首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 829 毫秒
1.
The relation of macrobenthic species turnover (beta diversity) and species plylogenetic variation with functional diversity patterns, across an environmental gradient induced by an aquaculture unit, in a coastal area of the island of Lesvos (NE Aegean) has been investigated in this study. The contribution of rare species response and species dispersal ability in the variation of functional diversity patterns along the environmental gradient, on a spatio-temporal scale, has been also examined. Our results revealed that benthic functional diversity was decreasing monotonically with increasing species turnover rate and hence with increasing spatial variability along the environmental gradient. Increased environmental stress which was detected in the immediate vicinity of the fish cages resulted to low species functional redundancy, since different species didn’t perform the same functional role at the most disturbed part of the established gradient. Functional diversity patterns were found to be correlated with species population size, whereas a strong linear relationship was also detected with phylogenetic diversity patterns, thus supporting the claim that wider local taxonomic trees can support a wider range of species functions even in small spatial scales. Rare species loss seemed to be one of the dominant factors ruling functional diversity variation. Species with the minimum possible dispersal ability, which were mostly rare, tend to diminish both in species number and population size faster than species with wider dispersal ability towards the most disturbed areas. The aforementioned results indicate that rare species variation and endemic species loss are critical factors in determining functional diversity loss across a human-induced environmental gradient in soft bottom benthic communities.  相似文献   

2.
Accumulative disturbances can erode a coral reef's resilience, often leading to replacement of scleractinian corals by macroalgae or other non-coral organisms. These degraded reef systems have been mostly described based on changes in the composition of the reef benthos, and there is little understanding of how such changes are influenced by, and in turn influence, other components of the reef ecosystem. This study investigated the spatial variation in benthic communities on fringing reefs around the inner Seychelles islands. Specifically, relationships between benthic composition and the underlying substrata, as well as the associated fish assemblages were assessed. High variability in benthic composition was found among reefs, with a gradient from high coral cover (up to 58%) and high structural complexity to high macroalgae cover (up to 95%) and low structural complexity at the extremes. This gradient was associated with declining species richness of fishes, reduced diversity of fish functional groups, and lower abundance of corallivorous fishes. There were no reciprocal increases in herbivorous fish abundances, and relationships with other fish functional groups and total fish abundance were weak. Reefs grouping at the extremes of complex coral habitats or low-complexity macroalgal habitats displayed markedly different fish communities, with only two species of benthic invertebrate feeding fishes in greater abundance in the macroalgal habitat. These results have negative implications for the continuation of many coral reef ecosystem processes and services if more reefs shift to extreme degraded conditions dominated by macroalgae.  相似文献   

3.
Patterns of fish community composition in a south-central Chile river were investigated along the altitudinal-spatial and environmental gradient and as a function of anthropogenic factors. The spatial pattern of fish communities in different biocoenotic zones of the Chillan River is influenced by both natural factors such a hydrologic features, habitat, and feeding types, and also by water quality variables which can reduce the diversity and abundance of sensitive species. A principal component analysis incorporating both water quality parameters and biomarker responses of representative fish species was used to evaluate the status of fish communities along the spatial gradient of the stream. The abundance and diversity of the fish community changed from a low in the upper reaches where the low pollution-tolerant species such as salmonid dominated, to a reduced diversity in the lower reaches of the river where tolerant browser species such as cypriniformes dominated. Even though the spatial pattern of fish community structure is similar to that found for the Chilean Rivers, the structure of these communities is highly influenced by human disturbance, particularly along the lower reaches of the river. Handling editor: C. Sturmbauer  相似文献   

4.
Many aquatic ecosystems are sustained by detrital subsidies of leaf litter derived from exogenous sources. Although numerous studies have examined the effects of litter species richness and identity on decomposition processes, it remains unclear how these effects extend to associated invertebrate communities or how these effects vary spatially according to local environmental context. Using field enrichment experiments, we assessed how the species richness, assemblage composition, and supply of detrital litter resources interact to affect benthic communities of three temperate Australian estuarine mudflats. Our experiments utilized eight litter sources that are presently experiencing human‐mediated changes in their supply to estuarine mudflats. Contrary to predictions, we did not detect effects of the species richness of detrital mixtures on benthic communities. Macroinvertebrate community structure and, in particular, abundance were, instead, influenced by the assemblage composition of detrital mixtures. At two of the three sites, plots receiving the most labile detrital mix, containing the ephemeral algae Chaetomorpha and Ulva, supported the fewest macroinvertebrates of all the experimental enrichments. The large effect of detrital mix identity on macroinvertebrate communities is of concern given present trends of proliferation of macroalgae at the expense of more refractory seagrasses and marsh grasses. As such environmental degradation continues, it will be important to more fully understand under what environmental contexts such compositional changes in detrital resources will have the most detrimental effects on important prey resources for commercially important fish and wading shorebirds.  相似文献   

