首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Green sturgeon, Acipenser medirostris, and white sturgeon, Acipenser transmontanus, are frequent inhabitants of coastal estuaries from northern California, USA to British Columbia, Canada. An analysis of stomach contents from 95 green sturgeon and six white sturgeon commercially landed in Willapa Bay, Grays Harbor, and the Columbia River estuary during 2000–2005 revealed that 17–97% had empty stomachs, but those fish with items in their guts fed predominantly on benthic prey items and fish. Burrowing thalassinid shrimp (mostly Neotrypaea californiensis) were important food items for both white and especially for green sturgeon taken in Willapa Bay, Washington during summer 2003, where they represented 51% of the biomass ingested (84.9% IRI). Small pits observed in intertidal areas dominated by these shrimp, are likely made by these sturgeon and we present evidence from exclusion studies and field observation that the predator making the pits can have a significant cumulative negative effect on burrowing shrimp density. These burrowing shrimp present a threat to the aquaculture industry in Washington State due to their ability to de-stabilize the substrate on which shellfish are grown. Despite an active burrowing shrimp control program in these estuaries, it seems unlikely that current burrowing shrimp abundance and availability as food is a limiting factor for threatened green sturgeon stocks. However, these large predators may have performed an important top down control function on shrimp populations in the past when they were more abundant.  相似文献   

2.
Habitat use can be complex, as tradeoffs among physiology, resource abundance, and predator avoidance affect the suitability of different environments for different species. Green sturgeon (Acipenser medirostris), an imperiled species along the west coast of North America, undertake extensive coastal migrations and occupy estuaries during the summer and early fall. Warm water and abundant prey in estuaries may afford a growth opportunity. We applied a bioenergetics model to investigate how variation in estuarine temperature, spawning frequency, and duration of estuarine residence affect consumption and growth potential for individual green sturgeon. We assumed that green sturgeon achieve observed annual growth by feeding solely in conditions represented by Willapa Bay, Washington, an estuary annually frequented by green sturgeon and containing extensive tidal flats that harbor a major prey source (burrowing shrimp, Neotrypaea californiensis). Modeled consumption rates increased little with reproductive investment (<0.4%), but responded strongly (10–50%) to water temperature and duration of residence, as higher temperatures and longer residence required greater consumption to achieve equivalent growth. Accordingly, although green sturgeon occupy Willapa Bay from May through September, acoustically-tagged individuals are observed over much shorter durations (34 d + 41 d SD, N = 89). Simulations of <34 d estuarine residence required unrealistically high consumption rates to achieve observed growth, whereas longer durations required sustained feeding, and therefore higher total intake, to compensate for prolonged exposure to warm temperatures. Model results provide a range of per capita consumption rates by green sturgeon feeding in estuaries to inform management decisions regarding resource and habitat protection for this protected species.  相似文献   

3.
Sturgeon diet and feeding habitats are notoriously difficult to document. We mapped the locations of feeding pits in Willapa Bay, Washington, to characterize estuarine habitats used by sub-adult and adult sturgeon for infaunal feeding. Monthly summer surveys of intertidal plots revealed that feeding pit density was highest in July and August, when sturgeon occupy Willapa Bay. The ephemeral nature of feeding pits and high daily densities (> 1000 pits/ha) indicated intensive sturgeon feeding over unvegetated littoral mud flats during high tide. Feeding pit density was lowest in subtidal areas, over sand (grain sizes primarily >63 μ), and at sites with dense stands of non-indigenous seagrass, Zostera japonica. Sub-adult and adult sturgeon apparently used these habitats significantly less than would be predicted based on their availability. Feeding pit formation was negatively correlated with Z. japonica shoot dry weight and positively correlated with the abundance of thalassinid shrimp burrows. Experimental removal of Z. japonica resulted in increased sturgeon feeding, but experimental removal of burrowing shrimp did not significantly affect feeding pit formation. Aquaculture activities that harden substrate and proliferation of invasive seagrass both appear to produce estuarine substrates that are unsuitable for benthic feeding by sturgeon.  相似文献   

