首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Primates are among the most important seed dispersers in the habitats they occupy. Understanding the extent of, and gaps in, our knowledge of seed dispersal by Asian primates is essential, because many of these primates are extremely vulnerable to anthropogenic disturbance. In this review, I show how initial studies focused on the role of individual species in seed dispersal have expanded more recently to consider their role in the wider frugivore community. There are five functional groups of primate seed dispersers in Asia; most of our information comes from the (usually) highly frugivorous macaques and gibbons, while our understanding of the roles played by orangutans and, especially, colobines and lorises remains rudimentary. Preliminary community-wide studies suggest a pivotal role for gibbons and macaques in frugivore communities, with higher dispersal overlap with other mammals than with birds. The gaps in our knowledge are plentiful, however, including understanding fruit selection in detail, determining how seed dispersal roles might change across different habitats, evaluating the balance between mutualisms and antagonisms in orangutans and macaques, describing postdispersal processes, and documenting how habitats are impacted by changes in primate abundance and behavior.  相似文献   

2.
The large ateline primates are efficient seed dispersers in Neotropical forests and hunting is driving their populations to extinction, but we do not know whether other frugivores could substitute primates in their ecological role as seed dispersers. In this study we test this possibility using a potential keystone species (Bursera inversa) at Tinigua Park, Colombia. This plant species allows us to compare seed removal rates between emergent, isolated trees, without primate visitors and trees with connected crowns. We used traps to estimate fruit production and seed removal rates in six different trees, and fruiting trees were observed during 2 yr to quantify the number of seeds manipulated by different animal species. We carried out seed predation experiments to test if seed removal by predators was affected by distance or density effects. We found that the most productive trees attracted more visiting species and seed removal rates differed among trees, the lowest corresponding to trees without primate access. Seed removal rates from the ground by predators were not higher below parental trees than away from them, but the distribution of saplings in the forest suggests that seed dispersal is advantageous. Although it is likely that the effect of primate extinctions will vary depending on tree species traits, conserving the populations of primate seed dispersers is critical to maintain the ecological processes in this forest.  相似文献   

3.
Cattle and agricultural farming in the western Orinoco Basin began in 1555, and since then fragmentation of continuous forest has occurred. We evaluated the effects of the disturbances and the absence of large primates on plant community composition, diversity, and regeneration patterns. Atelines (Lagothrix and Ateles) inhabited the lowlands close to the Andean mountains, but no longer live in fragmented habitats. Their absence may have negative effects on plant populations because atelines play important roles as seed dispersers in neotropical forests, especially for large-seeded plants, which are rarely swallowed by other seed dispersers. We compared 2 1-ha vegetation plots in forest fragments north of the La Macarena Mountains with 7 plots in continuous forest in Tinigua National Park. Both sites share the same climatic conditions and have similar geological origins. There is floristic affinity between forests with similar ecological characteristics; the fragmented forests are also less diverse than the continuous forests. As predicted, the forest fragments have fewer individuals with large seeds. The results suggest that forest fragmentation and local ateline extinctions affect plant communities, reducing diversity and affecting large-seeded plants.  相似文献   

4.
Conservation efforts are often aimed at one or a few species. However, habitat sustainability relies on ecological interactions among species, such as seed dispersal. Thus, a community-scale conservation strategy may be more valuable in some settings. We describe communities of primary (primates) and secondary (dung beetles) seed dispersers from 5 sites in the Brazilian Amazon. We estimate community biomass of these taxa and, using multivariate ordination, examine the potential for natural reforestation at each site, given the communities of seed dispersers present. Since disturbed habitat is increasingly common and increasingly the focus of conservation efforts, we also examine differences among seed disperser communities between primary forest and secondary growth at each site. Analyses of faunal biomass in different localities and habitats indicate that secondary growth receives nearly as much use by primates as primary forest; given the dominant groups of dung beetles in secondary growth, disturbed habitat should show a pattern of seed burial that is clumped and deep. Areas with high biomass of Alouatta spp. and the large nocturnal dung beetle species may have the greatest potential for natural reforestation of secondary growth particularly for large seeded species. The data suggest that knowledge of the biomass of primary and secondary dispersing fauna facilitates predictions for the likelihood of disturbed habitat to regenerate and comparisons of sites in broader geographical areas e.g., Neotropical vs. Paleotropical forests.  相似文献   