5.
Contemporary and historical factors influence assemblage structure. The environmental and spatial influences acting on fish organization of rain forest coastal streams in the Atlantic rain forest of Brazil were examined. Fish (and functional traits such as morphology, diet, velocity preference, body size), environmental variables (pH, water conductivity, dissolved oxygen, temperature, stream width, flow, depth, substrate), and altitude were measured from 59 stream reaches. Asymmetric eigenvector maps were used to model the spatial structure considering direction of fish movements. Elevation played an important role—fish abundance, biomass, and richness all decrease with increasing elevation. Fish communities are influenced by both environmental and spatial factors, but downstream movements were shown to be more important in explaining the observed spatial variation than were bidirectional and upstream movements. Spatial factors, as well as environmental variables influenced by the spatial structure, explained most of the variation in fish assemblages. The strong spatial structuring is probably attributable to asymmetric dispersal limitation along the altitudinal profile: Dispersal is likely to be more limiting moving upstream than downstream. These fish assemblages reflect scale-dependent processes: At the stream-reach scale, fish respond to local environmental filters (habitat structure, water chemistry, and food supply), which are in turn influenced by a larger scale, namely the altitudinal gradient expected in steep coastal mountains. Thus, environmental drivers are not independent of spatial factors, and the effects of local factors can be confounded across the altitudinal gradient. These results may have implications for conservation, because downstream reaches are often neglected in management and conservation plans.  相似文献   

6.
How the distribution and abundance of organisms vary across environmental gradients can reveal factors important in structuring aquatic communities. We sampled the littoral-zone fish community in a large reservoir (Lake Texoma) on the Texas–Oklahoma (U.S.A.) border that has pronounced environmental gradients from up- to downlake and between major tributary arms. Our objective was to evaluate the predictability of the littoral-zone fish-community structure from a suite of environmental variables. A stepwise multiple-regression model, with environmental factors at independent variables, explained 64% of the variation in fish species richness across sample sites. The number of species was positively associated with water-column productivity and total Kjedahl nitrogen, and negatively associated with Secchi depth and benthic productivity. Canonical correspondence analysis, with environmental factors as independent variables, explained 63% of the variation in fish-community structure across sites. Equal proportions of the variation in community structure were explained by variables that have strong gradients within the reservoir (e.g., Secchi depth and water-column productivity) and those that represent local habitat variables (e.g., shoreline aspect and substrate type).  相似文献   

7.
Ecological quality assessment of non-natural water bodies is, in contrast to natural systems, less developed and requires determining biological indicators that reliably reflect environmental conditions and anthropogenic pressures. This study was motivated to propose fish indicators appropriate for assessment of reservoir ecosystems in central Europe. We analysed changes in water quality, total biomass and the taxonomic, trophic and size composition of fish communities along the longitudinal axes of four elongated, deep-valley reservoirs. Due to high nutrient inputs from their catchments, the reservoirs exhibited pronounced within-system gradients in primary productivity and water transparency. Although fish communities were similar among the reservoirs and dominated by few native species, the community structure and biomass systematically changed along the longitudinal axes of the reservoirs. The biomass and proportion of planktivores/benthivores in the fish community were highest at eutrophic sites near the river inflow and declined substantially towards deep, more oligotrophic sites close to the dam. The biomass and proportion of piscivores significantly increased downstream within the reservoirs alongside improving water quality. At species level, perch Perca fluviatilis and bream Abramis brama responded most sensitively, although in opposite directions, to the longitudinal environmental gradient. The major longitudinal changes in fish community characteristics were found to be consistent between pelagic and benthic habitats. The results of this study suggest that fish communities are appropriate indicators of eutrophication and can be used for ecological quality assessment of non-natural lentic water bodies, such as reservoirs. Moreover, our results underline the necessity to consider within-system gradients in water quality and the fish community when planning sampling programmes for deep-valley reservoirs.  相似文献   

