首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excoffier L  Estoup A  Cornuet JM 《Genetics》2005,169(3):1727-1738
We introduce here a Bayesian analysis of a classical admixture model in which all parameters are simultaneously estimated. Our approach follows the approximate Bayesian computation (ABC) framework, relying on massive simulations and a rejection-regression algorithm. Although computationally intensive, this approach can easily deal with complex mutation models and partially linked loci, and it can be thoroughly validated without much additional computation cost. Compared to a recent maximum-likelihood (ML) method, the ABC approach leads to similarly accurate estimates of admixture proportions in the case of recent admixture events, but it is found superior when the admixture is more ancient. All other parameters of the admixture model such as the divergence time between parental populations, the admixture time, and the population sizes are also well estimated, unlike the ML method. The use of partially linked markers does not introduce any particular bias in the estimation of admixture, but ML confidence intervals are found too narrow if linkage is not specifically accounted for. The application of our method to an artificially admixed domestic bee population from northwest Italy suggests that the admixture occurred in the last 10-40 generations and that the parental Apis mellifera and A. ligustica populations were completely separated since the last glacial maximum.  相似文献   

2.
Guo Y 《Biometrics》2011,67(4):1532-1542
Independent component analysis (ICA) has become an important tool for analyzing data from functional magnetic resonance imaging (fMRI) studies. ICA has been successfully applied to single-subject fMRI data. The extension of ICA to group inferences in neuroimaging studies, however, is challenging due to the unavailability of a prespecified group design matrix and the uncertainty in between-subjects variability in fMRI data. We present a general probabilistic ICA (PICA) model that can accommodate varying group structures of multisubject spatiotemporal processes. An advantage of the proposed model is that it can flexibly model various types of group structures in different underlying neural source signals and under different experimental conditions in fMRI studies. A maximum likelihood (ML) method is used for estimating this general group ICA model. We propose two expectation-maximization (EM) algorithms to obtain the ML estimates. The first method is an exact EM algorithm, which provides an exact E-step and an explicit noniterative M-step. The second method is a variational approximation EM algorithm, which is computationally more efficient than the exact EM. In simulation studies, we first compare the performance of the proposed general group PICA model and the existing probabilistic group ICA approach. We then compare the two proposed EM algorithms and show the variational approximation EM achieves comparable accuracy to the exact EM with significantly less computation time. An fMRI data example is used to illustrate application of the proposed methods.  相似文献   

3.
Liu K  Linder CR  Warnow T 《PloS one》2011,6(11):e27731
Statistical methods for phylogeny estimation, especially maximum likelihood (ML), offer high accuracy with excellent theoretical properties. However, RAxML, the current leading method for large-scale ML estimation, can require weeks or longer when used on datasets with thousands of molecular sequences. Faster methods for ML estimation, among them FastTree, have also been developed, but their relative performance to RAxML is not yet fully understood. In this study, we explore the performance with respect to ML score, running time, and topological accuracy, of FastTree and RAxML on thousands of alignments (based on both simulated and biological nucleotide datasets) with up to 27,634 sequences. We find that when RAxML and FastTree are constrained to the same running time, FastTree produces topologically much more accurate trees in almost all cases. We also find that when RAxML is allowed to run to completion, it provides an advantage over FastTree in terms of the ML score, but does not produce substantially more accurate tree topologies. Interestingly, the relative accuracy of trees computed using FastTree and RAxML depends in part on the accuracy of the sequence alignment and dataset size, so that FastTree can be more accurate than RAxML on large datasets with relatively inaccurate alignments. Finally, the running times of RAxML and FastTree are dramatically different, so that when run to completion, RAxML can take several orders of magnitude longer than FastTree to complete. Thus, our study shows that very large phylogenies can be estimated very quickly using FastTree, with little (and in some cases no) degradation in tree accuracy, as compared to RAxML.  相似文献   