5.
Habitat fragmentation and disturbance are known to impact animals and plants in different ways, depending on species' characteristics and the type and scale of habitat modification involved. In contrast, direct or indirect ramifications on mutualistic relationships between plants and animals are less clear, possibly because general patterns are confounded by the diffuse nature of many of these interactions. Here, we examine how fragment size and/or severe disturbance of a Kenyan mountain cloud forest affects the frugivore community and seed removal of a large-seeded, bird-dispersed tree of the forest interior, for three consecutive years. Forest deterioration reduced avian visitation and seed removal rates independent of fragment size, consistently so despite strong temporal variation in fruit production over the three-year study. In disturbed forest fragments, seed removal rates were on average 3.5 times lower than in more intact ones. Strong differences in both visitation and seed removal rates were largely attributable to shifts in frugivore assemblages, characterized by loss or reduced abundance of the most effective seed dispersers, most of which were forest specialists. Although some disturbed fragments benefited from visits of non-forest dependent seed dispersers, such 'resilience' was not predictable or reliable in time or space. We conclude that disruption of seed disperser-seed interactions in highly fragmented and disturbed tropical forests may be persistent in time when resiliency is inadequate, possibly posing long-term effects on tree communities.  相似文献   

6.
Hunting in tropical forests decimates large mammals, and this may have direct and indirect effects on other trophic levels and lead to trophic cascades. We compared replicated sites of hunted and protected forests in southeastern Nigeria, with respect to community composition of primates, other mammals, birds, plant seedlings, and mature trees. We make predictions regarding the community composition at the different trophic levels. In forests where large primates are rare, we hypothesize that their ecological role will not be fully compensated for by small frugivores. We apply multivariate methods to assess changes in community composition of mammals, birds, and seedlings, controlling for any differences between sites in the other groups, including mature trees. Medium and large (4–180 kg) primates were much rarer in hunted sites, while porcupine and rock hyrax increased in abundance with hunting. In contrast, the community composition of birds was similar in both types of forests. Seedling communities were significantly related to the community composition of mammals, and thus strongly affected by hunting. In protected forests primate dispersed plant seedling species dominated, whereas in hunted forests the seedling community was shifted towards one dominated by abiotically dispersed species. This was probably both a consequence of reduced seed dispersal by primates, and increased seed predation by rodents and hyrax. Hence we found no evidence for buffering effects on tree regeneration through functional compensation by non‐hunted animals (such as birds). Our results highlight how seedling communities are changed by the complex plant–animal intera ctions, triggered by the loss of seed dispersers. The results predict a rarity of primate‐dispersed trees in future tropical forest canopies; a forest less diverse in timber and non‐timber resources.  相似文献   

7.
Anthropogenic disturbances have resulted in declines of seed-dispersing primate frugivores in tropical forests. Previous work has suggested that loss of seed dispersal by large frugivores may have a negative impact on ecosystem carbon storage by reducing tree biomass. However, we know little about the potential impacts of losing frugivores in Madagascar’s diverse rainforest ecosystem. Understanding the effects of frugivore extinction on carbon loss is relevant in Madagascar, where threatened lemur taxa are the only dispersers of many large-seeded plant species. Using a dataset of tree species composition and traits from the southeastern rainforests of Ranomafana National Park, we examined whether seed size and lemur-dependent dispersal are positively associated with above-ground tree biomass. We then simulated different scenarios of population declines of large-seeded trees (>10 mm seed length) dependent on lemur-mediated seed dispersal, to examine potential directional changes in carbon storage capacity of Malagasy forests under lemur loss. Lemur-dispersed tree species, which have large seeds, had higher above-ground biomass than other species. Our simulations showed that the loss of large frugivorous primates in Madagascar may decrease the forest’s potential to store carbon. These results demonstrate the importance of primate conservation for maintaining functioning ecosystems and forest carbon stocks in one of the world’s hottest hotspots of biodiversity.  相似文献   

