首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 636 毫秒
1.
2.
To investigate the effect and mechanism of microRNA-92b-3p (miR-92b-3p) targeting Homeobox D10 (HOXD10) on proliferation, migration, and invasion of gastric cancer, we detected t he expression of miR-92b-3p and HOXD10 in SGC-7901 cells. The effects of miR-92b-3p or HOXD10 on proliferation, migration, invasion, and matrix metalloproteinase (MMP)-2/9 expression in SGC-7901 cells were measured by the Cell Counting Kit-8 assay, Transwell assay, and Western blot, respectively. The results showed that miR-92b-3p expression was increased, and HOXD10 expression was decreased in SGC-7901 cells, compared with human normal gastric epithelial cells GES-1. Functional experiments demonstrated that cell proliferation, migration, invasion, and expression of MMP-2/9 in SGC-7901 cells were significantly inhibited by miR-92b-3p silencing and HOXD10 overexpression. Moreover, HOXD10 was a potential target gene of miR-92b-3p as evidenced by the TargetScan software and double luciferase reporter assay. In the rescue experiment, knockdown of HOXD10, accompanied by higher expression of MMP-2/9, could significantly eliminate the inhibitory effects of miR-92b-3p silencing on cell proliferation, migration, and invasion. In conclusion, miR-92b-3p is highly expressed in gastric cancer SGC-7901 cells, and interfering with its expression might inhibit SGC-7901 cell proliferation, migration, and invasion via downregulating MMP-2/9 expression and targeting HOXD10.  相似文献   

3.
Rapid and extensive bone loss, one of the skeletal complications after spinal cord injury (SCI) occurrence, drastically sacrifices the life quality of SCI patients. It has been demonstrated that microRNA (miRNA) dysfunction plays an important role in the initiation and development of bone loss post-SCI. Nevertheless, the effect of miR-19b-3p on bone loss after SCI is unknown and the accurate mechanism is left to be elucidated. The present work was conducted to explore the role of miR-19b-3p/phosphatase and tensin homolog deleted on chromosome ten (PTEN) axis on osteogenesis after SCI and further investigates the underlying mechanisms. We found that miR-19b-3p level was increased in the femurs of SCI rats with decreased autophagy. The overexpression of miR-19b-3p in bone marrow mesenchymal stem cells (BMSCs) targeted down-regulation of PTEN expression, facilitated protein kinase B (Akt) and mammalian target of rapamycin (mTOR) phosphorylation, and thereby suppressing BMSCs osteogenic differentiation via autophagy. Besides, the inhibiting effects of miR-19b-3p on osteogenic differentiation of BMSCs could be diminished by autophagy inducer rapamycin. Meanwhile, bone loss after SCI in rats was also reversed by antagomir-19b-3p treatment, suggesting miR-19b-3p was an essential target for osteogenic differentiation via regulating autophagy. These results indicated that miR-19b-3p was involved in bone loss after SCI by inhibiting osteogenesis via PTEN/Akt/mTOR signalling pathway.  相似文献   

4.
MicroRNAs (miRNAs) participate in the pathological process of liver ischemia/reperfusion (I/R) injury. MiR-449b-5p is the target miRNA of high mobility group box 1 (HMGB1). Its role and molecular mechanism in liver I/R injury remain unidentified. In this study, we found a protective effect of miR-449b-5p against hepatic I/R injury. HMGB1 expression significantly increased, whereas miR-449b-5p dramatically decreased in patients after liver transplant and in L02 cells exposed to hypoxia/reoxygenation (H/R). A dual-luciferase reporter assay confirmed the direct interaction between miR-449b-5p and the 3′ untranslated region of HMGB1 messenger RNA. We also found that overexpression of miR-449b-5p significantly promoted cell viability and inhibited cell apoptosis of L02 cells exposed to H/R. Moreover, miR-449b-5p repressed HMGB1 protein expression and nuclear factor-κB (NF-κB) pathway activation in these L02 cells. In an in vivo rat model of hepatic I/R injury, overexpression of miR-449b-5p significantly decreased alanine aminotransferase and aspartate aminotransferase and inhibited the HMGB1/NF-κB pathway. Our study thus suggests that miR-449b-5p alleviated hepatic I/R injury by targeting HMGB1 and deactivating the NF-κB pathway, which may provide a novel and promising therapeutic target for hepatic I/R injury.  相似文献   

