首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jie Hou  Tianqi Wu  Renzhi Cao  Jianlin Cheng 《Proteins》2019,87(12):1165-1178
Predicting residue-residue distance relationships (eg, contacts) has become the key direction to advance protein structure prediction since 2014 CASP11 experiment, while deep learning has revolutionized the technology for contact and distance distribution prediction since its debut in 2012 CASP10 experiment. During 2018 CASP13 experiment, we enhanced our MULTICOM protein structure prediction system with three major components: contact distance prediction based on deep convolutional neural networks, distance-driven template-free (ab initio) modeling, and protein model ranking empowered by deep learning and contact prediction. Our experiment demonstrates that contact distance prediction and deep learning methods are the key reasons that MULTICOM was ranked 3rd out of all 98 predictors in both template-free and template-based structure modeling in CASP13. Deep convolutional neural network can utilize global information in pairwise residue-residue features such as coevolution scores to substantially improve contact distance prediction, which played a decisive role in correctly folding some free modeling and hard template-based modeling targets. Deep learning also successfully integrated one-dimensional structural features, two-dimensional contact information, and three-dimensional structural quality scores to improve protein model quality assessment, where the contact prediction was demonstrated to consistently enhance ranking of protein models for the first time. The success of MULTICOM system clearly shows that protein contact distance prediction and model selection driven by deep learning holds the key of solving protein structure prediction problem. However, there are still challenges in accurately predicting protein contact distance when there are few homologous sequences, folding proteins from noisy contact distances, and ranking models of hard targets.  相似文献   

2.
CASP (critical assessment of structure prediction) assesses the state of the art in modeling protein structure from amino acid sequence. The most recent experiment (CASP13 held in 2018) saw dramatic progress in structure modeling without use of structural templates (historically “ab initio” modeling). Progress was driven by the successful application of deep learning techniques to predict inter-residue distances. In turn, these results drove dramatic improvements in three-dimensional structure accuracy: With the proviso that there are an adequate number of sequences known for the protein family, the new methods essentially solve the long-standing problem of predicting the fold topology of monomeric proteins. Further, the number of sequences required in the alignment has fallen substantially. There is also substantial improvement in the accuracy of template-based models. Other areas—model refinement, accuracy estimation, and the structure of protein assemblies—have again yielded interesting results. CASP13 placed increased emphasis on the use of sparse data together with modeling and chemical crosslinking, SAXS, and NMR all yielded more mature results. This paper summarizes the key outcomes of CASP13. The special issue of PROTEINS contains papers describing the CASP13 assessments in each modeling category and contributions from the participants.  相似文献   

3.
Scoring model structure is an essential component of protein structure prediction that can affect the prediction accuracy tremendously. Users of protein structure prediction results also need to score models to select the best models for their application studies. In Critical Assessment of techniques for protein Structure Prediction (CASP), model accuracy estimation methods have been tested in a blind fashion by providing models submitted by the tertiary structure prediction servers for scoring. In CASP13, model accuracy estimation results were evaluated in terms of both global and local structure accuracy. Global structure accuracy estimation was evaluated by the quality of the models selected by the global structure scores and by the absolute estimates of the global scores. Residue-wise, local structure accuracy estimations were evaluated by three different measures. A new measure introduced in CASP13 evaluates the ability to predict inaccurately modeled regions that may be improved by refinement. An intensive comparative analysis on CASP13 and the previous CASPs revealed that the tertiary structure models generated by the CASP13 servers show very distinct features. Higher consensus toward models of higher global accuracy appeared even for free modeling targets, and many models of high global accuracy were not well optimized at the atomic level. This is related to the new technology in CASP13, deep learning for tertiary contact prediction. The tertiary model structures generated by deep learning pose a new challenge for EMA (estimation of model accuracy) method developers. Model accuracy estimation itself is also an area where deep learning can potentially have an impact, although current EMA methods have not fully explored that direction.  相似文献   

