首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Validating and improving field-sampling techniques for estimating wildlife community composition and population size is essential for wildlife management and conservation. We conducted ground distance sampling surveys along line transects and block counts from a small aircraft in Manyara Ranch in Northern Tanzania and contrasted estimates of species richness and species-specific densities from both sampling techniques. We used regression analyses (logistic regression and generalized linear mixed models) and model selection to investigate whether a species’ body size, group size, body color, as well as vegetation cover explained the variation in species presence/absence and relative density differences in aerial vs. ground-based sampling. Ground surveys detected significantly more species than aerial surveys. However, aerial surveys detected three species that were missed by ground surveys (African lions, African buffalo, and spotted hyena). Model selection suggested that species with smaller body mass and small group sizes were more likely to be missed in aerial surveys. Densities estimated from the aerial surveys were generally but non-significantly lower than the densities estimated from the ground surveys, with the exception of density estimates for African elephants which were slightly higher from aerial surveys. Density differences between the two methods were greater for species with small group size, light body color, and in areas with denser vegetation cover; these variables explained 75% of the variation in density differences between the two survey methods. Albeit being similar in operational costs in our relatively small study area, ground surveys yielded (1) more complete information with respect to wildlife community composition and (2) density estimates were mostly higher and (3) more precise and (4) appear more feasible to be implemented in community-based conservation schemes.  相似文献   

2.
Edge effects are caused by the penetration of abiotic and biotic conditions from the matrix into forest interiors. Although edge effects influence the biogeography of many tropical organisms, they have not been studied directly in primates. Edge effects are particularly relevant to lemurs due to the loss of 80-90% of forests in Madagascar. In this study, data are presented on how biotic edge effects influenced the distribution and density of lemurs in the Vohibola III Classified Forest in southeastern Madagascar. In total, 415 lemur surveys were conducted during June-October 2003 and May-September 2004 along six 1,250-m transects that ran perpendicular to the forest edge. Data were also collected on lemur food trees along the six transects (density, height, diameter at breast height, area, volume, and distance to forest edge). Four nocturnal species (Avahi laniger, Cheirogaleus major, Lepilemur microdon, and Microcebus rufus) and four diurnal species (Eulemur rubriventer, Eulemur fulvus rufus, Hapalemur grisesus griseus, and Propithecus diadema edwardsi) were sighted during surveys. Regression analyses of lemur densities as a function of distance to forest edge provided edge tolerances for A. laniger (edge-tolerant), M. rufus (edge-tolerant), E. rubriventer (edge-tolerant or omnipresent), and H. g. griseus (omnipresent). The density and distribution of M. rufus and their foods trees were correlated. Edge-related variations in food quality and predation pressures may also be influencing lemurs in Vohibola III. Tolerance for edge effects may explain, in part, how lemurs have survived extreme habitat loss and forest fragmentation in southeastern Madagascar.  相似文献   

3.
Although dramatic amphibian declines have been documented worldwide, only few of such events have been quantitatively documented for the tropical forests of South America. This is due partly to the fact that tropical amphibians are patchily distributed and difficult to detect. We tested three methods often used to monitor population trends in amphibian species in a remote lowland tropical forest of French Guiana. These methods are capture-mark-recapture (CMR), estimation of the number of calling males with repeated counts data and distance sampling, and rates of occupancy inferred by presence/absence data. We monitored eight diurnal, terrestrial amphibian species including five Dendrobatidae and three Bufonidae. We found that CMR, the most precise way of estimating population size, can be used only with two species in high density patches where the recapture rate is high enough. Only for one of the species (Dendrobates tinctorius), a low coefficient of variation (CV = 0.19) can be achieved with 15 to 20 capture events. For dendrobatid species with day-calling males, audio surveys yield a better probability of detection with only 8 audio surveys needed; quantitative estimates can be achieved by computing the number of calling males inferred from audio counts or distance sampling analysis. We therefore suggest that an efficient monitoring protocol for Neotropical amphibian species should include a combination of sighting and audio techniques, and we discuss the need of implementing a large-scale monitoring in order to provide a baseline for comparison with future changes.  相似文献   

