首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Abernethy  V.J.  Willby  N.J. 《Plant Ecology》1999,140(2):177-190
This study used germination methods to examine the density, species composition and functional composition of propagule banks in a series of riverine wetland aquatic habitats subject to varying degrees of hydrological and management-related disturbance. Under permanent inundation (the conditions prevailing at most sites during the growing season) propagule germination and species richness was low, with floodplain perennials and helophytes particularly affected. Densities of floodplain annuals were largely maintained through continued germination of a few flooding tolerant species. On damp mud (conditions associated with hydrological instability) total seedling number and species richness increased significantly, but species richness of germinating hydrophytes declined. Mean seedling density at 0–0.1m depth was 15450 ± 4400 m–2, reaching a maximum (162 050 m–2) in temporary backwaters. Annual (e.g., Lindernia dubia, Cyperus fuscus) and facultative ruderal species (e.g., Lythrum salicaria and Alisma plantago-aquatica) predominated. Vertical zonation of the propagule bank was weakly developed. The numbers of individuals and species germinating varied significantly between sites. The seasonal, most intensely disturbed sites (temporary backwaters) supported a numerically large, species-rich propagule bank based on floodplain annuals, while the permanent, less disturbed sites (ditches and an oxbow pond) had a small, species-poor propagule bank composed of hydrophytes and helophytes supplemented by allochthonous seed inputs. Sites intermediate on the gradient had a propagule bank dominated by facultative amphibious, ruderal hydrophytes. The composition of the seed bank and the established vegetation was most similar at the heavily disturbed sites where the seed bank was maintained by vigorously fruiting annuals and supplemented by inputs from temporary habitats upstream. At permanent sites much of the propagule bank composition could be accounted for by inputs of floodborne seed from the immediately adjacent floodplain. The established vegetation at such sites appeared to be maintained mainly by vegetative propagation with recruitment from the propagule bank likely only after severe disturbance. The potential contribution of functionally diverse propagule banks to sucessional processes within fluvially dynamic floodplain aquatic habitats is emphasised.  相似文献   

2.
Abstract. The role of the propagule bank in aquatic plant maintenance was studied in two riverine wetlands. Four sites were selected, characterized respectively by flooding, drying up, both disturbances operating, and neither operating. Our hypothesis was that recolonization after drying up would mostly involve seeds and buds from the propagule bank, whereas recolonization after floods would mostly involve rhizomes. Dry sites were characterized by a high density of seeds, and a high similarity between seed species and established vegetation. Unspecialized fragments remaining in wet parts of the sediment probably also contribute to species maintenance. Species maintenance in sites subjected to flooding was highly dependent on deeply anchored rhizomes, as indicated by the strong floristic similarity between species that occur in the established vegetation and rhizomes in the bank. Regeneration of the community after scouring floods also involved seeds, some species being able to flower under water. When scouring flooding and drying up were superimposed, regenerative strategies exhibited in the bank did not simply result from the ‘addition’ of the two disturbance effects. When the disturbances did not occur too closely together in time, species were able to survive either by: (1) producing many propagules under aquatic conditions or (2) coping with the temporal variability by producing several types of propagules.  相似文献   

3.
Lakeshore marshes around Liangzi Lake, in the middle reach of the Yangtze River, China, experience annual changes of water level of c. 1.5 m. During the drawdown period, the vegetation is structured by helophytes and emergents; during the rainy season when the dams are closed (June–September) the marshes are flooded and their vegetation rapidly changes to be come dominated by submerged, floating-leaved and tall emergent species. The species composition and abundance of both the marsh seed bank and the vegetative propagule bank were compared with those of the drawdown and flooded vegetation types. These data provided a test of the predictive power of van der Valk's model of northern temperate seasonal vegetation change in a subtropical, freshwater wetland with cyclic vegetational change. The abundant species were detected in the propagule bank. The seed bank was found to determine the species richness of both types of the vegetation, whereas the vegetative propagule bank consisted of the dominants of the drawdown vegetation. Water depth conditions, and the composition of seed and vegetative propagules banks together determine the structure of the standing vegetation during drawdown and flooding. van der Valk's succession model was found to predict the seasonal vegetation change reasonably well. The Chi-square test showed no significant difference between predicted vegetation and actual vegetation in both drawdown and flooding periods.  相似文献   