4.
Green sturgeon, Acipenser medirostris, movement and migration within the Klamath and Trinity rivers were assessed using radio and sonic telemetry. Sexually mature green sturgeon were captured with gillnets in the spring, as adults migrated upstream to spawn. In total, 49 green sturgeon were tagged with radio and/or sonic telemetry tags and tracked manually or with receiver arrays from 2002 to 2004. Tagged individuals exhibited four movement patterns: upstream spawning migration, spring outmigration to the ocean, or summer holding, and outmigration after summer holding. Spawning migrations occurred from April to June, as adults moved from the ocean upstream to spawning sites. Approximately 18% of adults, those not out mignation in the spring, made spring post-spawning outmigrations. The majority of adults, those not outmigrating in the spring, remained in discrete locations characterized as deep, low velocity pools for extended periods during the summer and early fall. Fall outmigration occurred when fish left summer holding locations, traveled rapidly downstream, and exited the river system. High river discharge due to the onset of winter rainstorms and freshets appear to be the key environmental cue instigating the fall outmigration.  相似文献   

5.
Eriocheir sinensis H. Milne Edwards, 1853 is on the list of top 100 invaders compiled by the International Union for Conservation of Nature and Natural Resources. The recent establishment of a large Chinese mitten crab population in San Francisco Bay and the potential for introductions from California, Asia and Europe pose a significant invasion potential for estuaries and rivers from California to Alaska. This alien species would place at risk the catchment areas of the Pacific Northwest including the economic and social activities that depend upon intact aquatic systems. An analysis of ecological conditions that define the mitten crab’s native and introduced range suggests that large stable estuaries with long flushing times are necessary to sustain significant populations. Most Pacific Northwest estuaries have limited salinity intrusion, estuarine habitat and short flushing times and face a reduced risk of population establishment. Large, stable estuaries, such as the Puget Sound, may support significant populations. River-dominated estuaries, such as the Columbia River, have flushing times less than the duration of larval development and wouldn’t support populations. An application of a temperature based larval development rate to near-shore and estuary sea surface temperatures suggests that estuaries in Oregon and Washington have sufficient thermal regimes to support larval development. Most estuary systems in Alaska have limited periods where water temperatures are above the mortality threshold for the larval stages and are at a low risk for the establishment of populations. A potential sea temperature rise of two degrees Celsius would permit larval development in Alaskan estuaries, where sufficient estuarine and freshwater habitats exist.  相似文献   

6.
In 2009, the Fundy Ocean Research Centre for Energy (FORCE) developed a 1.6 x 1.0 km Crown Lease Area (CLA) to test Marine Hydrokinetic devices (MHKs) in Minas Passage (MP), a strait that connects the Bay of Fundy to Minas Basin (MB), Nova Scotia. Minas Basin is an important summer feeding aggregation site for numerous fishes including Atlantic sturgeon (Acipenser oxyrinchus Mitchill, 1815) stocks from Canada and the US. In this study, acoustic tagging technology was used to describe sturgeon presence in the CLA, as well as an adjacent site proposed for MHKs deployment. During 2018 and 2019, 33.9% (n = 19/56 Atlantic sturgeon tagged) and 29.9% (n = 23/77 Atlantic sturgeon tagged) respectively, of sturgeon acoustically tagged in MB during 2014–2019 were detected in these two FORCE sites. Binomial General Linear Models (GLMs) were fit to determine if environmental parameters influenced the presence, or depth of Atlantic sturgeon in the FORCE sites. The only significant predictor of Atlantic sturgeon depth and presence at the FORCE sites was tide type. Atlantic sturgeon was found to have a higher likelihood of being detected during ebb tide (12%) as opposed to flood tide (3%). Apparent decline in the presence of sturgeon during flood tide was probably due to poor signal reception caused by turbulence from higher current speeds. Tagged sturgeon travelled through the FORCE sites pelagically at similar depths (27.5 ± 14.57 m) to those proposed for seabed mounted MHKs (~30 m), travelling deeper during flood tide than ebb, suggesting they may be at risk of spatial overlap with MHKs. While this study indicated that the duration Atlantic sturgeon utilized the FORCE sites throughout the summer appeared to be low, sturgeon from both endangered and threatened stocks migrated through this region during their yearly entry and exit to MB and were present for approximately 12% of the days assessed in this study.  相似文献   