4.
In order to assess the status of lemurs along the lower reaches of the Mahavavy in north-west Madagascar, we carried out transect line sampling at Anjamena between April and August 1995. These data were complemented by additional absence–presence surveys conducted in 1994 and 1995 in many of the remaining forested areas of the region. This is the first study of lemur population density estimates for the faunal subregion between the rivers Mahavavy and Betisboka. Six sympatric lemurs are found at Anjamena: Cheirogaleus medius, Eulemur fulvus rufus, E. mongoz, Lepilemur sp., Microcebus murinus and Propithecus verreauxi coronatus. Data suggest that in some parts of the region large numbers of lemurs may still be found (E. f. rufus 121 individuals per km2, E. mongoz (45), Lepilemur sp. (110), M. murinus (85) and P. v. coronatus (173)). No density data are provided for C. medius. In conclusion, as high lemur population densities may still be found and, in particular, P. v. coronatus is not known to exist in any protected area, Anjamena could serve as an important addition to the protected area system of north-west Madagascar.  相似文献   

5.
ABSTRACT.   We present the first report of population density and home range estimates for the Chestnut Wood-quail ( Odontophorus hyperythrus ), an endemic and nearly threatened species of the Colombian Andes. Density estimates were obtained using playbacks and spot mapping and point transect methods. Home range sizes were estimated by radio tracking five wood-quail. Estimated densities varied from 0.3 to 0.4 groups per hectare. These densities are similar to those reported for other mountain wood-quail, but higher than those for lowland wood-quail and other species in the family Odontophoridae. Estimates of home range size varied from 2.6 to 9.0 hectares per group, and seemed to be correlated with group size. We also found evidence of overlap in the home ranges of neighboring groups. Population densities may vary with factors such as habitat type, but our estimates allow a first approximation of the population sizes of Chestnut Wood-quail in forest fragments.  相似文献   

6.
The distribution of most recently discovered or described lemur species remains poorly known, but many appear to have small geographical ranges, making them vulnerable to extinction. Research can contribute to future conservation actions on behalf of these species by providing accurate information on local distribution and abundance. The distribution of the world’s smallest primate, the endangered Madame Berthe’s mouse lemur (Microcebus berthae), is limited to the Menabe Central region of western Madagascar. This species was discovered in the 1990s, but many fundamental aspects of its ecology remain unknown. The aims of our study were therefore to determine the actual distribution of Microcebus berthae across the forests of this region, to estimate population density, and to examine the species’ response to anthropogenic activities. We established 35 1-km line transects across Menabe Central, on which we surveyed mouse lemurs by distance sampling and live trapping. Microcebus berthae does not occur in all remaining forests of this small region and its population density is highly heterogeneous, both across its geographic range and locally. Within its area of occupancy, the population of Microcebus berthae not only was distributed according to spatial heterogeneities of the habitat, but also responded to anthropogenic disturbances and varied seasonally. Our results indicate that Microcebus berthae is susceptible to habitat degradation and avoids human environments spatially. As none of the forest remnants in which the species still occurs were officially protected until recently, immediate conservation actions should focus on effectively protecting Kirindy and Ambadira forests.  相似文献   

7.
Although accurate estimates of wild boar (Sus scrofa) populations are crucial for any effective resource management or pest control programme, this species is well-known to be difficult to monitor. We conducted a 10-year study in a fenced Mediterranean forest (Rome, Italy) to evaluate nocturnal line transect sampling performances. We focused on its accuracy in monitoring changes in density, which was independently estimated by capture–mark–resight (CMR) performed on counts at feeding sites. We carried out night surveys in the autumn of 2001–2010, using portable infrared cameras to detect animals. We sampled on foot to cover the whole study area and the different habitat types evenly. However, to ensure safe working conditions during night and to limit disturbance, we placed transects along paths and forest roads. Therefore, we investigated the potential impact of our convenience sampling on the detection process, using radiolocations of wild boars to assess their distribution with respect to selected transects. We found that our survey design should not have biased our estimates and that densities and coefficients of variations from line transect sampling were consistent with CMR results. Although labour-intensive, we believe that our approach can improve wild boar monitoring effectively, even in concealing habitats, providing decision makers with accurate estimates (and quantified confidence limits) which can help to develop the most appropriate management programme. Moreover, the current low price of new-generation infrared cameras can also increase strongly the cost-effectiveness of this method.  相似文献   

