首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Morphology reflects ecological pressures, phylogeny, and genetic and biophysical constraints. Disentangling their influence is fundamental to understanding selection and trait evolution. Here, we assess the contributions of function, phylogeny, and habitat to patterns of plastron (ventral shell) shape variation in emydine turtles. We quantify shape variation using geometric morphometrics, and determine the influence of several variables on shape using path analysis. Factors influencing plastron shape variation are similar between emydine turtles and the more inclusive Testudinoidea. We evaluate the fit of various evolutionary models to the shape data to investigate the selective landscape responsible for the observed morphological patterns. The presence of a hinge on the plastron accounts for most morphological variance, but phylogeny and habitat also correlate with shape. The distribution of shape variance across emydine phylogeny is most consistent with an evolutionary model containing two adaptive zones—one for turtles with kinetic plastra, and one for turtles with rigid plastra. Models with more complex adaptive landscapes often fit the data only as well as the null model (purely stochastic evolution). The adaptive landscape of plastron shape in Emydinae may be relatively simple because plastral kinesis imposes overriding mechanical constraints on the evolution of form.  相似文献   

2.
The study of the cephalic shape of crocodilian is relevant in the fields of ecology, systematics, evolution, and conservation. Therefore, the integration of geometric analysis within quantitative genetics allows the evaluation of the inheritable shape components. In this study, the dorsal cephalic region of 210 Caiman latirostris hatchlings was analyzed from seven populations in Santa Fe, Argentina, to detect intra‐, and inter‐population phenotypic variability, and to determine the heritability of biological shape and size, using newly available geometric morphometric tools. The principal component analysis showed two configurations of cephalic shape that could be related to sexual dimorphism. In the canonical variate analysis, Procrustes distances between groups indicated that there are differences in shape among populations. Furthermore, the method of partial least squares indicated a covariation between cephalic shape and environmental variables. Regarding to CS of the skull we found significant differences among populations, moreover the partial least squares was also significant. Estimates of the heritability of shape and size were high, indicating that the components of these features are susceptible to the selection. J. Morphol. 277:370–378, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
Geometric estimates of heritability in biological shape   总被引:3,自引:0,他引:3  
The recently developed geometric morphometrics methods represent an important contribution of statistics and geometry to the study of biological shapes. We propose simple protocols using shape distances that incorporate geometric techniques into linear quantitative genetic models that should provide insights into the contribution of genetics to shape variation in organisms. The geometric approaches use Procrustes distances in a curved shape space and distances in tangent spaces within and among families to estimate shape heritability. We illustrate the protocols with an example of wing shape variation in the honeybee, Apis mellifera. The heritability of overall shape variation was small, but some localized components depicting shape changes on distal wing regions showed medium to large heritabilities. The genetic variance-covariance matrix of the geometric shape variables was significantly correlated with the phenotypic shape variance-covariance matrix. A comparison of the results of geometric methods with the traditional multivariate analysis of interlandmark distances indicated that even with a larger dimensionality, the interlandmark distances were not as rich in shape information as the landmark coordinates. Quantitative genetics studies of shape should greatly benefit from the application of geometric methods.  相似文献   