8.
Seed dispersal by frugivores in tropical rain forests is important for maintaining viable tree populations. Over the years, vertebrate assemblages in tropical forests have been altered by anthropogenic disturbances, leading to concerns about the ability of remnant vertebrates to substitute for the lost or declining vertebrate populations. We compared vertebrate composition and frugivore visitation rates as an indirect measure of rate of seed dispersal in three tropical rain forests in Uganda, namely Mabira, Budongo and Kibale Forests. Mabira is highly disturbed, Kibale is little and Budongo is intermediate. The aim was to determine whether vertebrate assemblages in differentially disturbed forests had comparable abilities to disperse seeds and whether tree species were equally vulnerable to loss of seed dispersers. Assemblages of forest generalist species were similar in all forests, but specialists were less abundant in the heavily disturbed forest. Remnant frugivores in the heavily disturbed forest were mainly small-bodied species that spat seeds beneath fruiting trees compared to large-bodied species observed in the less disturbed forests that ingested and carried away the seeds. We postulate that the quantity of seeds dispersed in heavily disturbed forests is much reduced due to low visitation rates of frugivores and the absence of large frugivores that consume large quantities of fruit. The quality of seed dispersal is affected as well by the distance over which seeds are moved. Assessment of vulnerability of trees shows no evidence for disperser substitution for trees producing large fruits. Fruit trees with low nutritional contents and digestibility were least visited in frugivore-impoverished forests. The loss of large specialist frugivores is likely to affect recruitment of many trees, especially of species that cannot establish beneath adult conspecifics.  相似文献   

9.
Seed dispersal is an ecological process crucial for forest regeneration and recruitment. To date, most studies on frugivore seed dispersal have used the seed dispersal effectiveness framework and have documented seed-handling mechanisms, dispersal distances and the effect of seed handling on germination. In contrast, there has been no exploration of “disperser reliability” which is essential to determine if a frugivore is an effective disperser only in particular regions/years/seasons or across a range of spatio-temporal scales. In this paper, we propose a practical framework to assess the spatial reliability of frugivores as seed dispersers. We suggest that a frugivore genus would be a reliable disperser of certain plant families/genera if: (a) fruits of these plant families/genera are represented in the diets of most of the species of that frugivore, (b) these are consumed by the frugivore genus across different kinds of habitats, and (c) these fruits feature among the yearly staples and preferred fruits in the diets of the frugivore genus. Using this framework, we reviewed frugivory by the genus Macaca across Asia to assess its spatial reliability as seed dispersers. We found that the macaques dispersed the seeds of 11 plant families and five plant genera including at least 82 species across habitats. Differences in fruit consumption/preference between different groups of macaques were driven by variation in plant community composition across habitats. We posit that it is essential to maintain viable populations of macaques across their range and keep human interventions at a minimum to ensure that they continue to reliably disperse the seeds of a broad range of plant species in the Anthropocene. We further suggest that this framework be used for assessing the spatial reliability of other taxonomic groups as seed dispersers.  相似文献   

10.
Fruit-eating animals play important roles as seed dispersal agents in terrestrial systems. Yet, the extent to which seed dispersal by nocturnal omnivores may facilitate germination and the recruitment of plant communities has rarely been investigated. Characterizing their roles in seed dispersal is necessary to provide a more complete picture of how seed dispersal processes affect ecosystem functioning. We investigated the roles and impacts of two species of nocturnal omnivorous lemur species, Microcebus jollyae and M. rufus, on seed dispersal in Madagascar's rain forests, through analysis of fecal samples and germination experiments. Data show that these lemur species, which are among the world's smallest primates, dispersed 22 plant species from various forest strata and that the defecated seeds germinated faster and at higher rates than control seeds for the eight plant species we tested. Even though mouse lemurs dispersed both native and non-native plant species, non-native plant species represented a relatively small proportion (17%). These results demonstrate that overlooked nocturnal omnivores can act as important seed dispersers, which may have critical implications for forest regeneration and the maintenance of plant diversity in fragmented/degraded forests. Finally, we provide critical insights into the previously unobserved behavior and diet of endangered nocturnal lemurs for their effective conservation.  相似文献   