4.
Question: How important is hydrochory for dispersing propagules along riverbanks and to what extent do the quantity and species composition of deposited propagules reflect the riparian vegetation, represent “new” species that are not present in the vegetation, and vary with river flow and season? Location: River Frome, Dorset, UK. Methods: Over 13 consecutive 6‐week time periods, during which river water levels were continuously monitored, aerial inputs of propagules to riverbanks were sampled using funnels, hydrochorous propagule transport was sampled using drift nets, and deposition across the riverbanks was sampled using astroturf mats. A survey of the riparian vegetation enabled comparison between samples and the standing vegetation, so that “new” species could be identified. Differences in propagule abundance and diversity between sampling methods, time periods and locations were tested using Mann‐Whitney U‐tests and Kruskall‐Wallis ANOVA. DCA established contrasts in the floristic composition of all deposited propagules and “new” propagules between different sample types, time periods and locations. Results: Aerial seed fall generated few propagules of low species richness. Hydrochory introduced large numbers of propagules and new species, resulting in high propagule deposition on the riverbank. The number and diversity of deposited propagules was governed by seasonal patterns of seed release and the hydrological regime. Propagule deposition was significantly greater on the most frequently inundated parts of the riverbank and autumn floods were particularly important for transporting “new” species to the study site and for remobilizing previously released propagules. Conclusions: The abundance and diversity of propagules deposited along riverbanks is dependent upon high river flows, which facilitates connectivity between the channel and the riparian zone.  相似文献   

5.
Dominance by free‐floating plants results in a loss of plant species in many waters. An important source for re‐establishment of non‐floating aquatic plants can be the propagule bank. This study focuses on whether the propagule bank of free‐floating plant–dominated ditch sediments can serve as potential source for recovery of a diverse plant community. The first objective was to determine differences in propagule germination from sediments of ditches in the Netherlands that differ in vegetation composition through a seedling‐emergence experiment. The second objective was to analyze the effect of sediment disturbance on the number of germinating propagules. The results show that, compared to sediments from ditches with submerged vegetation, sediments from free‐floating plant–dominated ditches produced significantly lower numbers of individuals and species of submerged and emergent plants, while numbers of individuals and species of free‐floating plants were higher. These results suggest that sediments from free‐floating plant–dominated ditches have lower potential to recover a diverse plant community probably resulting from positive feedback mechanisms caused by the vegetation present, maintaining the free‐floating plant–dominated state. Sediment disturbance strongly favors the germination of free‐floating plant propagules, especially from free‐floating plant–dominated ditch sediments. Ditch maintenance activities such as mowing and dredging will therefore likely favor persistence of the free‐floating plant–dominated state. To shift from dominance by free‐floating plants to a more diverse plant community, alternative maintenance methods should be considered that cause less sediment disturbance together with measures that promote colonization such as temporary drawdown or re‐introduction of species.  相似文献   

6.
Aquatic birds were counted on five Gulf coast Florida rivers to determine if these river systems supported densities, biomass and species richness similar to those found on Florida lakes. Forty-two species were identified and for the species that were found on both Florida streams and lakes similar densities and biomass were encountered. As with Florida lakes, stream bird abundance and species richness were higher in winter months than in summer months, a consequence of migratory bird populations. Total bird abundance, biomass per unit of phosphorus, and species richness per unit of area were similar to data collected on Florida lakes. Thus, Florida rivers are capable of supplying sufficient resources to maintain bird densities, biomass and species richness values similar to lakes of equal size and nutrient concentrations and are therefore important habitats for aquatic bird populations. An examination of individual habitat characteristics indicates that water depth was inversely correlated and submersed aquatic vegetation was positively correlated with bird density, biomass and species richness within the river systems. While both habitat characteristics are important they are also inversely related making it difficult to separate the individual significance of each characteristic.  相似文献   

