首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When the shrub Nerium oleander L., growing under full natural daylight outdoors, was subjected to water stress, stomatal conductance declined, and so did non-stomatal components of photosynthesis, including the CO2-saturated rate of CO2 uptake by intact leaves and the activity of electron transport by chloroplasts isolated from stressed plants. This inactivation of photosynthetic activity was accompanied by changes in the fluorescence characteristics determined at 77 K (-196°C) for the upper leaf surface and from isolated chloroplasts. The maximum (F M) and the variable (F V) fluorescence yield at 692 nm were strongly quenched but there was little effect on the instantaneous (F O) fluorescence. There was a concomitant quenching of the maximum and variable fluorescence at 734 nm. These results indicate an inactivation of the primary photochemistry associated with photosystem II. The lower, naturally shaded surfaces of the same leaves were much less affected than the upper surfaces and water-stress treatment of plants kept in deep shade had little or no effect on the fluorescence characteristics of either surface, or of chloroplasts isolated from the water-stressed leaves. The effects of subjecting N. oleander plants, growing in full daylight, to water stress are indistinguishable from those resulting when plants, grown under a lower light regime, are exposed to full daylight (photoinhibition). Both kinds of stress evidently cause an inactivation of the primary photochemistry associated with photosystem II. The results indicate that water stress predisposes the leaves to photoinhibition. Recovery from this inhibition, following restoration of favorable water relations, is very slow, indicating that photoinhibition is an important component of the damage to the photosynthetic system that takes place when plants are exposed to water stress in the field. The underlying causes of this water-stress-induced susceptibility to photoinhibition are unknown; stomatal closure or elevated leaf temperature cannot explain the increased susceptibility.Abbreviations and symbols Chl chlorophyll - PFD photon flux area density - PSI, PSII photosystem I, II - F M, F O, F V maximum, instantaneous, variable fluorescence emission - leaf water potential C.I.W.-D.P.B. Publication No. 775  相似文献   

2.
Inhibition of photosynthetic reactions by light   总被引:8,自引:0,他引:8  
Beate Barényi  G. H. Krause 《Planta》1985,163(2):218-226
Illumination of isolated intact chloroplasts of Spinacia oleracea L. for 10 min with 850 W m-2 red light in the absence of substrate levels of bicarbonate caused severe inhibition of subsequently measured photosynthetic activities. The capacity of CO2-dependent O2 evolution and of non-cyclic electron transport were impaired to similar degrees. This photoinactivation was prevented by addition of bicarbonate which allowed normal carbon metabolism to proceed during preillumination. Photoinhibition of electron transport was observed likewise upon illumination of intact or broken chloroplasts when efficient electron acceptors were absent. Addition of uncouplers did not influence the extent of inhibition. Studies of partial electron-transport reactions indicated that the activity of both photosystems was affected by light. In addition, the water-oxidation system or its connection to photosystem II seemed to be impaired. Preillumination did not cause uncoupling of photophosphorylation. Chlorophyll-fluorescence data obtained at room temperature and at 77 K are consistent with the view that photosystem-II reaction centers were altered. Addition of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6) or 1,4-diazabicyclo(2,2,2)octane to isolated thylakoids prior to preillumination substantially diminished photoinhibition. This result shows that reactive oxygen species were involved in the damage. It is concluded that bright light, which normally does not damage the photosynthetic apparatus, may exert the described destructive effects under conditions that restrict metabolic turnover of photosynthetic energy.Abbreviations Chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - PSI photosystem I - PSII photosystem II  相似文献   

3.
Summary Gas exchange and chlorophyll fluorescence techniques were used to evaluate the hypothesis that leaf movement in Vitis californica Benth. (California wild grape) allows a compromise between sunlight interception and stress damage in order to maximize photosynthetic carbon gain over the life of the leaf. Leaves that were restrained horizontally tolerated their increased radiation loads if critical temperatures were not exceeded. Reductions in photosynthetic capacity and the FV/FM fluorescence ratio only occurred in leaves that attained high temperatures. Leaf orientation and canopy position were important determinants of leaf temperature. These results indicate that excessive leaf temperature, not high PFD, can be a principle cause of reduced carbon gain and senescence in this species in the wild. Leaf movement appears to protect photosynthetic components in midsummer.  相似文献   