7.
The green sturgeon (Acipenser medirostris), which is found in the eastern Pacific Ocean from Baja California to the Bering Sea, tends to be highly migratory, moving long distances among estuaries, spawning rivers, and distant coastal regions. Factors that determine the oceanic distribution of green sturgeon are unclear, but broad-scale physical conditions interacting with migration behavior may play an important role. We estimated the distribution of green sturgeon by modeling species-environment relationships using oceanographic and migration behavior covariates with maximum entropy modeling (MaxEnt) of species geographic distributions. The primary concentration of green sturgeon was estimated from approximately 41–51.5° N latitude in the coastal waters of Washington, Oregon, and Vancouver Island and in the vicinity of San Francisco and Monterey Bays from 36–37° N latitude. Unsuitably cold water temperatures in the far north and energetic efficiencies associated with prevailing water currents may provide the best explanation for the range-wide marine distribution of green sturgeon. Independent trawl records, fisheries observer records, and tagging studies corroborated our findings. However, our model also delineated patchily distributed habitat south of Monterey Bay, though there are few records of green sturgeon from this region. Green sturgeon are likely influenced by countervailing pressures governing their dispersal. They are behaviorally directed to revisit natal freshwater spawning rivers and persistent overwintering grounds in coastal marine habitats, yet they are likely physiologically bounded by abiotic and biotic environmental features. Impacts of human activities on green sturgeon or their habitat in coastal waters, such as bottom-disturbing trawl fisheries, may be minimized through marine spatial planning that makes use of high-quality species distribution information.  相似文献   

8.
The Rogue River, Oregon represents one of three important spawning systems for green sturgeon, Acipenser medirostris, in North America. In this paper we describe the spawning migration, spawning periodicity, and size at maturity for green sturgeon caught in the Rogue River during 2000–2004. Green sturgeon were caught by gill net or angling; 103 individuals were tagged with radio or sonic transmitters (externally or internally). Green sturgeon caught by gill net and angling ranged from 145 cm to 225 cm total length. Histological and visual examinations of gonad tissues indicated that most green sturgeon were spawning or post-spawning adults that entered the Rogue River to spawn. Ripe individuals were caught when water temperature was 10–18°C. Specimens carrying transmitters migrated 17–105 km up river; reaches consisting of likely spawning sites were identified based on sturgeon migratory behavior. Most green sturgeon remained in the Rogue River until late fall or early winter when flows increased, after which they returned to the ocean. Eight green sturgeon (males and females) returned to the Rogue River 2–4 years after leaving, entering the river during March, April, and May when water temperatures ranged from 9°C to 16°C. None of the 103-tagged individuals entered the Rogue River during successive years. There appear to be few known natural threats to adult green sturgeon in the Rogue River. However, our data suggest that a high percentage of adults that spawn in the Rogue River (particularly males) were susceptible to harvest by commercial, Tribal, and sport fisheries after leaving the system because they were not adequately protected by maximum size limits during the period of this study. The implications of maximum size limits (or lack of size limits) to green sturgeon are discussed, and recent actions taken by Oregon and Washington Fish and Wildlife Commissions to manage green sturgeon more conservatively are presented.  相似文献   

9.
The detailed movements of 32 acoustically tagged broadnose sevengill shark Notorynchus cepedianus were documented in and around north-east Pacific Ocean estuarine embayments from 2005 to 2007. Arrangements of passive acoustic receivers allowed analysis of movement at several spatial scales, with sex and size examined as possible factors influencing the pattern and timing of these movements. Notorynchus cepedianus exhibited a distinctly seasonal pattern of estuary use over three consecutive years, entering Willapa Bay in the spring, residing therein for extended periods of time during the summer and dispersing into nearshore coastal habitats and over the continental shelf during the autumn. Notorynchus cepedianus within Willapa Bay showed spatio-temporal patterns of segregation by size and sex, with males and small females using peripheral southern estuary channels early in the season before joining large females, who remained concentrated in central estuary channels for the entire season. Individuals displayed a high degree of fidelity not only to Willapa Bay (63% were documented returning over three consecutive seasons), but also to specific areas within the estuary, showing consistent patterns of site use from year to year. Cross-estuary movement was common during the summer, with most fish also moving into an adjacent estuarine embayment for some extent of time. Most winter and autumn coastal detections of N. cepedianus were made over the continental shelf near Oregon and Washington, U.S.A., but there were also examples of individuals moving into nearshore coastal habitats further south into California, suggesting the feasibility of broad-scale coastal movements to known birthing and nursery grounds for the species. These findings contribute to a better understanding of N. cepedianus movement ecology, which can be used to improve the holistic management of this highly mobile apex predator in regional ecosystems.  相似文献   

