon terminals are observed.  相似文献   

16.
Peters  Alan 《Brain Cell Biology》2004,33(3):345-357
Labeling central nervous tissue from mature animals with antibodies to NG2 chondroitin sulfate proteoglycan reveals the existence of large numbers of NG2 positive cells, at least some of which are oligodendroglial progenitors. It is generally agreed that these cells differ from the classically defined neuroglia, since they are antigenetically different from astrocytes, oligodendrocytes, or microglial cells. Although the NG2 positive cells have been well characterized in light microscopic preparations, examination of the labeled cells by electron microscopy have not led to general agreement about their morphological features. The basic reason for this is that it is difficult to obtain good preservation of the fine structure of NG2 labeled neurons. Since these NG2 positive cells are abundant in the central nervous system, it was decided to examine routinely prepared tissue from the brains of mature monkeys and rats by electron microscopy to determine if there is a neuroglial cell type whose presence has been overlooked. It soon became evident that there is a fourth type of neuroglial cell. These cells have pale, irregular shaped nuclei with a thin rim of heterochromatin beneath the nuclear envelope, and they have pale cytoplasm. Superficially they resemble astrocytes, which is the probable reason why the presence of this fourth type of neuroglial cell has been largely overlooked. However, the fourth type of neuroglial cell, here referred to as a ß neuroglial cell, has no intermediate filaments in its cytoplasm, the mitochondria are thinner than those of astrocytes, centrioles are frequently encountered in their cytoplasm, and when they are adjacent to capillaries they are always separated from the basal membrane by an astrocytic processes.  相似文献   

17.
Cerebral cortical neurons were co-cultured for up to 7 days with astrocytes after plating on top of a confluent layer of astrocytes cultured from either cerebral cortex or cerebellum (sandwich co-cultures). Neurons co-cultured with either cortical or cerebellar astrocytes showed a high stimulus coupled release of gamma-aminobutyric acid (GABA), which is the neurotransmitter of these neurons. When the astrocyte selective GABA uptake inhibitor 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridin-3-ol was added during the release experiments, an increase in the stimulus coupled GABA release was seen, indicating that the astrocytes take up a large fraction of GABA released from the neurons. The activity of the GABA synthesizing enzyme glutamate decarboxylase, which is a specific marker of GABAergic neurons, was markedly increased in sandwich co-cultures of cortical neurons and cerebellar astrocytes compared to neurons cultured in the absence of astrocytes whereas in co-cultures with cortical astrocytes this increase was less pronounced. Pure astrocyte cultures did not show any detectable glutamate decarboxylase activity. The astrocyte specific marker enzyme glutamine synthetase (GS) was present at high activity in a glucocorticoid-inducible form in pure astrocytes as well as in co-cultures regardless of the regional origin of the astrocytes. When neurons were cultured on top of the astrocytes, the specific activity of GS was lower compared to astrocytes cultured alone, a result compatible with the notion that neurons are devoid of this enzyme. The results show that cortical neurons develop and differentiate when seeded on top of both homotypic and heterotypic astrocytes. Moreover, it could be demonstrated that the two cell types in the culture system communicate with each other with regard to GABA homeostasis during transmitter release.  相似文献   

18.
Heme oxygenase expression in human central nervous system disorders   总被引:11,自引:0,他引:11  
In the normal mammalian CNS, heme oxygenase-2 (HO-2) is constitutively, abundantly, and fairly ubiquitously expressed, whereas heme oxygenase-1 (HO-1) mRNA and protein are confined to small populations of scattered neurons and neuroglia. Unlike ho-2, the ho-1 gene in neural (and many systemic) tissues is exquisitely sensitive to upregulation by a host of pro-oxidant and other noxious stimuli. In Alzheimer disease, HO-1 immunoreactivity is significantly augmented in neurons and astrocytes of the hippocampus and cerebral cortex relative to age-matched, nondemented controls and colocalizes to senile plaques, neurofibrillary tangles, and corpora amylacea. In Parkinson disease, HO-1 decorates Lewy bodies of affected dopaminergic neurons and is highly overexpressed in astrocytes residing within the substantia nigra. The ho-1 gene is also upregulated in glial cells within multiple sclerosis plaques; in the vicinity of human cerebral infarcts, hemorrhages, and contusions; and in various other degenerative and nondegenerative human CNS disorders. The products of the heme oxygenase reaction, free ferrous iron, carbon monoxide, and biliverdin/bilirubin, are all biologically active molecules that may profoundly influence tissue redox homeostasis under a wide range of pathophysiological conditions. Evidence adduced from whole animal and in vitro studies indicates that enhanced HO-1 activity may either ameliorate or exacerbate neural injury, effects likely contingent upon the specific model employed, the duration and intensity of HO-1 induction, and the chemistry of the local redox microenvironment. HO-1 hyperactivity also promotes mitochondrial sequestration of nontransferrin iron in oxidatively challenged astroglia and may thereby contribute to the pathological iron deposition and bioenergetic failure amply documented in aging and degenerating human neural tissues.  相似文献   

19.
Transmission electron microscopic observations of the relationships of the cells of the glycogen body and those of nervous tissue in the lumbosacral spinal cord show that one day after hatching, glycogen cells at the lateral margins of the glycogen body lie in close association with elements of the neuropil in the adjacent spinal cord. Glycogen cells and their processes appear to extend into the neuropil, where they contact other glycogen cells, blood vessels, neurons, and neuroglia. Junctional complexes and synapses occur among glycogen cells, astrocytes, and oligodendrocytes. Other indications of specialized activities were surmised by the presence of annulate lamellae in continuity with extensive arrays of smooth endoplasmic reticulum in several glycogen cells. These observations enhance our earlier views that cells of the avian glycogen body are metabolically active in the synthesis and degradation of glycogen for neuronal support and myelination in the central nervous system.  相似文献   

20.
Abstract: Bradykinin- and substance P (SP)-stimulated second messenger studies in isolated subsets of neuroglia showed bradykinin-stimulated synthesis of phospho- inositides (PI) in type-1 astrocytes and oligodendrocytes. SP-stimulated PI accumulation was restricted to oligoden- drocyte/type-2 astrocyte progenitor cells and type-2 astrocytes. These data were confirmed by analysis of calcium transients in single cells. In a regional study, SP-stimulated PI accumulation in primary astrocyte cultures was restricted to white matter. We conclude that regional heterogeneity in the expression of peptide receptors in cultures of primary astrocytes arises from a restricted distribution on subsets of macroglia. SP receptors restricted on cells of the oligodendrocyte/type-2 astrocyte type-2 lineage in vitro, coupled with in vivo observations by others, suggests that SP receptor expression is conserved on subsets of macroglia in vitro and possibly reactive astrocytes in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号