8.
Conserving large populations with unique adaptations is essential for minimizing extinction risks. Sundarban mangroves (>10,000 km2) are the only mangrove inhabited by tigers. Baseline information about this tiger population is lacking due to its man-eating reputation and logistic difficulties of sampling. Herein, we adapt photographic capture-mark-recapture (CMR) and distance sampling to estimate tiger and prey densities. We placed baited camera stations in a typical mangrove in 2010 and 2012. We used telemetry based tiger home-range radius (5.73 km, SE 0.72 km) to estimate effective trapping area (ETA). An effort of 407 and 1073 trap nights were exerted to photocapture 10 and 22 unique tigers in 2010 and 2012. We accounted for use of bait by modelling behaviour and heterogeneity effects in program MARK and secr package in program R. Using traditional CMR, tiger number was estimated at 11 (SE 2) and density at 4.07 (SE range 3.09–5.17) in 2010 while in 2012, tiger number was 24 (SE 3) and density 4.63 (SE range 3.92–5.40) tigers/100 km2. With likelihood based spatially explicit CMR, tiger densities were estimated at 4.08 (SE 1.51) in 2010 and 5.81 (SE 1.24) tigers/100 km2 in 2012. Using distance sampling along water channels, we estimated chital density at 5.24/km2, SE 1.23 which could potentially support 4.68 tigers/100 km2 [95 % CI (3.92, 5.57)]. Our estimates suggest that Sundarban tiger population is one of the largest in the world and therefore merits high conservation status.  相似文献   

9.
The study of southern dry forest lemurs has been largely restricted to small reserves; yet, the majority of the region's lemur populations reside outside protected areas. Lemur catta and Propithecus verreauxi occupy the same forests but have different dietary preferences. This study assessed L. catta and P. verreauxi population densities across a 3-km dry forest gradient (1,539?ha) in southern Madagascar. The study was designed to allow lemur densities to be related to particular forest types. A particular aim of this study was to collect lemur data in both protected and unprotected areas. Density estimates were calculated using point transect distance sampling in a study area that contained the Beza Mahafaly Special Reserve and the adjacent disturbed forests. The highest densities recorded for each species were in the protected area where the two species were most segregated in their distribution, with L. catta density highest in gallery forest type and P. verreauxi density highest in dry deciduous. Densities of both species varied widely outside the protected area, but P. verreauxi density was more uniform than was L. catta. Results of this study indicate that patterns of lemur density in protected areas are not representative of patterns in disturbed forests; this also suggests that we cannot fully understand the ecological constraints facing primate species by studying them only in protected areas. This research highlights the value of pairing the study of landscape-level patterns of species distribution with both local ground-level ecological interpretations and broad-scale satellite data; information from only one level may give an incomplete view of the community.  相似文献   

10.
Primate populations are declining the world over due to anthropogenic threats, including habitat loss and degradation. This raises the important question of how much habitat degradation a species can cope with. Habitat degradation is pronounced in Madagascar, where most of the human population depends on the direct exploitation of natural resources. We aimed to identify the response of Microcebus griseorufus (the gray-brown mouse lemur) to forest degradation and to define the structural traits of the vegetation that might be crucial for the species’ occurrence in anthropogenic landscapes. We documented the occurrence of Microcebus griseorufus in relation to vegetation structures along a gradient of forest degradation, at the edge of and west of Tsimanampetsotsa National Park in April and May 2007 and from October to December 2015. We confirmed the occurrence of Microcebus griseorufus using trapping and visual surveys, and measured vegetation structure. Logistic regression models showed that Microcebus griseorufus has a threshold response to tree density and the diameter of thick trees. The thresholds of occurrence were at 10–15% of the tree density recorded in intact forest and a mean diameter of trees with a diameter at breast height of >10 cm of 14.3 cm. The definition of such thresholds might help to maintain suitable habitat for this species and other primates living in anthropogenic landscapes, providing connectivity between isolated protected areas and allowing dispersal between populations.  相似文献   

11.
Accurate estimates of distribution and population density are critical for the management of threatened species. This is particularly pertinent for mammalian predators, whose generally low population density, elusive nature, and large home range requirements make it difficult to detect declines. We aimed to refine population estimates of the northern spotted-tailed quoll (Dasyurus maculatus gracilis) in the Wet Tropics bioregion, to estimate the total number of adults, the likely size of subpopulations across the known distribution of the subspecies, and its associated conservation status. We performed targeted upland camera-trapping surveys from June 2017 to May 2019. To calculate population densities, we used a combination of the number of individuals identified from each survey and the mean maximum distance moved from three life history stages. We then extrapolated these estimates to modelled suitable habitat areas, refined by the camera-trapping surveys. Population sizes for the six defined subpopulations were estimated, and ranged from approximately 5 to 105 individuals. The total population was estimated to be 221 individuals. This total population estimate, and the estimates for each of the subpopulations, are lower than previous published estimates and are cause for concern. Given the low population estimates presented here and unresolved threats driving declines in some subpopulations, we suggest elevation of this subspecies to Critically Endangered under the EPBC Act.  相似文献   