4.
Comparison of the performance and accuracy of different inference methods, such as maximum likelihood (ML) and Bayesian inference, is difficult because the inference methods are implemented in different programs, often written by different authors. Both methods were implemented in the program MIGRATE, that estimates population genetic parameters, such as population sizes and migration rates, using coalescence theory. Both inference methods use the same Markov chain Monte Carlo algorithm and differ from each other in only two aspects: parameter proposal distribution and maximization of the likelihood function. Using simulated datasets, the Bayesian method generally fares better than the ML approach in accuracy and coverage, although for some values the two approaches are equal in performance. MOTIVATION: The Markov chain Monte Carlo-based ML framework can fail on sparse data and can deliver non-conservative support intervals. A Bayesian framework with appropriate prior distribution is able to remedy some of these problems. RESULTS: The program MIGRATE was extended to allow not only for ML(-) maximum likelihood estimation of population genetics parameters but also for using a Bayesian framework. Comparisons between the Bayesian approach and the ML approach are facilitated because both modes estimate the same parameters under the same population model and assumptions.  相似文献   

5.
Highly accurate estimation of phylogenetic trees for large data sets is difficult, in part because multiple sequence alignments must be accurate for phylogeny estimation methods to be accurate. Coestimation of alignments and trees has been attempted but currently only SATé estimates reasonably accurate trees and alignments for large data sets in practical time frames (Liu K., Raghavan S., Nelesen S., Linder C.R., Warnow T. 2009b. Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science. 324:1561-1564). Here, we present a modification to the original SATé algorithm that improves upon SATé (which we now call SATé-I) in terms of speed and of phylogenetic and alignment accuracy. SATé-II uses a different divide-and-conquer strategy than SATé-I and so produces smaller more closely related subsets than SATé-I; as a result, SATé-II produces more accurate alignments and trees, can analyze larger data sets, and runs more efficiently than SATé-I. Generally, SATé is a metamethod that takes an existing multiple sequence alignment method as an input parameter and boosts the quality of that alignment method. SATé-II-boosted alignment methods are significantly more accurate than their unboosted versions, and trees based upon these improved alignments are more accurate than trees based upon the original alignments. Because SATé-I used maximum likelihood (ML) methods that treat gaps as missing data to estimate trees and because we found a correlation between the quality of tree/alignment pairs and ML scores, we explored the degree to which SATé's performance depends on using ML with gaps treated as missing data to determine the best tree/alignment pair. We present two lines of evidence that using ML with gaps treated as missing data to optimize the alignment and tree produces very poor results. First, we show that the optimization problem where a set of unaligned DNA sequences is given and the output is the tree and alignment of those sequences that maximize likelihood under the Jukes-Cantor model is uninformative in the worst possible sense. For all inputs, all trees optimize the likelihood score. Second, we show that a greedy heuristic that uses GTR+Gamma ML to optimize the alignment and the tree can produce very poor alignments and trees. Therefore, the excellent performance of SATé-II and SATé-I is not because ML is used as an optimization criterion for choosing the best tree/alignment pair but rather due to the particular divide-and-conquer realignment techniques employed.  相似文献   

6.
The maximum likelihood (ML) method of phylogenetic tree construction is not as widely used as other tree construction methods (e.g., parsimony, neighbor-joining) because of the prohibitive amount of time required to find the ML tree when the number of sequences under consideration is large. To overcome this difficulty, we propose a stochastic search strategy for estimation of the ML tree that is based on a simulated annealing algorithm. The algorithm works by moving through tree space by way of a "local rearrangement" strategy so that topologies that improve the likelihood are always accepted, whereas those that decrease the likelihood are accepted with a probability that is related to the proportionate decrease in likelihood. Besides greatly reducing the time required to estimate the ML tree, the stochastic search strategy is less likely to become trapped in local optima than are existing algorithms for ML tree estimation. We demonstrate the success of the modified simulated annealing algorithm by comparing it with two existing algorithms (Swofford's PAUP* and Felsenstein's DNAMLK) for several theoretical and real data examples.  相似文献   