8.
Understanding the environmental factors driving species‐genetic diversity correlations (SGDCs) is critical for designing appropriate conservation and management strategies to protect biodiversity. Yet, few studies have explored the impact of changing land use patterns on SGDCs specifically in aquatic communities. This study examined patterns of genetic diversity in roach (Rutilus rutilus L.) together with fish species composition across 19 locations in a large river catchment, spanning a gradient in land use. Our findings show significant correlations between some, but not all, species and genetic diversity end points. For example, genetic and species differentiation showed a weak but significant linear relationship across the Thames catchment, but additional diversity measures such as allelic richness and fish population abundance did not. Further examination of patterns in species and genetic diversity indicated that land use intensification has a modest effect on fish diversity compared to the combined influence of geographical isolation and land use intensification. These results indicate that environmental changes in riparian habitats have the potential to amplify shifts in the composition of stream fish communities in poorly connected river stretches. Conservation and management strategies for fish populations should, therefore, focus on enhancing connectivity between river stretches and limit conversion of nearby land to arable or urban use to maintain current levels of biodiversity.  相似文献   

9.
1. Changes in cladoceran subfossils in the surface sediments of 54 shallow lakes were studied along a European latitude gradient (36–68°N). Multivariate methods, such as regression trees and ordination, were applied to explore the relationships between cladoceran taxa distribution and contemporary environmental variables, with special focus on the impact of climate. 2. Multivariate regression tree analysis showed distinct differences in cladoceran community structure and lake characteristics along the latitude gradient, identifying three groups: (i) northern lakes characterised by low annual mean temperature, conductivity, nutrient concentrations and fish abundance, (ii) southern, macrophyte rich, warm water lakes with high conductivity and high fish abundance and (iii) Mid‐European lakes at intermediate latitudes with intermediate conductivities, trophic state and temperatures. 3. Large‐sized, pelagic species dominated a group of seven northern lakes with low conductivity, where acid‐tolerant species were also occasionally abundant. Small‐sized, benthic‐associated species dominated a group of five warm water lakes with high conductivity. Cladoceran communities generally showed low species‐specific preferences for habitat and environmental conditions in the Mid‐European group of lakes. Taxon richness was low in the southern‐most, high‐conductivity lakes as well as in the two northern‐most sub‐arctic lakes. 4. The proportion of cladoceran resting eggs relative to body shields was high in the northern lakes, and linearly (negatively) related to both temperature and Chl a, indicating that both cold climate (short growing season) and low food availability induce high ephippia production. 5. Latitude and, implicitly, temperature were strongly correlated with conductivity and nutrient concentrations, highlighting the difficulties of disentangling a direct climate signal from indirect effects of climate, such as changes in fish community structure and human‐related impacts, when a latitude gradient is used as a climate proxy. Future studies should focus on the interrelationships between latitude and gradients in nutrient concentration and conductivity.  相似文献   

10.
Functional characters have the potential to act as indicators of species turnover between local communities. Null models provide a powerful statistical approach to test for patterns using functional character information. A combined null model/functional character approach provides the ability to distinguish between the effect of competition and environmental filtering on species turnover. We measured 13 functional characters relating directly to resource use for the fish species found in French lakes. We combined this functional character data with a null model approach to test whether co-occurring species overlapped more or less than expected at random for four primary niche axes. We used an environmentally constrained null model approach to determine if the same mechanisms were responsible for species turnover at different sections of the altitudinal gradient. Functional diversity indices were used to examine the variation in functional character diversity with altitude, as a test of the hypothesis that competitive intensity decreases with increasing environmental adversity. The unconstrained null model showed that environmental filtering was the dominant influence on species turnover between lakes. In the constrained null model, there was much less evidence for environmental filtering, emphasising the strong effect of altitude on turnover in functional character values between local communities. Different results were obtained for low-altitude and high-altitude lake subsets, with more evidence for the effect of environmental filtering being found in the high-altitude lakes. This demonstrates that different processes may influence species turnover throughout an environmental gradient. Functional diversity values showed a slight decrease with altitude, indicating that there was only weak evidence that competitive intensity decreased with increasing altitude. Variation resource availability and environmental stress probably cause the observed turnover in functional characters along the altitudinal gradient, though the effects of dispersal limitation and species introductions in high-altitude lakes cannot be ruled out.  相似文献   