5.
《Reproductive biology》2022,22(2):100648
Cervical cancer (CC) is a common gynecological malignant tumor, causing poor survival rate. Circular RNAs (circRNAs) are abundantly expressed in CC with their stable loop structure. However, the underlying mechanism and biological function of circRNAs remained unclear. Using quantitative real-time polymerase chain reaction (qRT-PCR) or western blot assay, we measured the expression of hsa_circ_0001495, miR-526b-3p, and transmembrane Bax inhibitor motif containing 6 (TMBIM6) in CC tissues and cells. The relationship between miR-526b-3p and hsa_circ_0001495 or TMBIM6 was investigated by bioinformatics analysis, dual-luciferase and RIP analysis. Enzyme linked immunosorbent assay (ELISA) was conducted to evaluate glucose consumption and lactate production. 5-ethynyl-2′-deoxyuridine (EDU) assay were used to test cell proliferation. Cell apoptosis was analyzed by using flow cytometry assay. Transwell and wound-healing assays were used to measure cell invasion and migration. The expression of proteins was examined by western blot. Xenograft assay was applied to detect the effect of hsa_circ_0001495 in vivo. Our finding showed that hsa_circ_0001495 and TMBIM6 expression were upregulated, while miR-526b-3p was downregulated in CC tissues and cell lines. Hsa_circ_0001495 knockdown or TMBIM6 knockdown suppressed cell proliferation, migration, glycolysis, while promoted cell apoptosis in vitro, and hsa_circ_0001495 silence curbed tumor growth in vivo. Beside, hsa_circ_0001495 exerted its function in CC by positively regulating TMBIM6. Furthermore, hsa_circ_0001495 acted as a sponge for miR-526b-3p to regulate TMBIM6 expression. Hsa_circ_0001495/miR-526b-3p/TMBIM6 axis also regulated the phosphorylation of mammalian target of rapamycin (mTOR) in CC cells. In summary, hsa_circ_0001495 regulated the progression of CC by regulating miR-526b-3p/TMBIM6/mTOR pathway.  相似文献   

6.
A better understanding of breast cancer pathogenesis would contribute to improved diagnosis and therapy and potentially decreased mortality rates. Here, we found that the MORC family CW-type zinc finger 4 (MORC4) overexpression in breast cancer tissues is associated with poor survival, and the short-interfering RNA knockdown of MORC4 suppresses the growth of breast cancer cells by promoting apoptosis. To investigate the mechanisms associated with MORC4 upregulation, microRNAs potentially targeting MORC4 were analyzed, with miR-193b-3p identified as the regulator and a negative correlation between miR-193b-3p and MORC4 expression determined in both breast cancer cell lines and tissues. Further analysis verified that MORC4 silencing did not affect miR-193b-3p expression, although altered miR-193b-3p expression attenuated MORC4 protein levels. Moreover, dual-luciferase reporter assays verified miR-193b-3p binding to the 3′ untranslated region of MORC4. Furthermore, restoration of miR-193b-3p expression in breast cancer cells led to decreased growth and activation of apoptosis, which was consistent with results associated with MORC4 silencing in breast cancer cells. These results identified MORC4 as differentially expressed in breast cancer cells and tissues and its downregulation by miR-193b-3p, as well as its roles in regulating the growth of breast cancer cells via regulation of apoptosis. Our findings offer novel insights into potential mechanisms associated with breast cancer pathogenesis.  相似文献   