12.
Effective management of threatened species requires accurate population size estimation and monitoring. However, reliable population size estimates are lacking for many endangered species. The critically endangered blond titi monkey (Callicebus barbarabrownae) is an endemic primate of the Caatinga biome in Northeastern Brazil. A previous assessment based on presence-only data estimated a minimum population size of 260 mature individuals in 2,636 km2, and studies based on visual records suggested very low local relative abundance. However, this cryptic species is known to be difficult to visually detect. We played back recordings of C. barbarabrownae loud calls to count the number of responding groups in 34 sampling sites during 9 consecutive days in a 221-km2 study area. Repeated group counts at sites were used in N-mixture models, which account for imperfect detection, to estimate the number of groups in relation to dry forest area and distance to villages. We estimated a total of 91 groups in the study area. Considering the mean number of adults per group as three, we estimated a population of 273 adult individuals, resulting in a density of 2.3 individuals/km2 in the dry forest habitat. Detection probability was four times higher for surveys conducted between sunrise to midmorning than between midmorning to sunset. We also found that C. barbarabrownae abundance increases with increasing dry forest area and increasing distance to the nearest village, indicating the need to promote dry forest restoration in the Caatinga. As our results suggest a larger population of C. barbarabrownae than had been previously estimated for its entire distribution, our results suggest a need for similar assessments in other areas to reliably estimate the total population size. This study demonstrates how playback surveys coupled with N-mixture models can be used to estimate population sizes of acoustically-responsive primates, and thus contribute to more effective conservation management.  相似文献   

13.
Estimating population densities of key species is crucial for many conservation programs. Density estimates provide baseline data and enable monitoring of population size. Several different survey methods are available, and the choice of method depends on the species and study aims. Few studies have compared the accuracy and efficiency of different survey methods for large mammals, particularly for primates. Here we compare estimates of density and abundance of Kloss’ gibbons (Hylobates klossii) using two of the most common survey methods: line transect distance sampling and triangulation. Line transect surveys (survey effort: 155.5 km) produced a total of 101 auditory and visual encounters and a density estimate of 5.5 gibbon clusters (groups or subgroups of primate social units)/km2. Triangulation conducted from 12 listening posts during the same period revealed a similar density estimate of 5.0 clusters/km2. Coefficients of variation of cluster density estimates were slightly higher from triangulation (0.24) than from line transects (0.17), resulting in a lack of precision in detecting changes in cluster densities of <66 % for triangulation and <47 % for line transect surveys at the 5 % significance level with a statistical power of 50 %. This case study shows that both methods may provide estimates with similar accuracy but that line transects can result in more precise estimates and allow assessment of other primate species. For a rapid assessment of gibbon density under time and financial constraints, the triangulation method also may be appropriate.  相似文献   

14.
Accurate population size estimates are important information for sustainable wildlife management. The Romanian Carpathians harbor the largest brown bear (Ursus arctos) population in Europe, yet current management relies on estimates of density that lack statistical oversight and ignore uncertainty deriving from track surveys. In this study, we investigate an alternative approach to estimate brown bear density using sign surveys along transects within a novel integration of occupancy models and home range methods. We performed repeated surveys along 2‐km segments of forest roads during three distinct seasons: spring 2011, fall‐winter 2011, and spring 2012, within three game management units and a Natura 2000 site. We estimated bears abundances along transects using the number of unique tracks observed per survey occasion via N‐mixture hierarchical models, which account for imperfect detection. To obtain brown bear densities, we combined these abundances with the effective sampling area of the transects, that is, estimated as a function of the median (± bootstrapped SE) of the core home range (5.58 ± 1.08 km2) based on telemetry data from 17 bears tracked for 1‐month periods overlapping our surveys windows. Our analyses yielded average brown bear densities (and 95% confidence intervals) for the three seasons of: 11.5 (7.8–15.3), 11.3 (7.4–15.2), and 12.4 (8.6–16.3) individuals/100 km2. Across game management units, mean densities ranged between 7.5 and 14.8 individuals/100 km2. Our method incorporates multiple sources of uncertainty (e.g., effective sampling area, imperfect detection) to estimate brown bear density, but the inference fundamentally relies on unmarked individuals only. While useful as a temporary approach to monitor brown bears, we urge implementing DNA capture–recapture methods regionally to inform brown bear management and recommend increasing resources for GPS collars to improve estimates of effective sampling area.  相似文献   