4.
Fluorimetric, photoacoustic, polarographic and absorbance techniques were used to measure in situ various functional aspects of the photochemical apparatus of photosynthesis in intact pea leaves (Pisum sativum L.) after short exposures to a high temperature of 40 ° C. The results indicated (i) that the in-vivo responses of the two photosystems to high-temperature pretreatments were markedly different and in some respects opposite, with photosystem (PS) II activity being inhibited (or down-regulated) and PSI function being stimulated; and (ii) that light strongly interacts with the response of the photosystems, acting as an efficient protector of the photochemical activity against its inactivation by heat. When imposed in the dark, heat provoked a drastic inhibition of photosynthetic oxygen evolution and photochemical energy storage, correlated with a marked loss of variable PSII-chlorophyll fluorescence emission. None of the above changes were observed in leaves which were illuminated during heating. This photoprotection was saturated at rather low light fluence rates (around 10 W · m–2). Heat stress in darkness appeared to increase the capacity for cyclic electron flow around PSI, as indicated by the enhanced photochemical energy storage in far-red light and the faster decay of P 700 + (oxidized reaction center of PSI) monitored upon sudded interruption of the far-red light. The presence of light during heat stress reduced somewhat this PSI-driven cyclic electron transport. It was also observed that heat stress in darkness resulted in the progressive closure of the PSI reaction centers in leaves under steady illumination whereas PSII traps remained largely open, possibly reflecting the adjustment of the photochemical efficiency of undamaged PSI to the reduced rate of photochemistry in PSII.Abbreviations B1 and B2 fraction of closed PSI and PSII reaction centers, respectively - ES photoacoustically measured energy storage - Fo, Fm and Fs initial, maximal and steady-state levels of chlorophyll fluorescence - P700 reaction center of PSI - PS (I, II) photosystem (I, II) - V = (Fs – Fo)/(Fm – Fo) relative variable chlorophyll fluorescence We wish to thank Professor R. Lannoye (ULB, Brussels) for the use of this photoacoustic spectrometer and Mrs. M. Eyletters for her help.  相似文献   

5.
Chlorophyll fluorescence emission at 680 nm (F680) and the rate of CO2 fixation were measured simultaneously in sections along the length of wheat and maize leaves. These leaves possess a basal meristem and show a gradation in development towards the leaf tip. The redox state of the primary electron acceptor, Q, of photosystem II was estimated using a non-invasive method. Distal mature leaf sections displayed typical F680 induction curves which were generally anti-parallel with CO2 fixation and during which Q became gradually oxidised. In leaf-base sections net assimilation of CO2 was not detectable, F680 quenched slowly and monotonously without displaying any of the oscillations typical of mature tissue and Q remained relatively reduced. Sections cut from mid-regions of the leaf showed intermediate characteristics. There were no major differences between the wheat and maize leaf in the parameters measured. The results support the hypothesis that generation of the transthylakoid proton gradient and associated ATP production is not a major limitation to photosynthesis during leaf development in either C3 or C4 plants. Removal of CO2 from the mature leaf sections caused little change in steady-state F680 and produced about 50% reduction of Q. When O2 was then removed, F680 rose sharply and Q became almost totally reduced. In immature tissue unable to assimilate CO2, removal of O2 alone caused a similar large rise in F680 and reduction of Q whilst removal of CO2 had negligible effects on F680 and the redox state of Q. It is concluded that in leaf tissue unable to assimilate CO2, either because CO2 is absent or the tissue is immature, O2 acts as an electron acceptor and maintains Q in a partially oxidised state. The important implication that O2 may have a role in the prevention of photoinhibition of the photochemical apparatus in the developing leaf is discussed.Abbreviations F680 chlorophyll fluorescence emission at 680 nm - PSI photosystem I - PSII photosystem II - Q PSII primary electron acceptor - pH transthylakoid proton gradient  相似文献   