4.
Protein model refinement has been an essential part of successful protein structure prediction. Molecular dynamics simulation-based refinement methods have shown consistent improvement of protein models. There had been progress in the extent of refinement for a few years since the idea of ensemble averaging of sampled conformations emerged. There was little progress in CASP12 because conformational sampling was not sufficiently diverse due to harmonic restraints. During CASP13, a new refinement method was tested that achieved significant improvements over CASP12. The new method intended to address previous bottlenecks in the refinement problem by introducing new features. Flat-bottom harmonic restraints replaced harmonic restraints, sampling was performed iteratively, and a new scoring function and selection criteria were used. The new protocol expanded conformational sampling at reduced computational costs. In addition to overall improvements, some models were refined significantly to near-experimental accuracy.  相似文献   

5.
CASP13 has investigated the impact of sparse NMR data on the accuracy of protein structure prediction. NOESY and 15N-1H residual dipolar coupling data, typical of that obtained for 15N,13C-enriched, perdeuterated proteins up to about 40 kDa, were simulated for 11 CASP13 targets ranging in size from 80 to 326 residues. For several targets, two prediction groups generated models that are more accurate than those produced using baseline methods. Real NMR data collected for a de novo designed protein were also provided to predictors, including one data set in which only backbone resonance assignments were available. Some NMR-assisted prediction groups also did very well with these data. CASP13 also assessed whether incorporation of sparse NMR data improves the accuracy of protein structure prediction relative to nonassisted regular methods. In most cases, incorporation of sparse, noisy NMR data results in models with higher accuracy. The best NMR-assisted models were also compared with the best regular predictions of any CASP13 group for the same target. For six of 13 targets, the most accurate model provided by any NMR-assisted prediction group was more accurate than the most accurate model provided by any regular prediction group; however, for the remaining seven targets, one or more regular prediction method provided a more accurate model than even the best NMR-assisted model. These results suggest a novel approach for protein structure determination, in which advanced prediction methods are first used to generate structural models, and sparse NMR data is then used to validate and/or refine these models.  相似文献   

6.
ABSTRACT: BACKGROUND: Employing methods to assess the quality of modeled protein structures is now standard practice in bioinformatics. In a broad sense, the techniques can be divided into methods relying on consensus prediction on the one hand, and single-model methods on the other. Consensus methods frequently perform very well when there is a clear consensus, but this is not always the case. In particular, they frequently fail in selecting the best possible model in the hard cases (lacking consensus) or in the easy cases where models are very similar. In contrast, single-model methods do not suffer from these drawbacks and could potentially be applied on any protein of interest to assess quality or as a scoring function for sampling-based refinement. RESULTS: Here, we present a new single-model method, ProQ2, based on ideas from its predecessor, ProQ. ProQ2 is a model quality assessment algorithm that uses support vector machines to predict local as well as global quality of protein models. Improved performance is obtained by combining previously used features with updated structural and predicted features. The most important contribution can be attributed the use of profile weighting of the residue specific features and the use features averaged over the whole model even tough the prediction is still local. CONCLUSIONS: ProQ2 is significantly better than its predecessors at detecting high quality models, improving the sum of Z-scores for the selected first-ranked models by 20% and 32% compared to the second-best single-model method in CASP8 and CASP9, respectively. The absolute quality assessment of the models at both local and global level is also improved. The Pearson's correlation between the correct and local predicted score is improved from 0.59 to 0.70 on CASP8 and from 0.62 to 0.68 on CASP9; for global score to the correct GDT_TS from 0.75 to 0.80 and from 0.77 to 0.80 again compared to the second-best single methods in CASP8.  相似文献   

7.
Methods to reliably estimate the accuracy of 3D models of proteins are both a fundamental part of most protein folding pipelines and important for reliable identification of the best models when multiple pipelines are used. Here, we describe the progress made from CASP12 to CASP13 in the field of estimation of model accuracy (EMA) as seen from the progress of the most successful methods in CASP13. We show small but clear progress, that is, several methods perform better than the best methods from CASP12 when tested on CASP13 EMA targets. Some progress is driven by applying deep learning and residue-residue contacts to model accuracy prediction. We show that the best EMA methods select better models than the best servers in CASP13, but that there exists a great potential to improve this further. Also, according to the evaluation criteria based on local similarities, such as lDDT and CAD, it is now clear that single model accuracy methods perform relatively better than consensus-based methods.  相似文献   