15.
When sighting‐based surveys to estimate population densities of large herbivores in tropical dense forests are not practical or affordable, surveys that rely on animal dung are sometimes used. This study tested one such dung‐based method by deriving population densities from observed dung densities of six large herbivores (chital, elephant, gaur, muntjac, sambar, and wild pig) in two habitats, dry deciduous forests (DDF) and moist deciduous forests (MDF), within Nagarahole National Park, southern India. Using the program DUNGSURV, dung pile counts, decay rates estimated from field experiments, and defecation rates derived from literature were analyzed together by a model that allows for random events affecting dung decay. Densities of chital were the highest, followed by sambar. Wild pig densities were similar in the two habitats, sambar densities were higher in DDF, and densities of the other species were higher in MDF than in DDF. We compared DUNGSURV estimates with densities estimated using distance sampling in the same season. DUNGSURV estimates were substantially higher for all species in both habitats. These differences highlight the challenges that researchers face in computing unbiased estimates of dung decay rates and in relying on defecation rates from literature. Besides the elephant, this study is the first to rigorously test the efficacy of using a dung‐based approach to estimate densities of large herbivore species in Asia, and based on this evaluation, we provide specific recommendations to address issues that require careful consideration before observed dung densities are used to derive animal densities. Our results underline the need for an experimental study of a known population in a fenced reserve to validate the true potential of using dung‐based approaches to estimate population densities.  相似文献   

16.
Capture-mark-recapture (CMR) is commonly used in conservation biology, but rarely used to study non-native species in freshwater habitats. The power of CMR lies in the ability to go beyond simple density estimates and to quantify invasion dynamics and vital population parameters. I applied CMR to a population of the non-native Chinese mystery snail (Cipangopaludina chinensis, Viviparidae) in a 1.46 ha pond on Long Island, NY to estimate population size and survival probability in the waterbody and to uncover potential mechanisms for enormous differences in introduction success within and between waterbodies (observed densities range <1–40 individuals m?2). The C. chinensis population increased from approximately 150 to nearly 970 individuals from 2010 to 2012. Daily capture probabilities were low (<0.2) for snails of all sizes. Daily survival probabilities were size-dependent (almost 1.0 for snails larger than 30 mm shell length, and decreasing below that threshold), suggesting size-dependent mortality. This study highlights the ease of applying CMR to C. chinensis and its potential for other non-native species. Traditional survey methods such as density estimates with transects or quadrats cannot document increasing population sizes or size-specific mortality factors, which are essential for understanding introduction success and dynamics.  相似文献   

17.
《新西兰生态学杂志》2011,34(3):297-305
Reliable information about population density and trends is essential for making valid inferences regarding conservation management. The suitability of point counts using distance sampling was examined as a means of monitoring a population of kaka (Nestor meridionalis septentrionalis), a large forest-dwelling parrot, inhabiting the Waipapa Ecological Area in the central North Island of New?Zealand. Counts were conducted on 13 occasions between 2000 and 2007. The sampling design was tailored to maximise the detectability of kaka and to minimise violations of the four most important assumptions of distance sampling. Location errors and subsequent distance estimation errors were most likely to bias density estimates despite our attempts to minimise failures of this assumption. Densities estimated from counts conducted in October were similar between 2000 and 2007 (approximately 0.5 kaka ha-1) with no evidence of either a positive or negative trend. Densities derived from counts in February or March were more erratic and seemed to reflect variation in the frequency and success of the preceding breeding season. Given the frequency of kaka breeding, the pest control regime during the study period, and our attempts to minimise violations of distance sampling assumptions, we are confident that the reported trends in density are realistic. Although distance sampling was found to give reliable density estimates of kaka at Waipapa, this may not be the case at other sites, particularly where kaka density is low, location error is high, forest structure or topography are more complex, or surveys of kaka are made part of more extensive multi-species surveys.  相似文献   