7.
MOTIVATION: Maximum likelihood (ML) methods have become very popular for constructing phylogenetic trees from sequence data. However, despite noticeable recent progress, with large and difficult datasets (e.g. multiple genes with conflicting signals) current ML programs still require huge computing time and can become trapped in bad local optima of the likelihood function. When this occurs, the resulting trees may still show some of the defects (e.g. long branch attraction) of starting trees obtained using fast distance or parsimony programs. METHODS: Subtree pruning and regrafting (SPR) topological rearrangements are usually sufficient to intensively search the tree space. Here, we propose two new methods to make SPR moves more efficient. The first method uses a fast distance-based approach to detect the least promising candidate SPR moves, which are then simply discarded. The second method locally estimates the change in likelihood for any remaining potential SPRs, as opposed to globally evaluating the entire tree for each possible move. These two methods are implemented in a new algorithm with a sophisticated filtering strategy, which efficiently selects potential SPRs and concentrates most of the likelihood computation on the promising moves. RESULTS: Experiments with real datasets comprising 35-250 taxa show that, while indeed greatly reducing the amount of computation, our approach provides likelihood values at least as good as those of the best-known ML methods so far and is very robust to poor starting trees. Furthermore, combining our new SPR algorithm with local moves such as PHYML's nearest neighbor interchanges, the time needed to find good solutions can sometimes be reduced even more.  相似文献   

8.
Nonlinear mixed effects models are now widely used in biometrical studies, especially in pharmacokinetic research or for the analysis of growth traits for agricultural and laboratory species. Most of these studies, however, are often based on ML estimation procedures, which are known to be biased downwards. A few REML extensions have been proposed, but only for approximated methods. The aim of this paper is to present a REML implementation for nonlinear mixed effects models within an exact estimation scheme, based on an integration of the fixed effects and a stochastic estimation procedure. This method was implemented via a stochastic EM, namely the SAEM algorithm. The simulation study showed that the proposed REML estimation procedure considerably reduced the bias observed with the ML estimation, as well as the residual mean squared error of the variance parameter estimations, especially in the unbalanced cases. ML and REML based estimators of fixed effects were also compared via simulation. Although the two kinds of estimates were very close in terms of bias and mean square error, predictions of individual profiles were clearly improved when using REML vs. ML. An application of this estimation procedure is presented for the modelling of growth in lines of chicken.  相似文献   

9.
Kao CH 《Genetics》2000,156(2):855-865
The differences between maximum-likelihood (ML) and regression (REG) interval mapping in the analysis of quantitative trait loci (QTL) are investigated analytically and numerically by simulation. The analytical investigation is based on the comparison of the solution sets of the ML and REG methods in the estimation of QTL parameters. Their differences are found to relate to the similarity between the conditional posterior and conditional probabilities of QTL genotypes and depend on several factors, such as the proportion of variance explained by QTL, relative QTL position in an interval, interval size, difference between the sizes of QTL, epistasis, and linkage between QTL. The differences in mean squared error (MSE) of the estimates, likelihood-ratio test (LRT) statistics in testing parameters, and power of QTL detection between the two methods become larger as (1) the proportion of variance explained by QTL becomes higher, (2) the QTL locations are positioned toward the middle of intervals, (3) the QTL are located in wider marker intervals, (4) epistasis between QTL is stronger, (5) the difference between QTL effects becomes larger, and (6) the positions of QTL get closer in QTL mapping. The REG method is biased in the estimation of the proportion of variance explained by QTL, and it may have a serious problem in detecting closely linked QTL when compared to the ML method. In general, the differences between the two methods may be minor, but can be significant when QTL interact or are closely linked. The ML method tends to be more powerful and to give estimates with smaller MSEs and larger LRT statistics. This implies that ML interval mapping can be more accurate, precise, and powerful than REG interval mapping. The REG method is faster in computation, especially when the number of QTL considered in the model is large. Recognizing the factors affecting the differences between REG and ML interval mapping can help an efficient strategy, using both methods in QTL mapping to be outlined.  相似文献   