8.
CUT class homeobox genes, including CUX/CASP, ONECUT, SATB and COMPASS family genes, are known to exhibit diverse features in the homeodomain and the domain architecture. Furthermore, the intron/exon organization of CUX/CASP is different between vertebrates and protostomes, and SATB genes are only known for vertebrates, whereas COMPASS genes have only been found in protostomes. These observations suggest a complex evolutionary history for the CUT class homeobox genes, but the evolution of CUT class homeobox genes in the lineage to vertebrates remained largely unknown. To obtain clearer insights into this issue, we searched the genome of amphioxus, Branchiostoma floridae, a lower chordate, for CUT class homeobox genes by extensive BLAST survey and phylogenetic analyses. We found that the genome of Branchiostoma floridae encodes each single orthologue of CUX/CASP, ONECUT, and COMPASS, but not the SATB gene, and one atypical CUT gene likely specific to this species. In addition, the genomic structure of the amphioxus CUX/CASP gene turned out to be protostome-type, but not vertebrate-type. Based on these observations, we propose a model in which SATB is suggested to evolve at the expense of COMPASS and this change, together with the structural change in CUX/CASP, is supposed to take place in the lineage to vertebrates after divergence of the amphioxus and vertebrate ancestors. The present study provides an example of dramatic evolution among homeobox gene groups in the vertebrate lineage and highlights the ancient character of amphioxus, retaining genomic features shared by protostomes.  相似文献   

9.
Substantial progresses in protein structure prediction have been made by utilizing deep-learning and residue-residue distance prediction since CASP13. Inspired by the advances, we improve our CASP14 MULTICOM protein structure prediction system by incorporating three new components: (a) a new deep learning-based protein inter-residue distance predictor to improve template-free (ab initio) tertiary structure prediction, (b) an enhanced template-based tertiary structure prediction method, and (c) distance-based model quality assessment methods empowered by deep learning. In the 2020 CASP14 experiment, MULTICOM predictor was ranked seventh out of 146 predictors in tertiary structure prediction and ranked third out of 136 predictors in inter-domain structure prediction. The results demonstrate that the template-free modeling based on deep learning and residue-residue distance prediction can predict the correct topology for almost all template-based modeling targets and a majority of hard targets (template-free targets or targets whose templates cannot be recognized), which is a significant improvement over the CASP13 MULTICOM predictor. Moreover, the template-free modeling performs better than the template-based modeling on not only hard targets but also the targets that have homologous templates. The performance of the template-free modeling largely depends on the accuracy of distance prediction closely related to the quality of multiple sequence alignments. The structural model quality assessment works well on targets for which enough good models can be predicted, but it may perform poorly when only a few good models are predicted for a hard target and the distribution of model quality scores is highly skewed. MULTICOM is available at https://github.com/jianlin-cheng/MULTICOM_Human_CASP14/tree/CASP14_DeepRank3 and https://github.com/multicom-toolbox/multicom/tree/multicom_v2.0 .  相似文献   

10.
Small angle X-ray scattering (SAXS) measures comprehensive distance information on a protein's structure, which can constrain and guide computational structure prediction algorithms. Here, we evaluate structure predictions of 11 monomeric and oligomeric proteins for which SAXS data were collected and provided to predictors in the 13th round of the Critical Assessment of protein Structure Prediction (CASP13). The category for SAXS-assisted predictions made gains in certain areas for CASP13 compared to CASP12. Improvements included higher quality data with size exclusion chromatography-SAXS (SEC-SAXS) and better selection of targets and communication of results by CASP organizers. In several cases, we can track improvements in model accuracy with use of SAXS data. For hard multimeric targets where regular folding algorithms were unsuccessful, SAXS data helped predictors to build models better resembling the global shape of the target. For most models, however, no significant improvement in model accuracy at the domain level was registered from use of SAXS data, when rigorously comparing SAXS-assisted models to the best regular server predictions. To promote future progress in this category, we identify successes, challenges, and opportunities for improved strategies in prediction, assessment, and communication of SAXS data to predictors. An important observation is that, for many targets, SAXS data were inconsistent with crystal structures, suggesting that these proteins adopt different conformation(s) in solution. This CASP13 result, if representative of PDB structures and future CASP targets, may have substantive implications for the structure training databases used for machine learning, CASP, and use of prediction models for biology.  相似文献   