11.
The relative importance of ecology and evolution as factors determining species richness and composition of the helminth communities of fish is a matter of current debate. Theoretical studies use host-parasite lists, but these do not include studies on a temporal or spatial scale. Local environmental conditions and host biological characteristics are shown to influence helminth species richness and composition in four fish species (Eugerres plumieri, Hexanematichthys assimilis, Oligoplites saurus, and Scomberomorus maculatus) in Chetumal Bay, Mexico. With the exception of H. assimilis, the helminth communities had not been previously studied and possible associations between environmental and host biological characteristics as factors determining helminth species richness and composition using redundancy analysis (RDA) are described. Thirty-four helminth species are identified, with the highest number of species (19 total (mean = 6.3 +/- 2.1)) and the lowest (9 (4.0 +/- 1.0)) occurring in H. assimilis and S. maculatus, respectively. The larval nematodes Contracaecum sp. and Pseudoterranova sp. were not only the helminth species shared by all four host species but also were the most prevalent and abundant. Statistical associations between helminth community parameters and local ecological variables such as host habitat use, feeding habits, mobility, and time of residence in coastal lagoons are identified. Phylogeny is important because it clearly separates all four host species by their specialist parasites, although specific habitat and feeding habits also significantly influence the differentiation between the four fish species.  相似文献   

12.
The fish communities of 371 sites from 4 natural regions of the Seine River basin were studied. The sites were located from small to medium size rivers (catchment area : 5 to 3895 km2). We examined the differences between local communities according to river size (estimated by catchment area) and region. In the Seine River basin, fish communities follow a general organisation rule: total species richness increases with river size and importance of limnophilic species versus rheophilic ones increases from upstream to downstream. However, fish communities show differences of total species richness, species richness of reproductive groups and species composition between the four natural regions of the basin. Particularly, river size and regional organisation of environmental factors interact on species composition of communities and several regional patterns of longitudinal changes of fish communities are identified. The origin and range of regional differences of fish communities are discussed according to historical and environmental factors.  相似文献   

13.
生物多样性的形成和维持机制是生态学研究的核心问题,其中环境和空间因子在群落构建中的相对重要性是生态学家面临的重要挑战。为探究黄河口湿地底栖动物群落的关键影响因子,及环境和空间因子对底栖动物群落结构的相对调控作用。于2017年10月与2018年5月对黄河口湿地32个样点(淡水恢复湿地19个和自然湿地13个)的底栖动物和水体理化指标进行采集分析。非度量多维标度排序(NMDS)结果显示,黄河口淡水恢复湿地和自然湿地的底栖动物群落结构显著不同。典范对应分析(CCA)表明,影响淡水恢复湿地底栖动物群落结构的环境因子主要为电导率、盐度和氧化还原电位;而自然湿地底栖动物群落结构主要受pH和无机碳的影响;盐度是两类湿地底栖动物群落组成差异的关键因子。变差分解(VPA)结果显示,环境过滤对淡水恢复湿地底栖动物群落起主导作用;在自然湿地中,空间因子对底栖动物群落具有主要的调控作用,同时环境和空间因子的相互作用也至关重要。本研究明确了黄河口的自然和恢复湿地中环境和空间因素对底栖动物群落特征的相对作用,对黄河三角洲河口湿地中生物多样性的保护和生态系统管理提供参考。  相似文献   

14.
Patterns of spatial autocorrelation of biota and distributional similarity (concordance) between assemblages of different organism groups have important implications in both theoretical ecology and biodiversity conservation. Here we report environmental gradients and spatial distribution patterns of taxonomic composition among stream fish, benthic macroinvertebrate, and diatom assemblages along a fragmented stream in south‐western France. We quantified spatial patterns of lotic assemblage structure along this stream, and we tested for concordance in distribution patterns among the three taxonomic groups. Our results showed that both environmental characteristics and stream assemblages were spatially autocorrelated. For stream fish and diatom assemblages, these patterns reflected assemblage changes along the longitudinal stream gradient, whereas environmental variables and benthic macroinvertebrates exhibited a more patchy spatial pattern. Cross‐taxa concordance was significant between stream fish and diatoms, and between stream fish and benthic macroinvertebrates. The assemblage concordance between stream fish and diatoms could be attributed to similar responses along the longitudinal gradient, whereas those between stream fish and benthic macroinvertebrates may result from biotic interactions. Based on potential dispersal capacities of taxa, our results validated the hypotheses that weakly dispersing taxa exhibit greater concordance than highly dispersing ones and that dispersal capacities affect how taxonomic groups respond to their local environment. Both diatoms and highly dispersing stream fish were affected by stream fragmentation (i.e. the number of dams between sites), while the effect of fragmentation was not significant for invertebrates that fly well in their adult stage, thus emphasizing the importance of the way of dispersal. These results suggest that addressing the effects of dispersal capacity on stream assemblage patterns is crucial to identifying mechanisms behind patterns and to better understanding the determinants of stream biodiversity.  相似文献   