10.
Large blooms of opportunistic green macroalgae such as Enteromorpha intestinalis are of ecological concern in estuaries worldwide. Macroalgae derive their nutrients from the water column but estuarine sediments may also be an important nutrient source. We hypothesized that the importance of these nutrient sources to E. intestinalis varies along a nutrient-resource gradient within an estuary. We tested this in experimental units constructed with water and sediments collected from 3 sites in Upper Newport Bay estuary, California, US, that varied greatly in water column nutrient concentrations. For each site there were three treatments: sediments + water; sediments + water + Enteromorpha intestinalis (algae); inert sand + water + algae. Water in units was exchanged weekly simulating low turnover characteristic of poorly flushed estuaries. The importance of the water column versus sediments as a source of nutrients to E. intestinalis varied with the magnitude of the different sources. When initial water column levels of dissolved inorganic nitrogen (DIN) and soluble reactive phosphorus (SRP) were low, estuarine sediments increased E. intestinalis growth and tissue nutrient content. In experimental units from sites where initial water column DIN was high, there was no effect of estuarine sediments on E. intestinalis growth or tissue N content. Salinity, however, was low in these units and may have inhibited growth. E. intestinalis growth and tissue P content were highest in units from the site with highest initial sediment nutrient content. Water column DIN was depleted each week of the experiment. Thus, the water column was a primary source of nutrients to the algae when water column nutrient supply was high, and the sediments supplemented nutrient supply to the algae when water column nutrient sources were low. Depletion of water column DIN in sediment + water units indicated that the sediments may have acted as a nutrient sink in the absence of macroalgae. Our data provide direct experimental evidence that macroalgae utilize and ecologically benefit from nutrients stored in estuarine sediments.  相似文献   

11.
The broadnose sevengill shark (Notorynchus cepedianus) is a high-order marine predator distributed worldwide in shallow coastal waters of temperate seas. Recent reports have suggested it may be a prevalent component of Pacific Northwest coastal estuarine communities, although biological characteristics of the shark population remain undocumented despite growing interest in recreational harvest of the species. Longline sampling was conducted in Willapa Bay and Grays Harbor, Washington, USA seasonally during 2003–2006 to collect sevengill shark size, maturity, and sex ratio data, and establish some baseline catch rate information. Sevengill sharks were collected on 65% of longline sets and catches were composed of subadult and mature individuals (122–283 cm TL) of both sexes. Most male sevengill sharks were large sexually mature adults, based on external clasper calcification levels, whereas most comparably sized females were considered subadults, based on literature-based size-at–maturity estimates. Neonates and young sharks <120 cm were not collected, nor have they been reported in other historic estuary sampling efforts. Sex ratios were skewed toward males in Willapa Bay and suggest some degree of sexual segregation for the species, as has been shown for populations elsewhere. We suggest sevengill sharks are a largely ignored but potentially important predator in Pacific Northwest estuaries. This study therefore provides some of the first, basic information for guiding management decisions associated with a late-maturing, slow-growing shark species in these coastal habitats.  相似文献   

12.
ABSTRACT Many shorebirds exhibit within‐ and among‐year site fidelity during their annual cycle. Little is known, however, about the migration ecology of Red Knots (Calidris canutus) that migrate along the Pacific Flyway and occur in Washington in numbers that exceed counts elsewhere on the flyway. At two large estuaries in coastal Washington, Grays Harbor and Willapa Bay, we searched for and recorded the locations of Red Knots (N= 547) that had been individually marked with leg flags at their wintering grounds in Baja California Sur, Mexico, during the period from October 2006 to April 2009. In 2010, we resighted 43 Red Knots at Grays Harbor and Willapa Bay that had been observed at these sites in previous years, primarily in 2009. We found a high degree of site fidelity between years, with birds observed in 2010 more likely to return to the same stopover site used in 2009 than to switch stopover sites. For knots that did not switch estuaries between years, the median nearest distance between locations where individuals were observed between years was 1.4 km at Grays Harbor and 0.6 km at Willapa Bay. Our results provide the first evidence of stopover site fidelity by Red Knots of the roselaari subspecies. Fidelity occurred at three spatial scales: coastal Washington, the two estuaries where we conducted our study, and specific mudflat areas within the estuaries. Because our study sites support high populations of bivalves, Red Knots may be returning to the same areas in subsequent years to exploit what we suspect is a predictable food resource. The abundance of Red Knots and high degree of site fidelity suggest that our study sites in Grays Harbor and Willapa Bay are important for the conservation of this species on the Pacific Flyway.  相似文献   