7.
Aim Waterbirds may play an important role in the maintenance of aquatic ecosystem biodiversity by transporting plants and invertebrate propagules between different wetlands. The aim of this study is to provide the first quantitative analysis of the transport of plant and animal propagules by a community of waterbirds. Location Doñana marshes in south‐west Spain. Methods We quantified the number of intact seeds and invertebrate eggs in 386 faecal samples from 11 migratory waterfowl species (10 ducks and coot), collected from 3 November to 3 December 1998 (when birds were arriving from further north), and 22–25 February 1999 (when birds were leaving Doñana). Results Intact seeds of at least 7 plant genera, and invertebrate eggs (ephippia of at least 2 crustacea, statoblasts of at least 2 bryozoans and eggs of Corixidae) occurred in 65.6% of the faecal samples in early winter and 67.8% in late winter. Main conclusions The abundance of different propagule types varied between waterfowl species in a seasonal and species specific manner, probably owing to differences in foraging strategies, bill and gut morphology, and seasonal shifts in propagule availability or distribution. Lamellar density was positively correlated with the abundance of intact propagules. Our results confirm that waterfowl play an important role in the dispersal of organisms in aquatic environments by internal transport. Wherever there is a propagule bank accessible to waterbirds, transport can occur even when propagule production and waterfowl movements do not overlap in time.  相似文献   

8.
Destructive macroalgal mass blooms threaten estuarine and coastal ecosystems worldwide. We asked which factors regulate macroalgal bloom intensity, distribution and species composition. In field experiments in the Baltic Sea, we analyzed the relative effects of nutrients, herbivores and algal propagule banks on population development and dominance patterns in two co-occurring bloom-forming macroalgae, Enteromorpha intestinalis and Pilayella littoralis . Both species were highly affected by the combined effects of a propagule bank, herbivory and nutrients. The magnitude of effects varied with season. The propagule bank was an important overwintering mechanism for both algae, and allowed for recruitment two months earlier than recruitment via freshly dispersed propagules. This provided a seasonal escape from intense herbivory and nutrient limitation later in the year. Favored by massive recruitment from the propagule bank, Enteromorpha was the superior space occupier in early spring, thereby reducing recruitment of Pilayella . Elimination of the propagule bank and recruitment via freshly dispersed propagules favored Pilayella . Strong and selective herbivory on Enteromorpha supported Pilayella in the presence, but not in the absence of the propagule bank. Nutrient enrichment in summer counteracted herbivore pressure on Enteromorpha , thereby negatively affecting Pilayella . Herbivore and nutrient effects were more pronounced for early life stages than adult algae. These results show that recruitment processes and forces affecting early life stages at the beginning of the vegetation period determine development and dominance patterns of macroalgal blooms. Herbivores naturally suppress blooms but increasing nutrient enrichment can override this important control mechanism. The propagule bank plays a previously unrecognized role for population and community dynamics.  相似文献   

9.
Aim Local communities are subject to spatiotemporal contingencies of landscape processes; community assembly is thus often considered to be unpredictable and idiosyncratic. However, evolved trade‐offs of species’ life histories may set distinct constraints on the assembly of species communities. In plants, the recruitment and invasion success of species into communities depend primarily on the number of propagules available and on their generative or vegetative character. Life‐history trade‐offs prevent individual plants from producing large numbers of both generative and vegetative propagules, but it is not clear whether this constrains their availability at the landscape scale. We thus tested whether: (1) the observed relationship between generative and vegetative propagules deviates from the null expectation stating that species contributing the bulk of generative propagules to the propagule rain should also contribute the bulk of vegetative propagules; and (2) whether vegetative and generative propagule pressures are negatively correlated once species abundance in the regional pool is accounted for. Location A large riparian landscape in the Netherlands. Methods Analyses were based on an extensive trapping of floating propagules (214,049 propagules of 47 species), and a rough proxy of species abundance across the entire pool. We used both species and phylogenetically independent contrasts as data points, and accounted for variation in size of generative propagules. Results Both hypotheses were confirmed. Numbers of generative and vegetative propagules trapped per species were significantly negatively correlated (r = ?0.33; t45 = ?2.61, P = 0.006) and thus strongly deviated from the null expectation. This was confirmed by analyses accounting for variation in species abundance across the species pool, and in the size of generative propagules. Main conclusions The results indicate that plant recruitment and community assembly across streams may be influenced by the way individual plants allocate their resources between competing life‐history functions. Life‐history evolution across angiosperms might thus have constrained the present‐day assembly of local communities.  相似文献   