7.
Dysregulation of microRNAs frequently contributes to the occurrence and progression of human diseases, including hepatocellular carcinoma (HCC). In this study, the role of miR-450b-3p in HCC was investigated. Gene Expression Omnibus database and HCC specimens were used to evaluate the expression level of miR-450b-3p and the patient's prognosis. Cell functional analyses and tumor xenograft model were used to assess the role of miR-450b-3p in HCC. Bioinformatics was used to predict the downstream target gene of miR-450b-3p, which was verified by dual-luciferase reporter assay. MiR-450b-3p was found to be downregulated in HCC cell lines and tissues, compared with nontransformed immortal hepatic cells and adjacent normal liver tissues, respectively. Lower expression of miR-450b-3p was associated with poor overall survival and disease-free survival in patients with HCC. Ectopic expression of miR-450b-3p inhibited HCC cell viability, colony formation, and cell-cycle progression in vitro, and suppressed the growth of HCC xenograft tumors in vivo. Interestingly, a negative correlation between miR-450b-3p and phosphoglycerate kinase 1 (PGK1) protein was observed among HCC specimens. Additionally, miR-450b-3p inhibited PGK1 expression and phosphorylation of protein kinase B in HCC cell lines. Further experiments confirmed that PGK1 was a direct target of miR-450b-3p. Moreover, restoration of PGK1 abrogated the inhibitory effect of miR-450b-3p on HCC proliferation and cell division. In conclusion, miR-450b-3p is downregulated in human HCC and exerts tumor suppressive effects at least in part by inhibiting PGK1.  相似文献   

8.
Exosomal microRNA (miRNA) exerts potential roles in non-small-cell lung cancer (NSCLC). The current study elucidated the role of miR-30b-5p shuttled by bone marrow mesenchymal stem cells (BMSCs)-derived exosomes in treating NSCLC. Bioinformatics analysis was performed with NSCLC-related miRNA microarray GSE169587 and mRNA data GSE74706 obtained for collection of the differentially expressed miRNAs and mRNAs. The relationship between miR-30b-5p and EZH2 was predicted and confirmed. Exosomes were isolated from BMSCs and identified. BMSCs-derived exosomes overexpressing miR-30b-5p were used to establish subcutaneous tumorigenesis models to study the effects of miR-30b-5p, EZH2 and PI3K/AKT signalling pathway on tumour growth. A total of 86 BMSC-exo-miRNAs were differentially expressed in NSCLC. Bioinfomatics analysis found that BMSC-exo-miR-30b-5p could regulate NSCLC progression by targeting EZH2, which was verified by in vitro cell experiments. Besides, the target genes of miR-30b-5p were enriched in PI3K/AKT signalling pathway. Animal experiments validated that BMSC-exo-miR-30b-5p promoted NSCLC cell apoptosis and prevented tumorigenesis in nude mice via EZH2/PI3K/AKT axis. Collectively, the inhibitory role of BMSC-derived exosomes-loaded miR-30b-5p in NSCLC was achieved through blocking the EZH2/PI3K/AKT axis.  相似文献   

9.
Atherosclerosis (AS) is one of the principal causes of cardiovascular disorder. Reportedly, vascular smooth muscle cells (VSMCs) and human umbilical vein endothelial cells (HUVECs) play key roles in AS development, and microRNAs (miRNAs) regulate their functions. The function of miR-216b-5p in AS remains unknown. Human VSMCs and human HUVECs were treated with ox-LDL to establish the in vitro model of AS. MiR-216b-5p and IGF2 expressions in VSMCs and HUVECs were probed by qRT-PCR and western blot. The viability, cell cycle progression, and apoptosis of VSMCs and HUVECs were evaluated by Cell Counting Kit-8 (CCK-8), 5-ethynyl-2′-deoxyuridine, and flow cytometry assays, respectively. The binding sites between IGF2 3′UTR and miR-216b-5p were validated by dual-luciferase reporter assay. miR-216b-5p expression was declined in ox-LDL-induced VSMCs and HUVECs. In VSMCs, miR-216b-5p overexpression inhibited excessive proliferation and induced apoptosis. MiR-216b-5p could markedly restrain the viabiblity of VSMCs induced by ox-LDL and enhanced the viability of HUVECs. Additionally, IGF2 was confirmed as the direct target of miR-216b-5p and transfection of IGF2 overexpression plasmids rescued the effects of miR-216b-5p on VSMCs and HUVECs. miR-216b-5p alleviates the dysfunction of VSMCs and HUVECs caused by ox-LDL via repressing IGF2, and exerts protective functions to block the development of AS.  相似文献   