15.
Species richness is unevenly distributed on the Earth, with biodiversity gradients of various spatial scales supposedly being affected by abiotic as well as biotic factors including community traits such as body size spectra and relative abundance patterns. To explore large-scale spatial variation in species diversity and their processes, tidepool fish communities were investigated through an intensive field work conducted on 55 shore sites in south-western Japan. Multiple ecological measures were taken into account to assess changes in local community structures with changes in the number of species. Biomass (total fish wet weight) per unit area showed no systematic change with latitude, while taxa richness and number of individuals tended to increase toward lower latitudes. In addition, median fish body weight scaled positively with latitude, which was more conspicuous in Blenniidae than in Gobiidae. The latitudinal gradient of diversity in tidepool fish assemblages appears to be characterized by partitioning of total biomass that tends to stay constant across latitudes, suggesting the phenomenon of “biomass compensation” whereby body size and abundance/diversity change in opposite directions with latitude. Our study highlights that biomass compensation can be part of processes involved in generating gradients of species richness even without an apparent energy/resource gradient.  相似文献   

16.
Synopsis We surveyed fish communities and corresponding environmental conditions at three broadly similar coastal sites of eastern Andros Island, The Bahamas over a summer–winter–summer sequence to assess the relationship between detailed environmental features and fish species patterns. Environmental variables included covers of various benthic flora components, benthic flora diversity, floral canopy height, micro-crustacean diversity and density, water temperature, extent of destructive land-use and extent of invasion by human-introduced exotic terrestrial plants. Correspondence analysis (CA) indicated that spatial (site) differences in environmental characteristics were greater than temporal (seasonal) differences. Detrended canonical correspondence analysis (DCCA) was used to assess the strength of relationships between the environmental characteristics and the distribution patterns of 25 fish species. Environmental features deemed to be most important in influencing fish species patterns included benthic flora canopy height, extent of invasion by exotic terrestrial plants, cover of Batophora oerstedii, cover of Thalassia testudinum, turf cover, water temperature, micro-crustacean diversity, and micro-crustacean density. Based upon similarities in distribution patterns, fish species formed four clusters which, ultimately, reflected similarities in species’ feeding habits and preferences for habitats that likely maximize foraging success. We conclude that fish distribution patterns are related to environmental characteristics, and that anthropogenic coastal activity, by influencing coastal benthic characteristics, may influence the distribution and abundances of fish species in coastal habitats.  相似文献   

17.
  1. Planktonic and benthic bacterial communities hold central roles in the functioning of freshwater ecosystems and mediate key ecosystem services such as primary production and nutrient remineralisation. Although it is clear that such communities vary in composition both within and between lakes, the environmental factors and processes shaping the diversity and composition of freshwater bacteria are still not fully understood.
  2. In order to assess seasonal and spatial variability in lake bacterial communities and identify environmental factors underpinning biogeographical patterns, we performed a large-scale sampling campaign with paired water and sediment sample collection at 18 locations during four seasons in Lake Balihe, a subtropical shallow fish-farming lake in mid-eastern China.
  3. Pelagic and benthic bacterial communities were distinctly different in terms of diversity, taxonomic composition and community structure, with Actinobacteria, Bacteroidetes, Cyanobacteria and Alphaproteobacteria dominating lake water, and Acidobacteria, Bacteroidetes, Chloroflexi, Gammaproteobacteria and Deltaproteobacteria dominating sediment. Nevertheless, these two communities had stronger spatial concordance and overlap in taxa during spring and autumn seasons. Together, the main drivers of both the spatial and temporal variations in Lake Balihe bacterial communities were identified as water temperature, turbidity, nitrogen and phosphorus availability, and thermal stratification controlled by wind-mixing and activity of the dense farmed fish populations. Notably, populations affiliated with Firmicutes, known to be abundant in fish gut microbiome, were especially abundant in the summer season and locations where high fish biomass was found, suggesting a potential link between fish gut microbiome and the pelagic bacterial communities.
  4. Our findings demonstrated seasonal homogenisation of pelagic and benthic bacterial communities linked to marked shifts in a set of seasonally-driven environmental variables including water temperature and nutrient availability.
  相似文献   