11.
Performance in the model refinement category of the 13th round of Critical Assessment of Structure Prediction (CASP13) is assessed, showing that some groups consistently improve most starting models whereas the majority of participants continue to degrade the starting model on average. Using the ranking formula developed for CASP12, it is shown that only 7 of 32 groups perform better than a “naïve predictor” who just submits the starting model. Common features in their approaches include a dependence on physics-based force fields to judge alternative conformations and the use of molecular dynamics to relax models to local minima, usually with some restraints to prevent excessively large movements. In addition to the traditional CASP metrics that focus largely on the quality of the overall fold, alternative metrics are evaluated, including comparisons of the main-chain and side-chain torsion angles, and the utility of the models for solving crystal structures by the molecular replacement method. It is proposed that the introduction of these metrics, as well as consideration of the accuracy of coordinate error estimates, would improve the discrimination between good and very good models.  相似文献   

12.
Knowing the quality of a protein structure model is important for its appropriate usage. We developed a model evaluation method to assess the absolute quality of a single protein model using only structural features with support vector machine regression. The method assigns an absolute quantitative score (i.e. GDT‐TS) to a model by comparing its secondary structure, relative solvent accessibility, contact map, and beta sheet structure with their counterparts predicted from its primary sequence. We trained and tested the method on the CASP6 dataset using cross‐validation. The correlation between predicted and true scores is 0.82. On the independent CASP7 dataset, the correlation averaged over 95 protein targets is 0.76; the average correlation for template‐based and ab initio targets is 0.82 and 0.50, respectively. Furthermore, the predicted absolute quality scores can be used to rank models effectively. The average difference (or loss) between the scores of the top‐ranked models and the best models is 5.70 on the CASP7 targets. This method performs favorably when compared with the other methods used on the same dataset. Moreover, the predicted absolute quality scores are comparable across models for different proteins. These features make the method a valuable tool for model quality assurance and ranking. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

13.
The apoptotic effector caspase-6 (CASP6) has been clearly identified as a drug target due to its strong association with neurodegeneration and axonal pruning events as well as its crucial roles in Huntington disease and Alzheimer disease. CASP6 activity is suppressed by ARK5-mediated phosphorylation at Ser(257) with an unclear mechanism. In this work, we solved crystal structures of ΔproCASP6S257E and p20/p10S257E, which mimicked the phosphorylated CASP6 zymogen and activated CASP6, respectively. The structural investigation combined with extensive biochemical assay and molecular dynamics simulation studies revealed that phosphorylation on Ser(257) inhibited self-activation of CASP6 zymogen by "locking" the enzyme in the TEVD(193)-bound "inhibited state." The structural and biochemical results also showed that phosphorylation on Ser(257) inhibited the CASP6 activity by steric hindrance. These results disclosed the inhibition mechanism of CASP6 phosphorylation and laid the foundation for a new strategy of rational CASP6 drug design.  相似文献   

14.
Recently, predicting proteins three-dimensional (3D) structure from its sequence information has made a significant progress due to the advances in computational techniques and the growth of experimental structures. However, selecting good models from a structural model pool is an important and challenging task in protein structure prediction. In this study, we present the first application of random forest based model quality assessment (RFMQA) to rank protein models using its structural features and knowledge-based potential energy terms. The method predicts a relative score of a model by using its secondary structure, solvent accessibility and knowledge-based potential energy terms. We trained and tested the RFMQA method on CASP8 and CASP9 targets using 5-fold cross-validation. The correlation coefficient between the TM-score of the model selected by RFMQA (TMRF) and the best server model (TMbest) is 0.945. We benchmarked our method on recent CASP10 targets by using CASP8 and 9 server models as a training set. The correlation coefficient and average difference between TMRF and TMbest over 95 CASP10 targets are 0.984 and 0.0385, respectively. The test results show that our method works better in selecting top models when compared with other top performing methods. RFMQA is available for download from http://lee.kias.re.kr/RFMQA/RFMQA_eval.tar.gz.  相似文献   