10.
11.
Diabetic nephropathy (DN) is a kind of microvascular complications of diabetes. Long noncoding RNAs (lnRNAs) can participate in the development of various diseases, including DN. However, the function of lncRNA NEAT1 is unclear. In our present study, we reported that NEAT1 was significantly increased in streptozotocin-induced DN rat models and high-glucose-induced mice mesangial cells. We observed that knockdown of NEAT1 greatly inhibited renal injury of DN rats. Meanwhile, downregulation of NEAT1-modulated extracellular matrix (ECM) proteins (ASK1, fibronectin, and TGF-β1) expression and epithelial–mesenchymal transition (EMT) proteins (E-cadherin and N-cadherin) in vitro. Previously, miR-27b-3p has been reported to be involved in diabetes. Here, miR-27b-3p was decreased in DN rats and high-glucose-induced mice mesangial cells. The direct correlation between NEAT1 and miR-27b-3p was validated using the dual-luciferase reporter assay and RNA immunoprecipitation experiments. In addition, zinc finger E-box binding homeobox 1 (ZEB1), which has been identified in the process of EMT clearly contributes to EMT progression. ZEB1 was predicted as a target of miR-27b-3p and overexpression of miR-27b-3p dramatically repressed ZEB1 expression. Therefore, our data implied the potential role of NEAT1 in the fibrogenesis and EMT in DN via targeting miR-27b-3p and ZEB1.  相似文献   

12.
13.
Our current research aimed to decipher the role and underlying mechanism with regard to miR-29b-3p involving in myocardial ischemia/reperfusion (I/R) injury. In the present study, cardiomyocyte H9c2 cell was used, and hypoxia/reoxygenation (H/R) model was established to mimic the myocardial I/R injury. The expressions of miR-29b-3p and pentraxin 3 (PTX3) were quantified deploying qRT-PCR and Western blot, respectively. The levels of LDH, TNF-α, IL-1β and IL-6 were detected to evaluate cardiomyocyte apoptosis and inflammatory response. Cardiomyocyte viability and apoptosis were examined employing CCK-8 assay and flow cytometry, respectively. Verification of the targeting relationship between miR-29b-3p and PTX3 was conducted using a dual-luciferase reporter gene assay. It was found that miR-29b-3p expression in H9c2 cells was up-regulated by H/R, and a remarkable down-regulation of PTX3 expression was demonstrated. MiR-29b-3p significantly promoted of release of inflammatory cytokines of H9c2 cells, and it also constrained the proliferation and promoted the apoptosis of H9c2 cells. Additionally, PTX3 was inhibited by miR-29b-3p at both mRNA and protein levels, and it was identified as a direct target of miR-29b-3p. PTX3 overexpression could reduce the inflammatory response, increase the viability of H9c2 cells, and inhibit apoptosis. Additionally, PTX3 counteracted the function of miR-29b-3p during the injury of H9c2 cells induced by H/R. In summary, miR-29b-3p was capable of aggravating the H/R injury of H9c2 cells by repressing the expression of PTX3.  相似文献   

14.
Context: Circulating MicroRNAs (miRNAs) are emerging as novel biomarkers for tumour.

Objective: Evaluate the diagnostic potential of plasma miR-200b-3p in oral squamous cell carcinoma (OSCC).

Materials and methods: miR-200b-3p was detected by qRT-PCR in paired pre-operative and post-operative plasmas from 80 OSCC patients and 80 healthy controls.

Results: Plasma miR-200b-3p was significantly upregulated in OSCC, and it was higher in WHO II/III grade than WHO I grade. The AUC of miR-200b-3p for OSCC was 0.9173. miR-200b-3p was significantly downregulated after surgery. High miR-200b-3p expression was associated with poor prognosis.

Discussion and conclusion: Plasma miR-200b-3p could be a potential diagnostic biomarker for OSCC.  相似文献   