4.
The evolution of morphological diversity via selection requires that morphological traits display significant heritable genetic variation. In Plethodon salamanders, considerable evidence suggests that head shape evolves in response to selection from interspecific competition, yet the genetic underpinnings of head shape have not been quantitatively examined. Here I used geometric morphometrics and quantitative genetics to assess heritable patterns of head shape variation from hatchling salamanders in two Plethodon species (P. cinereus and P. nettingi). Head shape differed significantly between species and among clutches within species, suggesting that a sizeable proportion of head shape variation was the result of clutch effects. Further, using a full-sib animal model and restricted maximum likelihood (REML), I identified large values of maximal additive heritability for all study localities ($ h_{\max }^{2} > 0.65 $ h_{\max }^{2} > 0.65 ), revealing that Plethodon exhibit considerable heritable genetic variation for head shape. Comparisons of the components of heritable shape variation showed that the magnitude of shape heritability (hmax2 h_{\max }^{2} ) did not differ among localities or species. Therefore, the potential microevolutionary shape change displayed by the two species would be similar if they were exposed to comparable selective forces. However, the direction of maximal shape heritability in morphospace differed between P. cinereus and P. nettingi, indicating that potential evolutionary shape change along these heritability trajectories would diverge between the two species. This finding implies that distinct head shapes could evolve in the two species, even if subjected to the same selection pressure. When combined with previous knowledge of patterns of head shape variation among species and ecological selection on head shape, these findings suggest that microevolutionary and macroevolutionary trends of morphological diversification in Plethodon may be explained as a result of the interaction between ecological selection and underlying patterns of genetic covariance for this multi-dimensional trait.  相似文献   

5.
Length and breadth of eggs were measured in ringed populations of the Great Tit. During a part of the study volume and weight were also measured, but this did not give additional information, viz. variation in specific weight of fresh eggs and deviations from calculated volume were within the limits of precision. Only in small eggs are length and breadth positively correlated.In two populations, a major part (60–80%) of the variation in the clutch means of egg length, egg breadth, shape index and egg volume is only found between clutches of different females. The absence of correlation between different female partners of one male and the similarity of female repeatability to heritability estimates based on daughter-mother regression lead to the conclusion that 60–80% of the variation in egg dimensions is genetic.The implications for a potential rapid response to selection resulting in a micro-evolutionary change are discussed.  相似文献   

6.
Uller T  Olsson M  Ståhlberg F 《Heredity》2002,88(6):480-484
Heritability characteristically shows large variation between traits, among populations and species, and through time. One of the reasons for this is its dependence on gene frequencies and how these are altered by selection and drift through the evolutionary process. We studied variation in heritability of tadpole growth rate in populations of the Swedish common frog, Rana temporaria. In populations evolving under warmer conditions, we have demonstrated elsewhere that tadpoles show better growth and physiological performance at relatively higher temperatures than tadpoles with an evolutionary history in a relatively cooler part of the distribution range. In the current study, we ask whether this process of divergence under natural selection has influenced the genetic architecture as visualised in estimates of heritability of growth rate at different temperature treatments under laboratory conditions. The results suggest that the additive genetic variance varies between treatments and is highest in a treatment that is common to both populations. Our estimates of narrow sense heritability are generally higher in the thermal regime that dominates in the natural environment. The reason for this appears not primarily to be because the component of additive genetic variation is higher in relation to the total phenotypic variation under these conditions, but because the part of the phenotypic variance explained by environmental variation increases at temperatures to which the current populations has been less frequently under selection.  相似文献   

7.
The threespine stickleback (Gasterosteus aculeatus) has emerged as an important model organism in evolutionary ecology, largely due to the repeated, parallel evolution of divergent morphotypes found in populations having colonized freshwater habitats. However, morphological divergence following colonization is not a universal phenomenon. We explore this in a large-scale estuarine ecosystem inhabited by two parapatric stickleback demes, each physiologically adapted to divergent osmoregulatory environments (fresh vs. saline waters). Using geometric morphometric analyses of wild-caught individuals, we detected significant differences between demes, in addition to sexual dimorphism, in body shape. However, rearing full-sib families from each deme under controlled, reciprocal salinity conditions revealed no differences between genotypes and highly significant environmental effects. It is also noteworthy that fish from both demes were fully plated, whether found in the wild or reared under reciprocal salinity conditions. Although we found significant heritability for body shape, we also noted significant direct environmental effects for many latent shape variables. Moreover, we found little evidence for diversifying selection acting on body size and shape (Q(ST) ). Nevertheless, uniform compressive variation did exceed neutral expectations, yet despite evidence of both allometry and genetic correlation with body length, we detected no correlated signatures of selection. Taken together, these results suggest that much of the morphological divergence observed in this system is the result of plastic responses to environmental variation rather than adaptive differentiation.  相似文献   