11.
Vertical stratification (VS) is a widespread phenomenon in plant and animal communities in forests and a key factor for structuring their species richness and biodiversity, particularly in tropical forests. The organisms composing forest communities adjust and shape the complex three-dimensional structure of their environment and inhabit a large variety of niches along the vertical gradient of the forest. Even though the degree of VS varies among different vertebrate groups, patterns of compositional stratification can be observed across taxa. Communities of birds, bats, primates, and non-flying small mammals are vertically stratified in terms of abundance, species richness, diversity, and community composition. Frugivorous members of these taxa play important roles as seed dispersers and forage on fruit resources that, in turn, vary in quantity and nutritional value along the vertical gradient. As a consequence, plant–seed disperser interaction networks differ among strata, which is manifested in differences in interaction frequencies and the degree of mutual specialization. In general, the canopy stratum is composed of strong links and generalized associations, while the lower strata comprise weaker links and more specialized interactions. Investigating the VS of communities can provide us with a better understanding of species habitat restrictions, resource use, spatial movement, and species interactions. Especially in the face of global change, this knowledge will be important as these characteristics can imply different responses of species and taxa at a fine spatial scale.  相似文献   

12.
Forest fragmentation, reduced forest cover, and hunting pressure are the main threats affecting animal‐mediated seed dispersal. However, their combined effects on seed dispersal rates have been simultaneously investigated only rarely, and never in Africa. We aimed to disentangle the effects of forest cover, hunting pressure, frugivore abundance, and fruit availability at the local and landscape scales on the seed dispersal rates of Staudtia kamerunensis (Myristicaceae). To estimate the percentages of seed dispersal failure (undispersed seeds), we quantitated fruit remains below fruiting trees distributed across five contrasting sites in a semi‐natural forest‐savanna mosaic in the Democratic Republic of Congo. We used statistical analyses accounting for spatial autocorrelation and found that forest cover in the surrounding landscape, hunting level, the associated abundance of dispersers, and fruit availability all had significant effects on the percentage of seed dispersal failure. The combination of high fruit availability and reduced abundance of seed dispersers could accelerate seed disperser satiation, causing the seed dispersal system to be saturated. Our study highlights how two major factors associated with anthropogenic activities, forest cover and hunting, affect seed dispersal by animals. These findings could have far‐reaching implications for our understanding of tree‐frugivore interactions and the conservation of tropical communities.  相似文献   

13.
The Dispersal Syndrome hypothesis remains contentious, stating that apparently nonrandom associations of fruit characteristics result from selection by seed dispersers. We examine a key assumption under this hypothesis, i.e. that fruit traits can be used as reliable signals by frugivores. We first test this assumption by looking at whether fruit colour allows birds and primates to distinguish between fruits commonly dispersed by birds or primates. Second, we test whether the colours of fruits dispersed by primates are more contrasting to primates than the colours of bird‐dispersed fruits, expected if fruit colour is an adaptation to facilitate the detection by seed dispersers. Third, we test whether fruit colour has converged in unrelated plant species dispersed by similar frugivores. We use vision models based on peak sensitivities of birds’ and primates’ cone cells. We base our analyses on the visual systems of two types of birds (violet and ultraviolet based) and three types of primates (trichromatic primates from the Old and the New Worlds, and a dichromatic New World monkey). Using a Discriminant Function Analysis, we find that all frugivore groups can reliably discriminate between bird‐ and primate‐dispersed fruits. Fruit colour can be a reliable signal to different seed dispersers. However, the colours of primate‐dispersed fruits are less contrasting to primates than those of bird‐dispersed fruits. Fruit colour convergence in unrelated plants is independent of phylogeny and can be better explained by disperser type, which supports the hypothesis that frugivores are important in fruit evolution. We discuss adaptive and nonadaptive hypotheses that can potentially explain the pattern we found.  相似文献   