13.
Synopsis Fish utilizing South African estuaries may be divided into two major groups according to the location of their spawning sites. The marine group comprises large species which spawn at sea, enter estuaries mainly as juveniles, and return to the sea prior to attaining sexual maturity. The estuarine group is dominated by small species which have the ability to complete their life cycle within the estuarine environment. They tend to produce relatively few, demersal eggs, or exhibit parental care, which facilitates the retention of eggs and young within the estuary, whereas the marine group release large numbers of small pelagic eggs during spawning and exhibit no parental care. This is contrary to the theory that estuaries (unpredictable environments) should favour altricial life-history styles and the marine inshore zone (a more predictable environment) should favour precocial styles. However, if the total ichthyofauna of South African estuaries is considered, then altricial species predominate. The fact that both altricial and precocial traits are well represented within the overall estuarine fish community suggests that the various taxa have adapted their life-history styles, in different ways, to ensure the utilization of abundant food resources available within these fluctuating systems. A detailed comparison of the life-history styles of the estuarine teleostGilchristella aestuaria and the marine fishMugil cephalus is used to illustrate the contrasting manner in which these two species have succeeded in exploiting South African estuaries.  相似文献   

14.
We conducted the first continuous shipboard tracking of southern Distinct Population Segment green sturgeon, Acipenser medirostris, in the Sacramento River. Tracking of adult green sturgeon occurred between river kilometer (rkm) 434.8 and 511.6, a section of the putative spawning grounds located near Red Bluff, California. The recorded positions of acoustically tagged green sturgeon were analyzed using First Passage Time analysis to determine differences in habitat use between suitable and non-suitable habitats. Classification and Regression Tree modeling was used to determine explanatory inputs attributable to above average habitat use. Green sturgeon exhibited above average habitat use at five sites, identified as potential spawning aggregate sites. Three types of movements (holding, milling, and directed) could be categorized from tracks. Lastly, we show that green sturgeon while on the spawning grounds exhibit a high degree of mobility throughout the spawning grounds, often making large movements between specific habitat units. Our study illustrates how the application of shipboard tracking can be useful for describing movement, behavior and habitat utilization at a spatial scale not achieved by stationary acoustic monitors.  相似文献   

15.
Migration of green sturgeon, Acipenser medirostris, in the Sacramento River   总被引:1,自引:0,他引:1  
Adult green sturgeon, Acipenser medirostris, were collected in San Pablo Bay, California, and surgically implanted with ultrasonic acoustic tags from 2004 to 2006. An array of automated acoustic monitors was maintained in the Sacramento River to record movements of these fish. We presumed movements to known spawning areas (based on previous green sturgeon egg collections) or areas with potential spawning habitat (characterized by substrate, flow, and temperature criteria) represented a “spawning migration.” Three separate annual “spawning migrations” were recorded involving 15 individuals. The majority of the Sacramento River migrants entered the system in the months of March and April. Two different patterns of “spawning migration” and out-migration were observed. Six individuals potentially spawned, over-summered and moved out of the river with the first fall flow event. This is believed to be the common behavior of the green sturgeon. Alternatively, nine individuals promptly moved out of the Sacramento River before 1 September, and any known flow or temperature cue. Some green sturgeon appeared to be impeded on their upstream movement by the 15 May closure of the Red Bluff Diversion Dam, and at least five passed under the dam gates during downstream migration. A delay in the closure of the Red Bluff Diversion Dam would likely allow upstream passage of spawning green sturgeon, further, the potential mortality affects of downstream passage beneath the Red Bluff Diversion Dam should be assessed. Specific protection should be also given to the large aggregation of green sturgeon located in the reach of the Sacramento River adjacent to the Glen Colusa Irrigation District pumping facility.  相似文献   

16.
We tested the hypothesis that temperature, salinity, and dissolved oxygen affect elasmobranch distribution and abundance in Tomales Bay, California, with monthly longline samples over a 20 month period. We used a Poisson regression under generalized least squares and found that temperature and salinity were the most important factors determining the distribution and abundance of the three most common elasmobranch species, bat ray, Myliobatis californica, leopard shark, Triakis semifasciata, and brown smoothhound shark, Mustelis henlei. Females of all three species were more abundant than males throughout the Bay, and were most abundant in the warmer, more saline inner bay. All three species apparently left Tomales Bay in late fall as water temperatures in the bay decreased to <10–12° C, and returned in early spring after temperatures increased to > 10° C. Three of 257 bat rays tagged in Tomales Bay were recaptured, all within 1km of their tagging location despite having been free for up to 583d.  相似文献   