6.
The nature of photosynthetic recovery was investigated in 10-d-old wheat (Triticum aestivum L., cv. Moskovskaya-35) seedlings exposed to temperatures of 40 and 42 °C for 20 min and to temperature 42 °C for 40 min in the dark. The aftereffect of heat treatment was monitored by growing the heat-treated plants in low/moderate/high light at 20 °C for 72 h. The net photosynthetic rates (PN) and the fluorescence ratios Fv/Fm were evaluated in intact primary leaves and the rates of cyclic and non-cyclic photophosphorylation were measured in the isolated thylakoids. At least two temporally separated steps were identified in the path of recovery from heat stress at 40 and 42 °C in the plants growing in high and moderate/high light, respectively. Both photochemical activity of the photosystem II (PSII) and the activity of CO2 assimilation system were lowered during the first step in comparison with the corresponding activities immediately after heat treatment. During the second step, the photosynthetic activities completely or partly recovered. Recovery from heat stress at 40 °C was accompanied by an appreciably higher rate of cyclic photophosphorylation in comparison with control non-heated seedlings. In pre-heated seedlings, the tolerance of the PSII to photoinhibition was higher than in non-treated ones. The mode of acclimation to different light intensities after heat exposures is analyzed.  相似文献   

7.
H. Gabryś 《Planta》1985,166(1):134-140
The profile-to-face chloroplast movement in the green alga Mougeotia has been induced by strong blue and near-ultraviolet light pulses (6 J m-2). Simultaneously, strong red or far-red light (10 W m-2) was applied perpendicularly to the inducing beam. The response was measured photometrically. Against the far-red background the reciprocity law was found to hold for pulse durations varying two orders of magnitude. The action spectrum exhibited a maximum near 450 nm and a distinct increase in near-ultraviolet. The time-course and the spectral dependence of pulse responses of chloroplasts in Mougeotia were similar to those recorded for other plants which are sensitive only to blue. This points to an alternative sensor system active in the short-wavelength region in addition to the phytochrome system.Abbreviations FR far-red light - Pr red absorbing form of phytochrome - Pfr far-red absorbing form of phytochrome - R red light This paper is dedicated to the memory of Professor Jan Zurzycki  相似文献   

8.
Borya nitida Labill., a plant able to colonize rock outcrops and shallow sands in areas of high incident solar radiation in Western Australia, was examined for its tolerance to extremes of temperature, and to intense visible radiation. Stress injury to the leaves from heat, chilling or photoinhibitory light was followed by the decrease in in-vivo variable chlorophyll fluorescence. Heat injury was also ascertained by an increase in the constant fluorescence. Borya nitida leaves were extremely heat tolerant when heated at 1° C min-1. In-vivo variable chlorophyll fluorescence was detectable up to 55° C, several degrees higher than either maize or barley which are, respectively, adapted to warm and cool climates. An increase in constant fluorescence occurred above 50° C in B. nitida. This compares with values in the literature of 48–49° C for three desert plants from Death Valley, California, and 44–48° C for ten species of tropical plants. Unlike the Death-Valley plants, the high degree of heat tolerance found in B. nitida did not require prior acclimation by growth at high temperatures. Borya nitida was also tolerant of a chilling temperature of 0° C. Plants grown at a low photon fluence rate (120 mol m-2s-1) were irreversibly photoinhibited by light at 650 mol m-2s-1. Plants grown in sunlight resisted photoinhibition; however, the capacity to withstand photoinhibition was no greater than that of plants from less extreme environments.  相似文献   

9.
Photoinhibition of photosynthesis was induced in intact leaves of Phaseolus vulgaris L. grown at a photon flux density (PFD; photon fluence rate) of 300 mol·m-2·s-1, by exposure to a PFD of 1400 mol·m-2·s-1. Subsequent recovery from photoinhibition was followed at temperatures ranging from 5 to 35°C and at a PFD of either 20 or 140 mol·m-2·s-1 or in complete darkness. Photoinhibition and recovery were monitored mainly by chlorophyll fluorescence emission at 77K but also by photosynthetic O2 evolution. The effects of the protein-synthesis inhibitors, cycloheximide and chloramphenicol, on photoinhibition and recovery were also determined. The results demonstrate that recovery was temperature-dependent with rates slow below 15°C and optimal at 30°C. Light was required for maximum recovery but the process was light-saturated at a PFD of 20 mol·m-2·s-1. Chloramphenicol, but not cycloheximide, inactivated the repair process, indicating that recovery involved the synthesis of one or more chloroplast-encoded proteins. With chloramphenicol, it was shown that photoinhibition and recovery occurred concomitantly. The temperature-dependency of the photoinhibition process was, therefore, in part determined by the effect of temperature on the recovery process. Consequently, photoinhibition is the net difference between the rate of damage and the rate of repair. The susceptibility of chilling-sensitive plant species to photoinhibition at low temperatures is proposed to result from the low rates of recovery in this temperature range.Abbreviations and symbols Da Dalton - Fo, Fm, Fv instantaneous, maximum, variable fluorescence emission - PFD photon flux density - PSII photosystem II - photon yield C.I.W.-D.P.B. Publication No. 871  相似文献   