14.
In an attempt to understand the practical and/or economic implications of primate seed dispersal, it was established which seed species are dispersed by frugivorous primates in Kibale National Park, Uganda, and which of this sort of species were used by Ugandan people. A list of fruit species consumed by Kibale primates was compiled using primary data and by reviewing all known published accounts of their fruit diet. Primates consume the fruit of 87 Kibale forest tree species; the seeds of 11% of these species are destroyed by the primates. The remaining 77 species are dispersed by either one, two, three or all four of the frugivorous Kibale primates. Of these 77 species, 42% have some utility to local Ugandan inhabitants, suggesting that maintaining populations of primates is important not only for natural forest regeneration, but also for human habitat use. This report illustrates the complexity of the seed dispersal process and suggests links not only between plants and their dispersers, but also between sets of plants/dispersers and the human populations that rely on forest resources.  相似文献   

15.
Large vertebrates are important elements of mutualistic interactions and provide positive impacts on plant population and community dynamics. Despite the increasing interest on vertebrate frugivory we are still not able to disentangle the real contribution of seed dispersal to Neotropical forest functioning. Consuming fruits does not imply effective seed dispersal and many variables, such as seed size and animal diet, may influence the outcome of plant-animal interactions. Here, we performed a comprehensive literature search on seed dispersal by Neotropical vertebrates (with a focus on primates) to closely approach their role as seed dispersers, hypothesizing frugivory degree and seed size as main drivers of fruit handling behavior and diversity of dispersed seeds. We found that the great majority of seeds manipulated by Neotropical primates, with exception to the seed predators pitheciins, were swallowed and passed intact through their gut. Larger seeds (>12 mm) tended of being ingested exclusively by primates and other large vertebrates, such as tapirs and peccaries. Furthermore, primate feeding guild had a great influence on the richness and sizes of seeds dispersed, as primarily frugivores dispersed more species and had higher probabilities of ingesting larger seeds when compared to other feeding guilds. Organizing available knowledge and filling the main knowledge gaps allowed us to validate common sense assumptions and ultimately draw new conclusions about the role played by primates together with other major frugivores in Neotropical forests.  相似文献   

16.
Characterization of the ecology of endangered timber species is a crucial step in any forest management strategy. In this study, we described the animal communities involved in seed dispersal and predation of a high‐value timber species Guibourtia tessmannii (Fabaceae; Detarioideae), which is newly listed on Appendix II of CITES. We compared the animal communities between two forest sites (Bambidie in Gabon and Ma'an in Cameroon). A total of 101 hr of direct observations and 355 days of camera trapping revealed that a primate (Cercopithecus nictitans nictitans) and a hornbill (Ceratogymna atrata) were important seed dispersers in Gabon. Conversely, a greater presence of a rodent (Cricetomys emini), which could act both as predator and disperser, was observed in Cameroon. This study suggests that animal communities involved in seed dispersal of G. tessmannii may vary depending on environmental conditions and anthropogenic impacts. However, further studies are needed to properly identify the factors involved in seed dispersal and predation of G. tessmannii.  相似文献   

17.
Many Amazon River fishes consume fruits and seeds from floodplain forests during the annual flood season, potentially serving as important seed dispersers and predators. Using a participatory approach, this study investigated how within-season variation in flood level relates to fruit consumption and seed dispersal by two important frugivorous fish, Colossoma macropomum and Piaractus brachypomus , in two Lower Amazon River fishing communities in Brazil. Diets of both fish species were comprised of 78–98 percent fruits, largely dominated by a few species. Diets included fruits of 27 woody angiosperms and four herbaceous species from 26 families, indicating the importance of forest and Montrichardia arborescens habitat during peak flood. A correspondence between peak fruit species richness and peak flood level was observed in one of two communities, which may reflect higher forest diversity and/or differences in selection of fishing habitat. Both fishes are seed dispersers and predators, the relative role of which did not vary by flood level, seed size, or fish size, but may vary with seed hardness. Interspecific differences in diet volume and intact seeds suggest P. brachypomus are more effective seed dispersers than C. macropomum . Overall, the spatial and temporal variation in fruit species composition and richness demonstrate plasticity in fruit consumption in relation to flood level and locally available fruits. While such diets are adaptive to the dynamic changes of Amazon floodplain habitats, the high consumption of forest fruits and seeds from mid- and late-successional species suggests that floodplain forest degradation could disrupt seed dispersal and threaten local and regional fisheries.  相似文献   