8.
This study presents univariate narrow-sense heritability estimates for 33 common craniometric dimensions, calculated using the maximum likelihood variance components method on a skeletal sample of 298 pedigreed individuals from Hallstatt, Austria. Quantitative genetic studies that use skeletal cranial measurements as a basis for inferring microevolutionary processes in human populations usually employ heritability estimates to represent the genetic variance of the population. The heritabilities used are often problematic: most come from studies of living humans, and/or they were calculated using statistical techniques or assumptions violated by human groups. Most bilateral breadth measures in the current study show low heritability estimates, while cranial length and height measures have heritability values ranging between 0.102-0.729. There appear to be differences between the heritabilities calculated from crania and those from anthropometric studies of living humans, suggesting that the use of the latter in quantitative genetic models of skeletal data may be inappropriate. The univariate skeletal heritability estimates seem to group into distinct regions of the cranium, based on their relative values. The most salient group of measurements is for the midfacial/orbital region, with a number of measures showing heritabilities less than 0.30. Several possible reasons behind this pattern are examined. Given the fact that heritabilities calculated on one population should not be applied to others, suggestions are made for the use of the data presented.  相似文献   

9.
The estimation of quantitative genetic parameters and modes of selection in natural populations can provide critical information concerning both past and current evolution of mean phenotypes. We examine the influence of environmental variation on the genetic variance-covariance matrix ( G ) of external morphological traits in feral pigeons, and the degree of correspondence between phenotypic (rp) and genetic correlations (rg) of these characters. Our results suggest that adverse environmental conditions affect heritability, and that the correspondence between seasonal estimates of G based on midparent scores is low. There is, however, a strong correspondence between rp and rg. We suggest that, if environmental variation is relatively common, estimates of quantitative genetic parameters for prospective selection studies must be undertaken at each selection episode.  相似文献   

10.
Loh R  Bitner-Mathé BC 《Genetica》2005,125(2-3):271-281
Zaprionus indianus (Diptera: Drosophilidae) is an African species that was introduced in Brazil near the end of the 1990’s decade. To evaluate the adaptive potential of morphological traits in natural populations of this recently introduced species, we have investigated wing size and shape variation at Rio de Janeiro populations only two years after the first record of Z. indianus in Brazil. Significant genetic differences among populations from three distinct ecological habitats were detected. The heritability and evolvability estimates show that, even with the population bottleneck that should have occurred during the invasion event, an appreciable amount of additive genetic variation for wing size and shape was retained. Our results also indicated a greater influence of environmental variation on wing size than on wing shape. The importance of quantitative genetic variability and plasticity in the successful establishment and dispersal of Z. indianus in the Brazilian territory is then discussed.  相似文献   

11.
The evolutionary analysis of community organization is considered a major frontier in biology. Nevertheless, current explanations for community structure exclude the effects of genes and selection at levels above the individual. Here, we demonstrate a genetic basis for community structure, arising from the fitness consequences of genetic interactions among species (i.e., interspecific indirect genetic effects or IIGEs). Using simulated and natural communities of arthropods inhabiting North American cottonwoods (Populus), we show that when species comprising ecological communities are summarized using a multivariate statistical method, nonmetric multidimensional scaling (NMDS), the resulting univariate scores can be analyzed using standard techniques for estimating the heritability of quantitative traits. Our estimates of the broad-sense heritability of arthropod communities on known genotypes of cottonwood trees in common gardens explained 56-63% of the total variation in community phenotype. To justify and help interpret our empirical approach, we modeled synthetic communities in which the number, intensity, and fitness consequences of the genetic interactions among species comprising the community were explicitly known. Results from the model suggest that our empirical estimates of broad-sense community heritability arise from heritable variation in a host tree trait and the fitness consequences of IGEs that extend from tree trait to arthropods. When arthropod traits are heritable, interspecific IGEs cause species interactions to change, and community evolution occurs. Our results have implications for establishing the genetic foundations of communities and ecosystems.  相似文献   