17.
Green sturgeon (Acipenser medirostris) and white sturgeon (A. transmontanus) are closely related, sympatric species that inhabit the San Francisco estuary. Green sturgeon have a more marine life history but both species spawn in the Sacramento River and reside for some duration in San Francisco Bay. These sturgeons are of conservation concern, yet little is known about their dietary competition when they overlap in space and time. To examine evidence of dietary differentiation, we collected whole blood and blood plasma from 26 green sturgeon and 35 white sturgeon in San Francisco Bay. Using carbon and nitrogen stable isotope analyses, we compared their relative trophic levels and foraging locations along the freshwater to marine gradient. Sampling blood plasma and whole blood allowed comparison of dietary integration over shorter and longer time scales, respectively. Plasma and whole blood δ13C values confirmed green sturgeon had more marine dietary sources than white sturgeon. Plasma δ15N values revealed white sturgeon fed at lower trophic levels than green sturgeon recently, however, whole blood δ15N values demonstrated the two species fed at the same trophic level over longer time scales. Larger individuals of both species had higher δ13C values than smaller individuals, reflecting more marine food sources in adulthood. Length did not affect δ15N values of either species. Isotope analyses supported the more marine life history of green than white sturgeon and potentially highlight a temporary trophic differentiation of diet between species during and preceding the overlapping life stage in San Francisco Bay.  相似文献   

18.
The native East Asian shrimp Palaemon macrodactylus has become a common inhabitant of estuaries along the Pacific coast of North America. More recently (documented since 1999), the species has also been colonising European waters and has been reported from Spain, England, Belgium and the Netherlands. In this study, we present a chronology of the reported introductions of this species and provide the first detailed report of its occurrence in German waters. P. macrodactylus was found in the Geeste river mouth (Weser Estuary) as well as in Hooksiel, north of Wilhelmshaven between 2004 and 2005. We assume its presence in other estuarine habitats of the North Sea and predict its introduction into the Baltic Sea.  相似文献   

19.
Many populations of shortnose sturgeon, Acipenser brevirostrum, in the southeastern United States continue to suffer from poor juvenile recruitment. High summer water temperatures, which may be exacerbated by anthropogenic activities, are thought to affect recruitment by limiting available summer habitat. However, information regarding temperature thresholds of shortnose sturgeon is limited. In this study, the thermal maximum method and a heating rate of 0.1°C min−1 was used to determine critical and lethal thermal maxima for young-of-the-year (YOY) shortnose sturgeon acclimated to temperatures of 19.5 and 24.1°C. Fish used in the experiment were 0.6 to 35.0 g in weight and 64 to 140 days post hatch (dph) in age. Critical thermal maxima were 33.7°C (±0.3) and 35.1°C (±0.2) for fish acclimated to 19.5 and 24.1°C, respectively. Critical thermal maxima significantly increased with an increase in acclimation temperature (p < 0.0001). Lethal thermal maxima were 34.8°C (±0.1) and 36.1°C (±0.1) for fish acclimated to 19.5 and 24.1°C, respectively. Lethal thermal maxima were significantly affected by acclimation temperature, the log10 (fish weight), and the interaction between log10(fish weight) and acclimation temperature (p < 0.0001). Thermal maxima were used to estimate upper limits of safe temperature, thermal preferences, and optimal growth temperatures of YOY shortnose sturgeon. Upper limits of safe temperature were similar to previous temperature tolerance information and indicate that summer temperatures in southeastern rivers may be lethal to YOY shortnose sturgeon if suitable thermal refuge cannot be found.  相似文献   

20.
Ultrasonic acoustic emissions were measured in Quercus ilex trees of a Mediterranean forest in Catalonia (NE Spain) each season from summer of 2004 to autumn of 2005. Acoustic emissions were maximum during hot and dry summer periods. Acoustic emissions started below 17% soil moisture, 0.85 RWC, and 2.5 MPa leaf water potential. They were negatively correlated with soil moisture and leaf water potential. The relationship between acoustic emissions and leaf water potential was the strongest, indicating that xylem tension is the most important factor inducing both cavitation (acoustic emissions) and a decrease in leaf water potential. Future increase of xylem cavitation derived from climate change may result in growth and survival limitations for this species in the drier southern limits of its current distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号