18.
Fragmentation is a major threat factor for plant–frugivore communities in tropical and subtropical forests. Resulting changes in the distribution of traits within these communities, e.g., a loss in large‐bodied frugivores, may lead to strong changes in plant–frugivore interactions in fragmented forests. Yet, we still lack a thorough understanding of the interplay between forest fragmentation, the trait‐composition of communities and resulting plant–frugivore interactions on a community‐scale. In a fragmented South African landscape comprising different forest categories—i.e., continuous natural forest, forest fragments surrounded by natural grassland, and forest fragments surrounded by sugarcane—we investigated the relationship between communities of fruiting plants and their frugivore visitors in response to forest fragmentation, as well as the interactive effects of forest fragmentation and fruit size of the plants on the number of frugivore visitors and their body size. Neither the fruit size of plant nor the body mass of frugivore communities differed between natural forest sites and forest fragments. Moreover, in‐depth analyses of frugivore assemblages visiting plant species revealed no effect of forest category on the number of frugivore visits or their mean body mass. The number of visits and body mass of frugivores were merely determined by the crop and fruit size of the focal plant species. Overall, our results suggest that frugivory of plant species with differently sized fruits was not reduced in forest fragments. Thus, fragments with high fruit availability may be key elements maintaining the functional connectivity of a heterogeneous forest landscape.  相似文献   

19.
Traditionally, the morphological traits of primates were assumed to be adaptations to an arboreal way of life. However, Cartmill [1972] pointed out that a number of morphological traits characteristic of primates are not found in many other arboreal mammals. He contends that orbital convergence and grasping extremities indicate that the initial divergence of primates involved visual predation on insects in the lower canopy and undergrowth of the tropical forest. However, recent research on nocturnal primates does not support the visually-oriented predation theory. Although insects were most likely important components of the diets of the earliest euprimates, it is argued here that visual predation was not the major impetus for the evolution of the adaptive traits of primates. Recent paleobotanical research has yielded evidence that a major evolutionary event occurred during the Eocene, involving the angiosperms and their dispersal agents. As a result of long-term diffuse coevolutionary interactions with flowering plants, modern primates, bats, and plant-feeding birds all first arose around the Paleocene-Eocene boundary and became the major seed dispersers of modern tropical flora during the Eocene. Thus, it is suggested here that the multitude of resources available on the terminal branches of the newly evolved angiosperm, rain forest trees led to the morphological adaptations of primates of modern aspect.  相似文献   

20.
Capuchin monkeys (Cebus spp. and Sapajus spp.) and coatis (Nasua spp.) coexist in most neotropical forests, including small forest remnants. Both capuchins and coatis eat fruit and disperse seeds, but little is known about whether their roles in seed dispersal are redundant or complementary. We compiled 49 studies from the literature on feeding by capuchins and/or coatis, of which 19 were comprehensive enough for our analyses. We determined the relative importance of fruit eating to each species and compared their diets. Additionally, we analysed the structure of three fruit–frugivore networks built with both animal groups and the fruits they eat and evaluated whether fruit traits influenced the network topology. Fruits represented the largest part of capuchin and coati diets, even though coatis have been known for their opportunistic and generalist diets. Capuchins and coatis also exhibited similar general diet parameters (niche breadth and trophic diversity). The three networks exhibited high connectance values and variable niche overlap. A Multiple Correspondence Analysis, failed to detect any trait or trait combination related to food use. In conclusion, capuchins and coatis both have generalist diets; they feed on many different species of fruits and exhibit important complementarity as seed dispersers. Both are likely to be particularly important seed dispersers in disturbed and fragmented forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号