15.
目的: 研究miR-125b-5p 对人血管瘤内皮细胞HemECs增殖、凋亡的影响。方法: RT-qPCR检测人血管瘤内皮细胞HemECs及其旁系组织细胞中miR-125b-5p与MCL-1 mRNA的表达;选取HemECs细胞分为对照组、miR-NC组、miR-125b-5p mimic组、miR-125b-5p inhibitor组、pc-MCL-1组、miR-125b-5p+ pc-MCL-1组,每组设9复孔。将100 nmol · L-1 的miR-NC、miR-125b-5p mimic、miR-125b-5p inhibitor 、pc-MCL-1质粒分别或联合转染进入HemECs细胞。MTT法检测HemECs细胞增殖;流式细胞术检测HemECs细胞凋亡; 双荧光素酶报告检测靶向关系;蛋白印迹法检测Ki67、PCNA、cleaved caspase-3、Bax、Bcl-2、p-p70s6k/ p70s6k、p-AKT/AKT、p-mTOR/ mTOR蛋白相对表达水平。结果: 通过比较miR-125b-5p在血管瘤组织和细胞中的表达水平,选择下调效果比较明显的HemECs细胞系进行后续实验。与对照组相比,miR-125b-5p mimic组HemECs细胞增殖及Ki67和PCNA表达明显减少(P<0.01),细胞凋亡率及cleaved Caspase-3、Bax表达明显升高、Bcl-2表达明显降低(P<0.01),p-AKT/AKT、p-mTOR/mTOR、p-p70S6K/p70S6K表达明显下调(P<0.01);miR-125b-5p inhibitor组HemECs细胞增殖及Ki67和PCNA表达明显增加(P<0.01),细胞凋亡率及cleaved Caspase-3、Bax表达明显降低、Bcl-2表达升高(P<0.05,P< 0.01)。miR-125b-5p靶向下调MCL-1。与miR-125b-5p mimic组相比,miR-125b-5p+ pc-MCL-1组HemECs细胞增殖及Ki67和PCNA表达明显增加(P<0.01),细胞凋亡率及cleaved Caspase-3、Bax表达明显降低、Bcl-2表达明显升高(P<0.01), p-AKT/AKT、p-mTOR/mTOR、p-p70S6K/p70S6K表达明显上调(P<0.01)。结论: miR-125b-5p抑制人血管瘤内皮细胞增殖、诱导细胞凋亡,其机制可能与靶向下调MCL-1表达,抑制AKT / mTOR通路激活等有关。  相似文献   

16.
大量证据表明microRNA(miRNA)通过靶向调控靶基因的表达从而在肿瘤侵袭与转移中发挥重要作用。然而关于microRNA-216b-5p (miR-216b-5p )通过靶向嗜乳脂蛋白第3亚家族膜蛋白A2(butyrophilin subfamily 3 member A2,BTN3A2)促进胶质瘤侵袭与转移的机制尚不明确。本研究通过GSE15824与GSE4290差异表达分析筛选出同时在2个芯片中表达上调的BTN3A2(P<0.05)。生存曲线结果显示,高表达BTN3A2病人总生存期明显下降(P<0.001)。表达量分析结果显示,BTN3A2表达随WHO分级升高而升高(P<0.05),同时1p/19q未联合缺失与IDH突变型病人BTN3A2表达升高(P<0.001)。基因集富集分析(gene set enrichment analysis,GSEA)结果显示,BTN3A2与众多癌症相关通路有关(P<0.05);Western印迹结果显示,BTN3A2在7例胶质瘤组织和胶质瘤细胞系U87、U251和LN-229中表达上调,过表达miR-216b-5p (miR-216b-5p mimics)后BTN3A2蛋白表达水平降低;Transwell结果显示,转染BTN3A2干扰质粒(si-BTN3A2)和miR-216b-5p mimics后可以抑制LN 229细胞体外迁移与侵袭能力(P<0.05);在线预测网站证实,miR-216b-5p 为BTN3A2潜在靶基因;生存曲线结果显示,与低表达miR-216b-5p 病人相比,高表达病人生存率明显上调(P=0.025);荧光定量RT PCR结果显示,miR-216b-5p 在胶质瘤U87、U251和LN-229细胞中表达下降(P<0.05);双荧光素酶结果显示,BTN3A2存在与miR-216b-5p 的结合靶点(P<005);综上所述,BTN3A2可能通过结合miR-216b-5p 促进胶质瘤细胞LN 229的迁移以及侵袭。  相似文献   