15.
Jinbo Xu  Sheng Wang 《Proteins》2019,87(12):1069-1081
This paper reports the CASP13 results of distance-based contact prediction, threading, and folding methods implemented in three RaptorX servers, which are built upon the powerful deep convolutional residual neural network (ResNet) method initiated by us for contact prediction in CASP12. On the 32 CASP13 FM (free-modeling) targets with a median multiple sequence alignment (MSA) depth of 36, RaptorX yielded the best contact prediction among 46 groups and almost the best 3D structure modeling among all server groups without time-consuming conformation sampling. In particular, RaptorX achieved top L/5, L/2, and L long-range contact precision of 70%, 58%, and 45%, respectively, and predicted correct folds (TMscore > 0.5) for 18 of 32 targets. Further, RaptorX predicted correct folds for all FM targets with >300 residues (T0950-D1, T0969-D1, and T1000-D2) and generated the best 3D models for T0950-D1 and T0969-D1 among all groups. This CASP13 test confirms our previous findings: (a) predicted distance is more useful than contacts for both template-based and free modeling; and (b) structure modeling may be improved by integrating template and coevolutionary information via deep learning. This paper will discuss progress we have made since CASP12, the strength and weakness of our methods, and why deep learning performed much better in CASP13.  相似文献   

16.
Performance in the template-based modeling (TBM) category of CASP13 is assessed here, using a variety of metrics. Performance of the predictor groups that participated is ranked using the primary ranking score that was developed by the assessors for CASP12. This reveals that the best results are obtained by groups that include contact predictions or inter-residue distance predictions derived from deep multiple sequence alignments. In cases where there is a good homolog in the wwPDB (TBM-easy category), the best results are obtained by modifying a template. However, for cases with poorer homologs (TBM-hard), very good results can be obtained without using an explicit template, by deep learning algorithms trained on the wwPDB. Alternative metrics are introduced, to allow testing of aspects of structural models that are not addressed by traditional CASP metrics. These include comparisons to the main-chain and side-chain torsion angles of the target, and the utility of models for solving crystal structures by the molecular replacement method. The alternative metrics are poorly correlated with the traditional metrics, and it is proposed that modeling has reached a sufficient level of maturity that the best models should be expected to satisfy this wider range of criteria.  相似文献   

17.
Based on high sequence homology, there are six members in the caspase-1 subfamily: caspases 1, 4, 5, and 13 in humans and caspases 1, 11, and 12 in mice. Only caspase-1 is known to activate interleukin-1beta and interleukin-18, and caspase-11 activates pro-caspase-1 in vivo. Almost nothing is known about caspases 4, 5, and 13. Here we report a sensitive and specific polymerase chain reaction system to analyze closely related genes. We employed this system to analyze the gene expression and regulation of human caspases 1, 4, 5, and 13, demonstrating that they have different expression patterns in normal tissues and cell lines. Interferon-gamma strongly induced CASP1 and CASP5 but not CASP4 or CASP13 gene expression in HT-29 colon carcinoma cells. In contrast to the mRNA, interferon-gamma up-regulated caspase-1 but not caspase-5 protein. In the monocytic cell line THP-1, CASP1 mRNA and caspase-1 protein are expressed constitutively, and their levels were not increased by lipopolysaccharide, whereas both CASP5 mRNA and caspase-5 protein were induced by lipopolysaccharide. Caspase-1 subfamily members displayed different in vitro activities toward pro-caspases 1 and 3 and pro-interleukin-1beta. Our results demonstrate that caspase-1 and caspase-5 levels are modulated by interferon-gamma and lipopolysaccharide, respectively, and suggest that caspase-1 subfamily members are differentially regulated and may have distinct functions.  相似文献   