18.
The release of anthropogenic pollution into freshwater ecosystems has largely transformed biodiversity and its geographical distribution patterns globally. However, for many communities including ecologically crucial ones such as zooplankton, it is largely unknown how different communities respond to environmental pollution. Collectively, dispersal and species sorting are two competing processes in determining the structure and geographical distribution of zooplankton communities in running water ecosystems such as rivers. At fine geographical scales, dispersal is usually considered as the dominant factor; however, the relative role of species sorting has not been evaluated well, mainly because significant environmental gradients rarely exist along continuously flowing rivers. The Chaobai River in northern China represents a rare system, where a significant environmental gradient exists at fine scales. Here, we employed high‐throughput sequencing to characterize complex zooplankton communities collected from the Chaobai River, and tested the relative roles of dispersal and species sorting in determining zooplankton community structure along the pollution gradient. Our results showed distinct patterns of zooplankton communities along the environmental gradient, and chemical pollutant‐related factors such as total phosphorus and chlorophyll‐a were identified as the major drivers for the observed patterns. Further partial redundancy analyses showed that species sorting overrode the effect of dispersal to shape local zooplankton community structure. Thus, our results reject the dispersal hypothesis and support the concept that species sorting caused by local pollution can largely determine the zooplankton community structure when significant environmental gradients exist at fine geographical scales in highly polluted running water ecosystems.  相似文献   

19.
Macroecology of a host-parasite relationship   总被引:3,自引:0,他引:3  
The larvae of freshwater mussels are obligate ectoparasites on fishes while adults are sedentary and benthic. Dispersal of mussels is dependent on the movement of fish hosts, a regional process, but growth and reproduction should be governed by local processes. Thus, mussel assemblage attributes should be predictable from the regional distribution and abundance of fishes. At a broad spatial scale in the Red River drainage, USA, mussel species richness and fish species richness were positively associated; maximum mussel richness was limited by fish richness, but was variable beneath that constraint. Measured environmental variables and the associated local fish assemblages each significantly accounted for the regional variation in mussel assemblages. Furthermore, mussel assemblages showed strong spatial autocorrelation. Variation partitioning revealed that pure fish effects accounted for 15.4% of the variation in mussel assemblages; pure spatial and environmental effects accounted for 16.1% and 7.8%, respectively. Shared variation among fish, space and environmental variables totaled 40%. Of this shared variation, 36.8% was associated with the fish matrix. Thus, the variation in mussel assemblages that was associated with the distribution and abundance of fishes was substantial (> 50%), indicating that fish community structure is an important determinant of mussel community structure. Although animals commonly disperse plants and, thus, influence the structure of plant communities, our results show a strong macroecological association between two disparate animal groups with one strongly affecting the assemblage structure of the other.  相似文献   

20.
Predicting the response of species to environmental changes is a great and on‐going challenge for ecologists, and this requires a more in‐depth understanding of the importance of biotic interactions and the population structuration in the landscape. Using a reciprocal transplantation experiment, we tested the response of five species to an elevational gradient. This was combined to a neighbour removal treatment to test the importance of local adaptation and biotic interactions. The trait studied was performance measured as survival and biomass. Species response varied along the elevational gradient, but with no consistent pattern. Performance of species was influenced by environmental conditions occurring locally at each site, as well as by positive or negative effects of the surrounding vegetation. Indeed, we observed a shift from competition for biomass to facilitation for survival as a response to the increase in environmental stress occurring in the different sites. Unlike previous studies pointing out an increase of stress along the elevation gradient, our results supported a stress gradient related to water availability, which was not strictly parallel to the elevational gradient. For three of our species, we observed a greater biomass production for the population coming from the site where the species was dominant (central population) compared to population sampled at the limit of the distribution (marginal population). Nevertheless, we did not observe any pattern of local adaptation that could indicate adaptation of populations to a particular habitat. Altogether, our results highlighted the great ability of plant species to cope with environmental changes, with no local adaptation and great variability in response to local conditions. Our study confirms the importance of taking into account biotic interactions and population structure occurring at local scale in the prediction of communities’ responses to global environmental changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号