17.
The present study shows that nuclear factor erythroid 2-related factor 2 (NRF2) and miR-29b-1-5p are two opposite forces which could regulate the fate of MDA-MB-231 cells, the most studied triple-negative breast cancer (TNBC) cell line. We show that NRF2 activation stimulates cell growth and markedly reduces reactive oxygen species (ROS) generation, whereas miR-29b-1-5p overexpression increases ROS generation and reduces cell proliferation. Moreover, NRF2 downregulates miR-29b-1-5p expression, whereas miR-29b-1-5p overexpression decreases p-AKT and p-NRF2. Furthermore, miR-29b-1-5p overexpression induces both inhibition of DNA N-methyltransferases (DNMT1, DNMT3A, and DNMT3B) expression and re-expression of HIN1, RASSF1A and CCND2. Conversely, NRF2 activation induces opposite effects. We also show that parthenolide, a naturally occurring small molecule, induces the expression of miR-29b-1-5p which could suppress NRF2 activation via AKT inhibition. Overall, this study uncovers a novel NRF2/miR-29b-1-5p/AKT regulatory loop that can regulate the fate (life/death) of MDA-MB-231 cells and suggests this loop as therapeutic target for TNBC.  相似文献   

18.
Numbers of emerging evidence suggest that variable microRNA (miRNA) expression facilitates the aging process. In this study, we distinguished aberrant miRNA expression in aged skin and explored the biological functions and potential mechanism of upregulated miR-302b-3p. At first, miRNA microarray analysis was examined to explore miRNA expression profiling in the skin of aging mice model by D -galactose (d -gal) injection. We identified 29 aberrant miRNAs in aged mice skin. Next, KEGG enrichment analysis was conducted with DIANA-miPath v3.0, which was revealed that enrichment pathways involved in such processes as extracellular matrix-receptor interaction, MAPK signaling pathway, and mammalian target of rapamycin (mTOR) signaling pathway. The target genes of deregulated miRNAs were predicted from four bioinformatic algorithms (miRDB, Targetscan, miRwalk, and Tarbase). The interaction network of miRNAs and their targets were visualized using Cytoscape software. As a result, we found that some hub genes (including JNK2, AKT1/2/3, PAK7, TRPS1, BCL2L11, and IKZF2) were targeted by 12 potential miRNAs (including miR-302b-3p, miR-291a-5p, miR-139-3p, miR-467c-3p, miR-186-3p, etc.). Subsequently, we identified five upregulated miRNA via quantitative polymerase chain reaction and all of them were confirmed increased significantly in aged skin tissues compared with young control tissues. Among them, high expression of miR-302b-3p was verified in both aged skin tissues and senescence fibroblasts. Furthermore, miR-302b-3p mimic accelerated skin fibroblast senescence and suppressed the longevity-associated gene Sirtuin 1(Sirt1) expression, whereas miR-302b-3p inhibitor could delay skin fibroblast senescence and contribute Sirt1 expression. In addition, we demonstrated that c-Jun N-terminal kinase 2(JNK2) is a direct target of miR-302b-3p by a luciferase reporter assay. An inverse correlation was verified in fibroblasts between miR-302b-3p and JNK2. Most importantly, siRNA JNK2 confirmed that low expression of JNK2 could accelerate fibroblasts senescence. In conclusion, our results indicated that overexpressed miR-302b-3p plays an important biological role in accelerating skin aging process via directly targeting JNK2 gene.  相似文献   

19.
20.
BackgroundUnderstanding of the molecular mechanisms of miRNAs involved in osteoblast differentiation is important for the treatment of bone-related diseases.MethodsMC3T3-E1 cells were induced to osteogenic differentiation by culturing with bone morphogenetic protein 2 (BMP2). After transfected with miR-26b-3p mimics or inhibitors, the osteogenic differentiation of MC3T3-E1 cells was detected by ALP and ARS staining. Cell viability was analyzed by MTT. The expressions of miR-26b-3p and osteogenic related markers and signaling were examined by qPCR and western blot. Direct binding of miR-26b-3p and ER-α were determined by dual luciferase assay.ResultsmiR-26b-3p was significantly down-regulated during osteoblast differentiation. Overexpression of miR-26b-3p inhibited osteoblast differentiation, while inhibition of miR-26b-3p enhanced osteoblast differentiation. Further studies demonstrated miR-26b-3p inhibited the expression of estrogen receptor α (ER-α) by directly targeting to the CDS region of ER-α mRNA. Overexpression of ER-α rescued the suppression effects of miR-26b-3p on osteoblast differentiation, while knockdown of ER-α reversed the upregulation of osteoblast differentiation induced by knockdown of miR-26b-3p.ConclusionOur study demonstrates that miR-26b-3p suppresses osteoblast differentiation of MC3T3-E1 cells via directly targeting ER-α.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号