18.
Proteins frequently interact with each other, and the knowledge of structures of the corresponding protein complexes is necessary to understand how they function. Computational methods are increasingly used to provide structural models of protein complexes. Not surprisingly, community-wide Critical Assessment of protein Structure Prediction (CASP) experiments have recently started monitoring the progress in this research area. We participated in CASP13 with the aim to evaluate our current capabilities in modeling of protein complexes and to gain a better understanding of factors that exert the largest impact on these capabilities. To model protein complexes in CASP13, we applied template-based modeling, free docking and hybrid techniques that enabled us to generate models of the topmost quality for 27 of 42 multimers. If templates for protein complexes could be identified, we modeled the structures with reasonable accuracy by straightforward homology modeling. If only partial templates were available, it was nevertheless possible to predict the interaction interfaces correctly or to generate acceptable models for protein complexes by combining template-based modeling with docking. If no templates were available, we used rigid-body docking with limited success. However, in some free docking models, despite the incorrect subunit orientation and missed interface contacts, the approximate location of protein binding sites was identified correctly. Apparently, our overall performance in docking was limited by the quality of monomer models and by the imperfection of scoring methods. The impact of human intervention on our results in modeling of protein complexes was significant indicating the need for improvements of automatic methods.  相似文献   

19.
Qiu J  Sheffler W  Baker D  Noble WS 《Proteins》2008,71(3):1175-1182
Protein structure prediction is an important problem of both intellectual and practical interest. Most protein structure prediction approaches generate multiple candidate models first, and then use a scoring function to select the best model among these candidates. In this work, we develop a scoring function using support vector regression (SVR). Both consensus-based features and features from individual structures are extracted from a training data set containing native protein structures and predicted structural models submitted to CASP5 and CASP6. The SVR learns a scoring function that is a linear combination of these features. We test this scoring function on two data sets. First, when used to rank server models submitted to CASP7, the SVR score selects predictions that are comparable to the best performing server in CASP7, Zhang-Server, and significantly better than all the other servers. Even if the SVR score is not allowed to select Zhang-Server models, the SVR score still selects predictions that are significantly better than all the other servers. In addition, the SVR is able to select significantly better models and yield significantly better Pearson correlation coefficients than the two best Quality Assessment groups in CASP7, QA556 (LEE), and QA634 (Pcons). Second, this work aims to improve the ability of the Robetta server to select best models, and hence we evaluate the performance of the SVR score on ranking the Robetta server template-based models for the CASP7 targets. The SVR selects significantly better models than the Robetta K*Sync consensus alignment score.  相似文献   

20.
Protein structure refinement is an important but unsolved problem; it must be solved if we are to predict biological function that is very sensitive to structural details. Specifically, critical assessment of techniques for protein structure prediction (CASP) shows that the accuracy of predictions in the comparative modeling category is often worse than that of the template on which the homology model is based. Here we describe a refinement protocol that is able to consistently refine submitted predictions for all categories at CASP7. The protocol uses direct energy minimization of the knowledge‐based potential of mean force that is based on the interaction statistics of 167 atom types (Summa and Levitt, Proc Natl Acad Sci USA 2007; 104:3177–3182). Our protocol is thus computationally very efficient; it only takes a few minutes of CPU time to run typical protein models (300 residues). We observe an average structural improvement of 1% in GDT_TS, for predictions that have low and medium homology to known PDB structures (Global Distance Test score or GDT_TS between 50 and 80%). We also observe a marked improvement in the stereochemistry of the models. The level of improvement varies amongst the various participants at CASP, but we see large improvements (>10% increase in GDT_TS) even for models predicted by the best performing groups at CASP7. In addition, our protocol consistently improved the best predicted models in the refinement category at CASP7 and CASP8. These improvements in structure and stereochemistry prove the usefulness of our computationally inexpensive, powerful and automatic refinement protocol. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号