10.
Henrik Laasch 《Planta》1987,171(2):220-226
Non-photochemical quenching of chlorophyll a fluorescence after short-time light, heat and osmotic stress was investigated with intact chloroplasts from Spinacia oleracea L. The proportions of non-photochemical fluorescence quenching (q N ) which are related (q E ) and unrelated (q I ) to the transthylakoid proton gradient (pH) were determined. Light stress resulted in an increasing contribution of q Ito total q N.The linear dependence of q. Eand pH, as seen in controls, was maintained. The mechanisms underlying this type of quenching are obviously unaffected by photoin-hibition. In constrast, q Ewas severely affected by heat and osmotic stress. In low light, the response of q Eto changes in pH was enhanced, whereas it was reduced in high light. The data are discussed with reference to the hypothesis that q Eis related to thermal dissipation of excitation energy from photosystem II. It is shown that q Eis not only controlled by pH, but also by external factors.Abbreviations and symbols 9-AA 9-aminoacridine - F o basic chlorophyll fluorescence - F o variable chlorophyll fluorescence - L 2 saturating light pulse - PS photosystem - q E pH-dependent, non-photochemical quenching of fluorescence - q I pH-independent, non-photochemical quenching - q N entire non-photochemical quenching - q Q photochemical quenching  相似文献   

11.
W. Gsell  O. Kiirats  W. Hartung  U. Heber 《Planta》1989,177(3):367-376
The relationship between components of non-photochemical quenching of chlorophyll fluorescence yield (qNP) and dissipation of excessive excitation energy was determined in cotton leaves using concurrent measurements of fluorescence and gas-exchange at 2% and 20% O2 under a range of photon flux densities and CO2 pressures. A nearly stoichiometric relationship was obtained between dissipation of energy not used in photosynthetic CO2 fixation or photorespiration and qNP provided that a component, probably associated with state transitions, was not included in qNP. Although two distinct components of qNP were resolved on the basis of their relaxation kinetics, both components appear effective in energy dissipation. The photon yield of open photosystem-II reaction centers decreased linearly with increases in qNP, indicating that much of the energy dissipation occurs in the pigment bed. However, increases in qNP appear dependent on the redox state of these centers. The results are discussed in relation to current hypotheses of the molecular basis of non-radiative energy dissipation. It is concluded that determinations of qNP can provide a quantitative measure of the dissipation of excessive excitation energy if precautions are taken to ensure that the maximum fluorescence yield is measured under conditions that provide complete closure of the photosystem-II reaction centers. It is also concluded that such dissipation can prevent photoinhibitory damage in cotton leaves even under extreme conditions where as much as 80% of the excitation energy is excessive.Abbreviations and symbols F M, F O, F V, F S fluorescence yield when all PSII centers are closed, when all centers are open, FM-FO, at steady state in the light - PFD photon flux density (photon fluence rate) - P(CO2) sum of rates of CO2 uptake and dark respiration - P(ET) sum of P(CO2) and rate of oxygenation - PSI, PSII photosystem I, II - qNP, qP non-photochemical, photochemical fluorescence quenching - Q the acceptor for PSII - Q r/Q t the fraction of reduced Q or closed PSII centers - r/ t intrinsic photon yield of CO2 fixation in the absence of photorespiration of O2 evolution - a P(ET)/PFD (absorbed light) C.I.W. Publication No. 1016  相似文献   