10.
Kitakado T  Kitada S  Kishino H  Skaug HJ 《Genetics》2006,173(4):2073-2082
The aim of this article is to develop an integrated-likelihood (IL) approach to estimate the genetic differentiation between populations. The conventional maximum-likelihood (ML) and pseudolikelihood (PL) methods that use sample counts of alleles may cause severe underestimations of FST, which means overestimations of theta=4Nm, when the number of sampling localities is small. To reduce such bias in the estimation of genetic differentiation, we propose an IL method in which the mean allele frequencies over populations are regarded as nuisance parameters and are eliminated by integration. To maximize the IL function, we have developed two algorithms, a Monte Carlo EM algorithm and a Laplace approximation. Our simulation studies show that the method proposed here outperforms the conventional ML and PL methods in terms of unbiasedness and precision. The IL method was applied to real data for Pacific herring and African elephants.  相似文献   

11.
J S Lopes  M Arenas  D Posada  M A Beaumont 《Heredity》2014,112(3):255-264
The estimation of parameters in molecular evolution may be biased when some processes are not considered. For example, the estimation of selection at the molecular level using codon-substitution models can have an upward bias when recombination is ignored. Here we address the joint estimation of recombination, molecular adaptation and substitution rates from coding sequences using approximate Bayesian computation (ABC). We describe the implementation of a regression-based strategy for choosing subsets of summary statistics for coding data, and show that this approach can accurately infer recombination allowing for intracodon recombination breakpoints, molecular adaptation and codon substitution rates. We demonstrate that our ABC approach can outperform other analytical methods under a variety of evolutionary scenarios. We also show that although the choice of the codon-substitution model is important, our inferences are robust to a moderate degree of model misspecification. In addition, we demonstrate that our approach can accurately choose the evolutionary model that best fits the data, providing an alternative for when the use of full-likelihood methods is impracticable. Finally, we applied our ABC method to co-estimate recombination, substitution and molecular adaptation rates from 24 published human immunodeficiency virus 1 coding data sets.  相似文献   

12.

Artificial Bee Colony (ABC) algorithm is a nature-inspired algorithm that showed its efficiency for optimizations. However, the ABC algorithm showed some imbalances between exploration and exploitation. In order to improve the exploitation and enhance the convergence speed, a multi-population ABC algorithm based on global and local optimum (namely MPGABC) is proposed in this paper. First, in MPGABC, the initial population is generated using both chaotic systems and opposition-based learning methods. The colony in MPGABC is divided into several sub-populations to increase diversity. Moreover, the solution search mechanism is modified by introducing global and local optima in the solution search equations of both employed and onlookers. The scout bees in the proposed algorithm are generated similarly to the initial population. Finally, the proposed algorithm is compared with several state-of-art ABC algorithm variants on a set of 13 classical benchmark functions. The experimental results show that MPGABC competes and outperforms other ABC algorithm variants.

  相似文献   

13.
In order to have confidence in model-based phylogenetic analysis, the model of nucleotide substitution adopted must be selected in a statistically rigorous manner. Several model-selection methods are applicable to maximum likelihood (ML) analysis, including the hierarchical likelihood-ratio test (hLRT), Akaike information criterion (AIC), Bayesian information criterion (BIC), and decision theory (DT), but their performance relative to empirical data has not been investigated thoroughly. In this study, we use 250 phylogenetic data sets obtained from TreeBASE to examine the effects that choice in model selection has on ML estimation of phylogeny, with an emphasis on optimal topology, bootstrap support, and hypothesis testing. We show that the use of different methods leads to the selection of two or more models for approximately 80% of the data sets and that the AIC typically selects more complex models than alternative approaches. Although ML estimation with different best-fit models results in incongruent tree topologies approximately 50% of the time, these differences are primarily attributable to alternative resolutions of poorly supported nodes. Furthermore, topologies and bootstrap values estimated with ML using alternative statistically supported models are more similar to each other than to topologies and bootstrap values estimated with ML under the Kimura two-parameter (K2P) model or maximum parsimony (MP). In addition, Swofford-Olsen-Waddell-Hillis (SOWH) tests indicate that ML trees estimated with alternative best-fit models are usually not significantly different from each other when evaluated with the same model. However, ML trees estimated with statistically supported models are often significantly suboptimal to ML trees made with the K2P model when both are evaluated with K2P, indicating that not all models perform in an equivalent manner. Nevertheless, the use of alternative statistically supported models generally does not affect tests of monophyletic relationships under either the Shimodaira-Hasegawa (S-H) or SOWH methods. Our results suggest that although choice in model selection has a strong impact on optimal tree topology, it rarely affects evolutionary inferences drawn from the data because differences are mainly confined to poorly supported nodes. Moreover, since ML with alternative best-fit models tends to produce more similar estimates of phylogeny than ML under the K2P model or MP, the use of any statistically based model-selection method is vastly preferable to forgoing the model-selection process altogether.  相似文献   