12.
Most marine turtle species are non-annual breeders and show variation in both the number of eggs laid per clutch and the number of clutches laid in a season. Large levels of inter-annual variation in the number of nesting females have been well documented in green turtle nesting populations and may be linked to environmental conditions. Other species of marine turtle exhibit less variation in nesting numbers. This inter-specific difference is thought to be linked to trophic status. To examine whether individual reproductive output is more variable in the herbivorous green turtle (Chelonia mydas Linneaeus 1758) than the carnivorous loggerhead (Caretta caretta Linneaeus 1758), we examined the nesting of both species in Cyprus over nine seasons. Green turtles showed slower annual growth rates (0.11 cm year−1 curved carapace length (CCL) and 0.27 cm year−1 curved carapace width (CCW)) than loggerhead turtles (0.36 cm year−1 CCL, 0.51 cm year−1 CCW). CCL was highly correlated to mean clutch size in both green (R2=0.51) and loggerhead turtles (R2=0.61) and maximal clutch size of green turtles (R2=0.58). Larger females did not lay a greater number of clutches or have a shorter remigration interval than smaller females of either species. On average, the size of green turtle clutches increased and that of loggerhead turtles decreased as the season progressed. Individual green turtles, however, produced more eggs per clutch through the season to a maximum in the third or fourth clutch. In loggerhead turtles, clutches 1-4 were very similar in size but the fifth clutch was 38% smaller than the first. No individuals of either species were recorded laying more than five clutches. Green turtles may not be able to achieve their maximum reproductive output with respect to clutch size throughout the season, whereas only loggerhead turtles laying five clutches (n=5) appear to become resource depleted. Green turtles nesting in years when large numbers of nests were recorded laid a greater number of clutches than females nesting in years with lower levels of nesting.  相似文献   

13.
F. J. Janzen 《Genetics》1992,131(1):155-161
The magnitude of quantitative genetic variation for primary sex ratio was measured in families extracted from a natural population of the common snapping turtle (Chelydra serpentina), which possesses temperature-dependent sex determination (TSD). Eggs were incubated at three temperatures that produced mixed sex ratios. This experimental design provided estimates of the heritability of sex ratio in multiple environments and a test of the hypothesis that genotype x environment (G x E) interactions may be maintaining genetic variation for sex ratio in this population of C. serpentina. Substantial quantitative genetic variation for primary sex ratio was detected in all experimental treatments. These results in conjunction with the occurrence of TSD in this species provide support for three critical assumptions of Fisher's theory for the microevolution of sex ratio. There were statistically significant effects of family and incubation temperature on sex ratio, but no significant interaction was observed. Estimates of the genetic correlations of sex ratio across environments were highly positive and essentially indistinguishable from + 1. These latter two findings suggest that G x E interaction is not the mechanism maintaining genetic variation for sex ratio in this system. Finally, although substantial heritable variation exists for primary sex ratio of C. serpentina under constant temperatures, estimates of the effective heritability of primary sex ratio in nature are approximately an order of magnitude smaller. Small effective heritability and a long generation time in C. serpentina imply that evolution of sex ratios would be slow even in response to strong selection by, among other potential agents, any rapid and/or substantial shifts in local temperatures, including those produced by changes in the global climate.  相似文献   

14.
The ability of populations to undergo adaptive evolution depends on the presence of quantitative genetic variation for ecologically important traits. Although molecular measures are widely used as surrogates for quantitative genetic variation, there is controversy about the strength of the relationship between the two. To resolve this issue, we carried out a meta-analysis based on 71 datasets. The mean correlation between molecular and quantitative measures of genetic variation was weak (r = 0.217). Furthermore, there was no significant relationship between the two measures for life-history traits (r = -0.11) or for the quantitative measure generally considered as the best indicator of adaptive potential, heritability (r = -0.08). Consequently, molecular measures of genetic diversity have only a very limited ability to predict quantitative genetic variability. When information about a population's short-term evolutionary potential or estimates of local adaptation and population divergence are required, quantitative genetic variation should be measured directly.  相似文献   