12.
High-light treatments (1750–2000 mol photons m–2 · s–1) of leaves from a number of higher-plant species invariably resulted in quenching of the maximum 77K chlorophyll fluorescence at both 692 and 734 nm (F M, 692 and F M, 734). The response of instantaneous fluorescence at 692 nm (F O, 692) was complex. In leaves of some species F O, 692 increased dramatically in others it was quenched, and in others yet it showed no marked, consistent change. Regardless of the response of F O, 692 an apparently linear relationship was obtained between the ratio of variable to maximum fluorescence (F V/F M, 692) and the photon yield of O2 evolution, indicating that photoinhibition affects these two variables to approximately the same extent. Treatment of leaves in a CO2–free gas stream containing 2% O2 and 98% N2 under weak light (100 mol · m–2 · s–1) resulted in a general and fully reversible quenching of 77K fluorescence at 692 and 734 nm. In this case both F O, 692 and F M, 692 were invariably quenched, indicating that the quenching was caused by an increased non-radiative energy dissipation in the pigment bed. We propose that high-light treatments can have at least two different, concurrent effects on 77K fluorescence in leaves. One results from damage to the photosystem II (PSII) reaction-center complex and leads to a rise in F O, 692; the other results from an increased non-radiative energy dissipation and leads to quenching of both F O, 692 and F M, 692 This general quenching had a much longer relaxation time than reported for pH-dependent quenching in algae and chloroplasts. Sun leaves, whose F V/F M, 692 ratios were little affected by high-light exposure in normal air, suffered pronounced photoinhibition when the exposure was made under conditions that prevent photosynthetic gas exchange (2% O2, 0% CO2). However, they were still less susceptible than shade leaves, indicating that the higher capacity for energy dissipation via photosynthesis is not the only cause of their lower susceptibility. The rate constant for recovery from photoinhibition was much higher in mature sun leaves than in mature shade leaves, indicating that differences in the capacity for continuous repair may in part account for the difference in their susceptibility to photoinhibition.Abbreviations and symbols kDa kilodalton - LHC-II light-harvesting chlorophyll-protein complex - PFD photon flux density (photon fluence rate) - PSI, PSII photosystem I, II - F O, F M, F V instantaneous, maximum, variable fluorescence emission - absorptance - a photon yield of O2 evolution (absorbed light) C.I.W.-D.P.B. Publication No. 925  相似文献   

13.
The response of a number of species to high light levels was examined to determine whether chlorophyll fluorescence from photosystem (PS) II measured at ambient temperature could be used quantitatively to estimate the photon yield of O2 evolution. In many species, the ratio of the yield of the variable (FV) and the maximum chlorophyll fluorescence (FM) determined from leaves at ambient temperature matched that from leaves frozen to 77K when reductions in FV/FM and the photon yield resulted from exposure of leaves to high light levels under favorable temperatures and water status. Under conditions which were less favorable for photosynthesis, FV/FM at ambient temperature often matched the photon yield more closely than FV/FM measured at 77K. Exposure of leaves to high light levels in combination with water stress or chilling stress resulted in much greater reductions in the photon yield than in FV/FM (at both ambient temperature and 77K) measured in darkness, which would be expected if the site of inhibition was beyond PSII. Following chilling stress, FV/FM determined during measurement of the photon yield in the light was depressed to a degree more similar to that of the depression of photon yield, presumably as a result of regulation of PSII in response to greatly reduced electron flow.Abbreviations and Symbols Fo yield of instantaneous fluorescence - FM yield of maximum fluorescence - FV yield of variable fluorescence - PFD photon flux density (400–700 nm) - PSI (II) photosystem I (II) This work was supported by the Deutsche Forschungsgemeinchaft. W.W.A. gratefully acknowledges the support of Fellowships from the North Atlantic Treaty Organization and the Alexander von Humboldt-Stiftung. We also thank Maria Lesch for plant maintenance.  相似文献   