14.
Approximate Bayesian computation (ABC) is a highly flexible technique that allows the estimation of parameters under demographic models that are too complex to be handled by full-likelihood methods. We assess the utility of this method to estimate the parameters of range expansion in a two-dimensional stepping-stone model, using samples from either a single deme or multiple demes. A minor modification to the ABC procedure is introduced, which leads to an improvement in the accuracy of estimation. The method is then used to estimate the expansion time and migration rates for five natural common vole populations in Switzerland typed for a sex-linked marker and a nuclear marker. Estimates based on both markers suggest that expansion occurred <10,000 years ago, after the most recent glaciation, and that migration rates are strongly male biased.  相似文献   

15.
Proportional hazard models with multivariate random effects (frailties) acting multiplicatively on the baseline hazard have recently become a topic of an intensive research. One of the main practical problems related to the models is the estimation of parameters. To this aim, several approaches based on the EM algorithm have been proposed. The major difference between these approaches is the method of the computation of conditional expectations required at the E-step. In this paper an alternative implementation of the EM algorithm is proposed, in which the expected values are computed with the use of the Laplace approximation. The method is computationally less demanding than the approaches developed previously. Its performance is assessed based on a simulation study and compared to a non-EM based estimation approach proposed by Ripatti and Palmgren (2000).  相似文献   

16.
In this paper, we propose a new hybrid method based on Correlation-based feature selection method and Artificial Bee Colony algorithm,namely Co-ABC to select a small number of relevant genes for accurate classification of gene expression profile. The Co-ABC consists of three stages which are fully cooperated: The first stage aims to filter noisy and redundant genes in high dimensionality domains by applying Correlation-based feature Selection (CFS) filter method. In the second stage, Artificial Bee Colony (ABC) algorithm is used to select the informative and meaningful genes. In the third stage, we adopt a Support Vector Machine (SVM) algorithm as classifier using the preselected genes form second stage. The overall performance of our proposed Co-ABC algorithm was evaluated using six gene expression profile for binary and multi-class cancer datasets. In addition, in order to proof the efficiency of our proposed Co-ABC algorithm, we compare it with previously known related methods. Two of these methods was re-implemented for the sake of a fair comparison using the same parameters. These two methods are: Co-GA, which is CFS combined with a genetic algorithm GA. The second one named Co-PSO, which is CFS combined with a particle swarm optimization algorithm PSO. The experimental results shows that the proposed Co-ABC algorithm acquire the accurate classification performance using small number of predictive genes. This proofs that Co-ABC is a efficient approach for biomarker gene discovery using cancer gene expression profile.  相似文献   

17.
The artificial bee colony (ABC) algorithm is a recent class of swarm intelligence algorithms that is loosely inspired by the foraging behavior of honeybee swarms. It was introduced in 2005 using continuous optimization problems as an example application. Similar to what has happened with other swarm intelligence techniques, after the initial proposal, several researchers have studied variants of the original algorithm. Unfortunately, often these variants have been tested under different experimental conditions and different fine-tuning efforts for the algorithm parameters. In this article, we review various variants of the original ABC algorithm and experimentally study nine ABC algorithms under two settings: either using the original parameter settings as proposed by the authors, or using an automatic algorithm configuration tool using a same tuning effort for each algorithm. We also study the effect of adding local search to the ABC algorithms. Our experimental results show that local search can improve considerably the performance of several ABC variants and that it reduces strongly the performance differences between the studied ABC variants. We also show that the best ABC variants are competitive with recent state-of-the-art algorithms on the benchmark set we used, which establishes ABC algorithms as serious competitors in continuous optimization.  相似文献   