15.
A major component of variation in body height is due to genetic differences, but environmental factors have a substantial contributory effect. In this study we aimed to analyse whether the genetic architecture of body height varies between affluent western societies. We analysed twin data from eight countries comprising 30,111 complete twin pairs by using the univariate genetic model of the Mx statistical package. Body height and zygosity were self-reported in seven populations and measured directly in one population. We found that there was substantial variation in mean body height between countries; body height was least in Italy (177 cm in men and 163 cm in women) and greatest in the Netherlands (184 cm and 171 cm, respectively). In men there was no corresponding variation in heritability of body height, heritability estimates ranging from 0.87 to 0.93 in populations under an additive genes/unique environment (AE) model. Among women the heritability estimates were generally lower than among men with greater variation between countries, ranging from 0.68 to 0.84 when an additive genes/shared environment/unique environment (ACE) model was used. In four populations where an AE model fit equally well or better, heritability ranged from 0.89 to 0.93. This difference between the sexes was mainly due to the effect of the shared environmental component of variance, which appears to be more important among women than among men in our study populations. Our results indicate that, in general, there are only minor differences in the genetic architecture of height between affluent Caucasian populations, especially among men.  相似文献   

16.
Studies of variation in breeding parameters are often based on temporal analyses of a single population. However, to differentiate between the effects of regional and local factors, neighboring populations with limited interpopulational dispersal need to be compared. We studied two nearby (< 5 km apart) populations of House Wrens (Troglodytes aedon bonariae) at two ranches (Los Zorzales, 10 years; La Esperanza, 13 years) in south-temperate Argentina to assess the possible effects of regional and local factors on breeding phenology. For each breeding season, we recorded laying dates, clutch sizes, and length of the breeding season, and estimated the reproductive synchrony of first and second breeding attempts. We examined how these breeding parameters were affected by weather, population density, and rates of nest failure. With favorable temperatures during the pre-reproductive period (September–October), wrens in both populations initiated first breeding attempts earlier. However, ordinal laying dates were also affected by local factors, with wrens at Los Zorzales initiating breeding attempts earlier than those at La Esperanza. We found a spatial correlation in clutch sizes between populations for the 2007–2012 breeding seasons, but clutch sizes of first and second nesting attempts showed low variability. Reproductive synchrony of first nesting attempts varied among years, suggesting an effect of regional factors. However, we detected no synchronization between populations and were unable to identify environmental variables that explained the temporal variation. Ordinal laying dates of second clutches were strongly correlated with the ordinal laying dates of first clutches. We also found that the length of breeding seasons was longer when daily nest mortality rates were lower. Although environmental factors seemed to affect the decision of when to start breeding, pairs with successful first nesting attempts were more likely to initiate second nests, thus affecting the length of the breeding season. The spatial variation and temporal variation of the breeding parameters of House Wrens in our study provide evidence of marked plasticity in their breeding decisions and allowed us to identify local and regional environmental factors related to this variation.  相似文献   

17.
Characterization of a species mating systems is fundamental for understanding the natural history and evolution of that species. Polyandry can result in the multiple paternity of progeny arrays. The only previous study of the loggerhead turtle (Caretta caretta) in the USA showed that within the large peninsular Florida subpopulation, multiple paternity occurs in approximately 30% of clutches. Our study tested clutches from the smaller northern subpopulation for the presence of multiple paternal contributions. We examined mothers and up to 20 offspring from 19.5% of clutches laid across three nesting seasons (2008–2010) on the small nesting beach on Wassaw Island, Georgia, USA. We found that 75% of clutches sampled had multiple fathers with an average of 2.65 fathers per nest (1–7 fathers found). The average number of fathers per clutch varied among years and increased with female size. There was no relationship between number of fathers and hatching success. Finally, we found 195 individual paternal genotypes and determined that each male contributed to no more than a single clutch over the 3‐year sampling period. Together these results suggest that the operational sex ratio is male‐biased at this site.  相似文献   