14.
The regulation of photosystem II (PSII) by light-, CO2-, and O2-dependent changes in the capacity for carbon metabolism was studied. Estimates of the rate of electron transport through PSII were made from gas-exchange data and from measurements of chlorophyll fluorescence. At subsaturating photon-flux density (PFD), the rate of electron transport was independent of O2 and CO2. Feedback on electron transport was observed under two conditions. At saturating PFD and low partial pressure of CO2, p(CO2), the rate of electron transport increased with p(CO2). However, at high p(CO2), switching from normal to low p(O2) did not affect the net rate of photosynthetic CO2 assimilation but the rate of electron-transport decreased by an amount related to the change in the rate of photorespiration. We interpret these effects as 1) regulation of ribulose-1,5-bisphosphatecarboxylase (RuBPCase, EC 4.1.1.39) activity to match the rate of electron transport at limiting PFD, 2) regulation of electron-transport rate to match the rate of RuBPCase at low p(CO2), and 3) regulation of the electron-transport rate to match the capacity for starch and sucrose synthesis at high p(CO2) and PFD. These studies provide evidence that PSII is regulated so that the capacity for electron transport is matched to the capacity for other processes required by photosynthesis, such as ribulose-bisphosphate carboxylation and starch and sucrose synthesis. We show that at least two mechanisms contribute to the regulation of PSII activity and that the relative engagement of these mechanisms varies with time following a step change in the capacity for ribulose-bisphosphate carboxylation and starch and sucrose synthesis. Finally, we take advantage of the relatively slow activation of deactivated RuBPCase in vivo to show that the activation level of this enzyme can limit the rate of electron transport as evidenced by increased feedback on PSII following a step change in p(CO2). As RuBPCase as activated, the feedback on PSII declined.Abbreviations and symbols JC electron-transport rate calculated from CO2-assimilation measurements - JF electron-transport rate calculated from fluorescence parameters - PFD photon-flux density - qE energy-dependent quenching - PSII photosystem II - qQ Q-dependent quenching - QY quantum yield - RuBPCase ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) C.I.W. publication No. 1015  相似文献   

15.
Summary We have investigated the diurnal response of photosynthesis and variable photosystem II (PSII) chlorophyll fluorescence at 77 K for thalli of the chlorophyte macroalga, Ulva rotundata, grown in outdoor culture and transplanted to an intertidal sand flat in different seasons. The physiological response in summer indicated synergistic effects of high PFD and aerial exposure, the latter probably attributable to temperature, which usually increased by 8 to 10° C during midday emersion. Except at extreme emersed temperatures in summer (38° C), the light-saturated photosynthesis rate (Pm) did not decline at midday. In contrast, light-limited quantum yield of photosynthetic O2 exchange () and the ratio of variable to maximum fluorescence yield (Fv/Fm) reversibly declined during midday low tides in all seasons. Shade-grown thalli exhibited a fluorescence response suggestive of greater photodamage to PSII, whereas sun-grown thalli had greater photoprotective capacity. The fluorescence decline was smaller when high tide occurred at midday, and was delayed during morning cloudiness. These results suggest that the diurnal response to PFD in this shallow water species is modified by tidal and meteorological factors. U. rotundata has a great capacity for photoprotection which allows it to tolerate and even thrive in the harsh intertidal environment.Abbreviations Fo instantaneous yield of chlorophyll fluorescence - Fm maximum yield of fluorescence - Fv variable yield (Fm–Fo) of fluorescence - PFD photon flux density (400–700 nm) - Pm light-saturated rate of photosynthesis - PSH photosystem II - QA electron acceptor of PSII - light-limited quantum yield of photosynthesis  相似文献   

16.
Susceptibility of a moss,Ceratodon purpureus (Hedw.) Brid., to photoinhibition and subsequent recovery of the photochemical efficiency of PSII was studied in the presence and absence of the chloroplast-encoded protein-synthesis inhibitor lincomycin.Ceratodon had a good capacity for repairing the damage to PSII centers induced by strong light. Tolerance against photoinhibition was associated with rapid turnover of the D1 protein, since blocking of D1 protein synthesis more than doubled the photoinhibition rate measured as the decline in the ratio of variable fluorescence to maximal fluorescence (Fv/Fmax). Under exposure to strong light in the absence of lincomycin a net loss of D1 protein occurred, indicating that the degradation of damaged D1 protein inCeratodon was rapid and independent of the resynthesis of the polypeptide. The result suggests that synthesis is the limiting factor in the turnover of D1 protein during photoinhibition of the mossCeratodon. The level of initial fluorescence (Fo) correlated with the production of inactive PSII centers depleted of D1 protein. The higher the Fo level, the more severe was the loss of D1 protein seen in the samples during photoinhibition. Restoration of Fv/Fmax at recovery light consisted of a fast and slow phase. The recovery of fluorescence yield in the presence of lincomycin, which was added at different times in the recovery, indicated that the chloroplast-encoded protein-synthesis-dependent repair of damaged PSII centers took place during the fast phase of recovery. Pulse-labelling experiments with [35S]methionine supported the conclusion drawn from fluorescence measurements, since the rate of D1 protein synthesis after photoinhibition exceeded that of the control plants during the first hours under recovery conditions.  相似文献   