18.
Point counts are commonly used to assess changes in bird abundance, including analytical approaches such as distance sampling that estimate density. Point‐count methods have come under increasing scrutiny because effects of detection probability and field error are difficult to quantify. For seven forest songbirds, we compared fixed‐radii counts (50 m and 100 m) and density estimates obtained from distance sampling to known numbers of birds determined by territory mapping. We applied point‐count analytic approaches to a typical forest management question and compared results to those obtained by territory mapping. We used a before–after control impact (BACI) analysis with a data set collected across seven study areas in the central Appalachians from 2006 to 2010. Using a 50‐m fixed radius, variance in error was at least 1.5 times that of the other methods, whereas a 100‐m fixed radius underestimated actual density by >3 territories per 10 ha for the most abundant species. Distance sampling improved accuracy and precision compared to fixed‐radius counts, although estimates were affected by birds counted outside 10‐ha units. In the BACI analysis, territory mapping detected an overall treatment effect for five of the seven species, and effects were generally consistent each year. In contrast, all point‐count methods failed to detect two treatment effects due to variance and error in annual estimates. Overall, our results highlight the need for adequate sample sizes to reduce variance, and skilled observers to reduce the level of error in point‐count data. Ultimately, the advantages and disadvantages of different survey methods should be considered in the context of overall study design and objectives, allowing for trade‐offs among effort, accuracy, and power to detect treatment effects.  相似文献   

19.
Monitoring large herbivores across their core range has been readily accomplished using aerial surveys and traditional distance sampling. But for peripheral populations, where individuals may occur in patchy, low-density populations, precise estimation of population size and trend remains logistically and statistically challenging. For moose (Alces alces) along their southern range margin in northern New York, USA, we sought robust estimates of moose distribution, abundance, and population trend (2016–2019) using a combination of aerial surveys (line transect distance-sampling), repeated surveys in areas where moose were known to occur to boost the number of detections, and density surface modeling (DSM) with spatial covariates. We achieved a precise estimate of density (95% CI = 0.00–0.29 moose/km2) for this small population (656 moose, 95% CI = 501–859), which was patchily distributed across a large and heavily forested region (the 24,280-km2 Adirondack Park). Local moose abundance was positively related to active timber management, elevation, and snow cover, and negatively related to large bodies of water. As expected, moose abundance in this peripheral population was low relative to its core range in other northern forest states. Yet, in areas where abundance was greatest, moose densities in New York approached those where epizootics of winter tick (Dermacentor albipictus) have been reported, underscoring the need for effective and efficient monitoring. By incorporating autocorrelation in observations and landscape covariates, DSM provided spatially explicit estimates of moose density with greater precision and no additional field effort over traditional distance sampling. Combined with repeated surveys of areas with known moose occurrence to achieve viable sample sizes, DSM is a useful tool for effectively monitoring low density and patchy populations.  相似文献   

20.
Numerous researchers have documented the adverse effects of feral donkeys Equus asinus introduced to semi-arid ecosystems. With the release of feral donkeys and potential increasing populations in natural habitats in northern Cyprus, there is concern for negative impacts on vegetation and native species. In the north of the island, there has been only one published study of feral donkey populations, and population estimators were relatively subjective. We estimated feral donkey populations on the Karpaz Peninsula using line transect surveys and quantitative distance sampling estimators. We stratified the sampling by using 11 sample units within the study area. We evaluated potential biases associated with habitat, topography, and perpendicular distance from the transect line and found that these variables did not bias donkey detections during our surveys. Using program DISTANCE, we found that a hazard rate cosine model was the best model that described our distance data based on model selection criterion (Akaikes Information Criteria adjusted for small sample bias). Estimated effective strip width was 280.19 m and detection probability was 0.47 with this model. Estimated donkey density was 6.7 donkeys/km2, and estimated total abundance was 800 donkeys for the entire 132.5 km2 study area. Of 95 donkey groups detected: 16% were detected in agricultural habitats with flat topography, 9% were detected in agricultural habitats with sloped topography, 24% were detected in shrub/forest habitats with flat topography, and 51% were detected in shrub/forest habitats with sloped topography. Of 102 behavioral observations recorded (multiple behaviors were detected in groups), frequencies of behaviors were 1% bedded, 70% standing, 22% grazing, 6% moving, and 2% other. Our estimated donkey population density in the Karpaz Peninsula was >2 times densities reported in arid regions of the United States and Australia, but slightly lower than earlier density estimates reported for the Karpaz region. These estimates of feral donkey populations in the Karpaz Peninsula provide a quantitative baseline from which to make population management decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号