18.
The heritability of a quantitative trait is a key parameter to quantify the genetic variation present in a population. Although estimates of heritability require accurate information on the genetic relationship among individuals, pedigree data is generally lacking in natural populations. Nowadays, the increasing availability of DNA markers is making possible the estimation of coancestries from neutral molecular information. In 1996, K. Ritland developed an approach to estimate heritability from the regression of the phenotypic similarity on the marker-based coancestry. We carried out simulations to analyze the accuracy of the estimates of heritability obtained by this method using information from a variable number of neutral codominant markers. Because the main application of the estimator is on populations with no family structure, such as natural populations, its accuracy was tested under this scenario. However, the method was also investigated under other scenarios, in order to test the influence of different factors (family structure, assortative mating and phenotypic selection) on the precision. Our results suggest that the main factor causing a directional bias in the estimated heritability is the presence of phenotypic selection, and that very noisy estimates are obtained in the absence of a familiar structure and for small population sizes. The estimated heritabilities from marker-based coancestries showed lower accuracy than the estimated heritabilities from genealogical coancestries. However, a large amount of bias occurred even in the most favourable situation where genealogical coancestries are known. The results also indicate that the molecular markers are more suitable to infer coancestry than inbreeding.  相似文献   

19.
Whether contemporary human populations are still evolving as a result of natural selection has been hotly debated. For natural selection to cause evolutionary change in a trait, variation in the trait must be correlated with fitness and be genetically heritable and there must be no genetic constraints to evolution. These conditions have rarely been tested in human populations. In this study, data from a large twin cohort were used to assess whether selection will cause a change among women in a contemporary Western population for three life-history traits: age at menarche, age at first reproduction, and age at menopause. We control for temporal variation in fecundity (the "baby boom" phenomenon) and differences between women in educational background and religious affiliation. University-educated women have 35% lower fitness than those with less than seven years education, and Roman Catholic women have about 20% higher fitness than those of other religions. Although these differences were significant, education and religion only accounted for 2% and 1% of variance in fitness, respectively. Using structural equation modeling, we reveal significant genetic influences for all three life-history traits, with heritability estimates of 0.50, 0.23, and 0.45, respectively. However, strong genetic covariation with reproductive fitness could only be demonstrated for age at first reproduction, with much weaker covariation for age at menopause and no significant covariation for age at menarche. Selection may, therefore, lead to the evolution of earlier age at first reproduction in this population. We also estimate substantial heritable variation in fitness itself, with approximately 39% of the variance attributable to additive genetic effects, the remainder consisting of unique environmental effects and small effects from education and religion. We discuss mechanisms that could be maintaining such a high heritability for fitness. Most likely is that selection is now acting on different traits from which it did in pre-industrial human populations.  相似文献   

20.
Protracted or intense rainfall may affect the reproductive success of reptilian species on a number of levels ranging from the availability of prey, the integrity of the nesting site and the subsequent survivability of offspring. For sea turtles (a species displaying temperature sex determination) nesting throughout the tropics and subtropics, rainfall has previously been shown to influence the development environment of clutches; in its extreme resulting in high levels of egg or hatchling mortality. Yet when compared to other abiotic variables affecting clutch success, rainfall has received relatively little attention. We therefore examined how fluctuations in local rainfall at a tropical nesting site for leatherback turtles (Dermochelys coriacea) affected the nest environment. Temperature data loggers placed within clutches (n = 8) revealed that protracted rainfall had a marked cooling effect on nests, so that seasonally improbable male-producing temperatures (< 29.75 °C) were produced. We use these data to explore how rainfall may ultimately influence the sex ratios of sea turtle hatchlings both within and between nesting seasons, and discuss the importance of robust estimates of rainfall for future demographic models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号