17.
D. H. Greer  W. A. Laing 《Planta》1988,175(3):355-363
Photoinhibition of photosynthesis was induced in intact kiwifruit (Actinidia deliciosa (A. Chev.) C. F. Liang et A. R. Ferguson) leaves grown at two photon flux densities (PFDs) of 700 and 1300 mol·m-2·s-1 in a controlled environment, by exposing the leaves to PFD between 1000 and 2000 mol·m-2·s-1 at temperatures between 10 and 25°C; recovery from photoinhibition was followed at the same range of temperatures and at a PFD between 0 and 500 mol·m-2·s-1. In either case the time-courses of photoinhibition and recovery were followed by measuring chlorophyll fluorescence at 692 nm and 77K and by measuring the photon yield of photosynthetic O2 evolution. The initial rate of photoinhibition was lower in the high-light-grown plants but the long-term extent of photoinhibition was not different from that in low-light-grown plants. The rate constants for recovery after photoinhibition for the plants grown at 700 and 1300 mol·m-2·s-1 or for those grown in shade were similar, indicating that differences between sun and shade leaves in their susceptibility to photoinhibition could not be accounted for by differences in capacity for recovery during photoinhibition. Recovery following photoinhibition was increasingly suppressed by an increasing PFD above 20 mol·m-2·s-1, indicating that recovery in photoinhibitory conditions would, in any case, be very slow. Differences in photosynthetic capacity and in the capacity for dissipation of non-radiative energy seemed more likely to contribute to differences in susceptibility to photoinhibition between sun and shade leaves of kiwifruit.Abbreviations and symbols F o , F m , F v instantaneous, maximum, variable fluorescence - F v /F m fluorescence ratio - F i =F v at t=0 - F F v at t= - K D rate constant for photochemistry - k(F p ) first-order rate constant for photoinhibition - k(F r ) first-order rate constant for recovery - PFD photon flux density - PSII photosystem II - i photon yield of O2 evolution (incident light)  相似文献   

18.
Arabidopsis thaliana (L.) Heynh. cv. Landsberg erecta was grown under light regimes of differing spectral qualities, which results in differences in the stoichiometries of the two photosynthetic reaction centres. The acclimative value of these changes was investigated by assessing photosynthetic function in these plants when exposed to two spectrally distinct actinic lights. Plants grown in an environment enriched in far-red light were better able to make efficient use of non-saturating levels of actinic light enriched in long-wavelength red light. Simultaneous measurements of chlorophyll fluorescence and absorption changes at 820 nm indicated that differences between plants grown under alternative light regimes can be ascribed to imbalances in excitation of photosystems I and II (PSI, PSII). Measurements of chlorophyll fluorescence emission and excitation spectra at 77 K provided strong evidence that there was little or no difference in the composition or function of PSI or PSII between the two sets of plants, implying that changes in photosynthetic stoichiometry are primarily responsible for the observed differences in photosynthetic function.Abbreviations Chl chlorophyll - FR far-red light - HF highirradiance FR-enriched light (400 mol·m–2·s–1, RFR = 0.72) - HW high-irradiance white light (400 mol·m–2 1·1 s–1RFR = 1.40) - LHCI, LHCII light-harvesting complex of PSI, PSII - qO quenching of dark-level chlorophyll fluorescence - qN non-photochemical quenching of variable chlorophyll fluorescence - qP photochemical quenching of variable chlorophyll fluorescence - R red light - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase We thank Dr. Sasha Ruban for assistance with the 77 K fluorescence measurements and for helpful discussions. This work was supported by Natural Environment Research Council Grant GR3/7571A.  相似文献   