18.
Summary In the maximum likelihood (ML) method for estimating a molecular phylogenetic tree, the pattern of nucleotide substitutions for computing likelihood values is assumed to be simpler than that of the actual evolutionary process, simply because the process, considered to be quite devious, is unknown. The problem, however, is that there has been no guarantee to endorse the simplification.To study this problem, we first evaluated the robustness of the ML method in the estimation of molecular trees against different nucleotide substitution patterns, including Jukes and Cantor's, the simplest ever proposed. Namely, we conducted computer simulations in which we could set up various evolutionary models of a hypothetical gene, and define a true tree to which an estimated tree by the ML method was to be compared. The results show that topology estimation by the ML method is considerably robust against different ratios of transitions to transversions and different GC contents, but branch length estimation is not so. The ML tree estimation based on Jukes and Cantor's model is also revealed to be resistant to GC content, but rather sensitive to the ratio of transitions to transversions.We then applied the ML method with different substitution patterns to nucleotide sequence data ontax gene from T-cell leukemia viruses whose evolutionary process must have been more complicated than that of the hypothetical gene. The results are in accordance with those from the simulation study, showing that Jukes and Cantor's model is as useful as a more complicated one for making inferences about molecular phylogeny of the viruses.  相似文献   

19.
Development of methods for estimating species trees from multilocus data is a current challenge in evolutionary biology. We propose a method for estimating the species tree topology and branch lengths using approximate Bayesian computation (ABC). The method takes as data a sample of observed rooted gene tree topologies, and then iterates through the following sequence of steps: First, a randomly selected species tree is used to compute the distribution of rooted gene tree topologies. This distribution is then compared to the observed gene topology frequencies, and if the fit between the observed and the predicted distributions is close enough, the proposed species tree is retained. Repeating this many times leads to a collection of retained species trees that are then used to form the estimate of the overall species tree. We test the performance of the method, which we call ST-ABC, using both simulated and empirical data. The simulation study examines both symmetric and asymmetric species trees over a range of branch lengths and sample sizes. The results from the simulation study show that the model performs very well, giving accurate estimates for both the topology and the branch lengths across the conditions studied, and that a sample size of 25 loci appears to be adequate for the method. Further, we apply the method to two empirical cases: a 4-taxon data set for primates and a 7-taxon data set for yeast. In both cases, we find that estimates obtained with ST-ABC agree with previous studies. The method provides efficient estimation of the species tree, and does not require sequence data, but rather the observed distribution of rooted gene topologies without branch lengths. Therefore, this method is a useful alternative to other currently available methods for species tree estimation.  相似文献   

20.
The hybrid bacterial foraging algorithm based on many-objective optimizer   总被引:1,自引:0,他引:1  
A new multi-objective optimized bacterial foraging algorithm - Hybrid Multi-Objective Optimized Bacterial Foraging Algorithm (HMOBFA) is presented in this article. The proposed algorithm combines the crossover-archives strategy and the life-cycle optimization strategy, look for the best method through research area. The crossover-archive strategy with an external archive and internal archive is assigned to different selection principles to focus on diversity and convergence separately. Additionally, according to the local landscape to satisfy population diversity and variability as well as avoiding redundant local searches, individuals can switch their states periodically throughout the colony lifecycle with the life-cycle optimization strategy. all of which may perform significantly well. The performance of the algorithm was examined with several standard criterion functions and compared with other classical multi-objective majorization methods. The examiner results show that the HMOBFA algorithm can achieve a significant enhancement in performance compare with other method and handles many-objective issues with solid complexity, convergence as well as diversity. The HMOBFA algorithm has been proven to be an excellent alternative to past methods for solving the improvement of many-objective problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号