19.
P. J. Ferrar  C. B. Osmond 《Planta》1986,168(4):563-570
We have compared the ability of shadegrown clones of Solamum dulcamara L. from shade and sun habitats to acclimate to bright light, as a function of nitrogen nutrition before and after transfer to bright light. Leaves of S. dulcamara grown in the shade with 0.6 mM NO 3 - have similar photosynthetic properties as leaves of plants grown with 12.0 mM NO 3 - . When transferred to bright light for 1–2 d the leaves of these plants show substantial photoinhibition which is characterized by about 50% decrease in apparent quantum yield and a reduction in the rate of photosynthesis in air at light saturation. Photoinhibition of leaf photosynthesis is associated with reduction in the variable component of low-temperature fluorescence emission, and with loss of in-vitro electron transport, especially of photosystem II-dependent processes.We find no evidence for ecotypic differentiation in the potential for photosynthetic acclimation among shade and sun clones of S. dulcamara, or of differentiation with respect to nitrogen requirements for acclimation. Recovery from photoinhibition and subsequent acclimation of photosynthesis to bright light only occurs in leaves of plants provided with 12.0 mM NO 3 - . In these, apparent quantum yield is fully restored after 14 d, and photosynthetic acclimation is shown by an increase in light-saturated photosynthesis in air, of light-and CO2-saturated photosynthesis, and of the initial slope of the CO2-response curve. The latter changes are highly correlated with changes in ribulose-bisphosphate-carboxylase activity in vitro. Plants supplied with 0.6 mM NO 3 - show incomplete recovery of apparent quantum yield after 14 d, but CO2-dependent leaf photosynthetic parameters return to control levels.Symbols and abbreviations Fo initial level of fluorescence at 77 K - Fm maximum level of fluorescence at 77 K - Fv variable components of fluorescence at 77 K (Fv=Fm-Fo) - PSI, PSII photosystem I and II, respectively - RuBP ribulose-1,5-bisphosphate - RuBPCase ribulose-1,5-bisphosphate carboxylase-oxygenase (EC 4.1.1.39)  相似文献   

20.
Leaves of Populus balsamifera grown under full natural sunlight were treated with 0, 1, or 2 l SO2·1-1 air under one of four different photon flux densities (PFD). When the SO2 exposures took place in darkness or at 300 mol photons·m-2·s-1, sulfate accumulated to the levels predicted by measurements of stomatal conductance during SO2 exposure. Under conditions of higher PFD (750 and 1550 mol·m-2·s-1), however, the predicted levels of accumulated sulfate were substantially higher than those obtained from anion chromatography of the leaf extracts. Light-and CO2-saturated capacity as well as the photon yield of photosynthetic O2 evolution were reduced with increasing concentration of SO2. At 2 l SO2·1-1 air, the greatest reductions in both photosynthetic, capacity and photon yield occurred when the leaves were exposed to SO2 in the dark, and increasingly smaller reductions in each occurred with increasing PFD during SO2 exposure. This indicates that the inhibition of photosynthesis resulting from SO2 exposure was reduced when the exposure occurred under conditions of higher light. The ratio F v/F M (variable/maximum fluorescence emission) for photosyntem II (PSII), a measure of the photochemical efficiency of PSII, remained unaffected by exposure of leaves to SO2 in the dark and exhibited only moderate reductions with increasing PFD during the exposure, indicating that PSII was not a primary site of damage by SO2. Pretreatment of leaves with SO2 in the dark, however, increased the susceptibility of PSII to photoinhibition, as such pretreated leaves exhibited much greater reductions inF V/F M when transferred to moderate or high light in air than comparable control leaves.Abbreviations and symbols A1200 photosynthetic capacity (CO2-saturated rate of O2 evolution at 1200 mol photons·m-2·s-1) - Fo instantaneous fluorescence emission - FM maximum fluorescence emission - FV variable fluorescence emission - PFD photon flux density (400–700 nm) - PSII photosystem II  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号