10.
11.
鄱阳湖自然保护区的湖泊是相对独立于鄱阳湖主体湖的一个区域,是国际重要湿地。1998年的特大洪水导致湖泊中水生植物的地上部分大量毁灭。通过1999年和2001年的植被调查,并与历史资料比较,探讨了特大洪水干扰后的植被恢复动态。结果表明,1999年湖泊水生植物的种类和生物量均低于干扰前的水平;2001年物种种类已经恢复,苦草(Vallisneria spp.)和黑藻(Hydrialla verticillata)的生物量已超过干扰前的水平,但其它物种的生物量仍较低,尚处于恢复的初始阶段。据此推断,物种问恢复速度的差异主要与物种的无性繁殖方式有关。鄱阳湖自然保护区湖泊的植被恢复不同于温带和其它亚热带的湖泊,不经历轮藻(Chara spp.)作为先锋优势种的阶段,苦草和黑藻可以作为先锋种首先在湖泊中恢复。这可能与鄱阳湖作为通江湖泊其水位频繁波动、轮藻不易定居有关。研究显示,洪水导致的水生植物生物量下降和物种数目减少只是短期现象,湖泊水生植物能在几年内恢复到干扰前的水平。  相似文献   

12.
The drawdown zone of the Three Gorges Reservoir Region was assumed to be completely formed in 2009 and the water level would range from ~145 m in flood season (summer) to ~175 m during non-flood season (winter). The soil seed bank is an important propagule source for vegetation restoration. In order to evaluate the potential of the soil seed bank to revegetate the drawdown zone of this region, we examined the quantitative relationships between the germinable soil seed bank and the established vertical and horizontal vegetation patterns. A total of 45 soil samples at four sites was collected to examine seed bank density, species richness, and composition using the seedling-emergence method. Forty-five species (from 20 families) germinated from the soil seed bank, and the average seed density was 4578 m−2. The seed bank was dominated by annual plants, suggesting reestablishment of some above-ground species was plausible. However, most established woody plants and perennials were absent from the seed bank indicating a low probability of reestablishment for non-annuals through the seed bank. Thus, due to low species compositional similarity to extant vegetation and the dominance of annual plants, the soil seed bank had a low potential to restore pre-dam vegetation in the drawdown zone of the Three Gorges Reservoir Region, but its potential as a propagule source should be considered regarding the management of the drawdown zone for vegetation cover.  相似文献   

13.
The effects of soil disturbance caused by the uprooting of a single or a few canopy trees on species richness and composition of vascular plant species and bryophytes were examined in a temperate beech forest (Fagus sylvatica) in northern Germany. We recorded the vegetation in 57 pairs of disturbed and adjacent undisturbed plots and established a chronosequence of mound ages to study the effect of time since microsite formation on plant species richness and composition. We found significant differences in plant species richness and composition between disturbed and adjacent undisturbed plots. Species richness of both vascular plants and bryophytes was higher in the disturbed than in the undisturbed plots, but these differences were more pronounced for bryophytes. We suggest that three main factors are responsible for this differential response. The availability of microsites on the forest floor that are suitable for the recruitment of bryophytes is lower than for vascular plants. Establishment of bryophytes in disturbed microsites is favoured by a greater abundance of propagules in the close vicinity and in the soil of the disturbed microsites, as well as by a greater variety of regeneration strategies in bryophytes than in vascular plants. Time since mound formation was a major factor determining plant species richness and composition. A significant decrease in the mean number of species was found from young mounds to intermediate and old mounds. However, differences were observed between vascular plants and bryophytes in the course of changes through time in species richness and composition. A large number of exclusive and infrequent vascular plant species was observed on young mounds, among them several disturbance specialists. We suggest that the establishment of many vascular plant species was infrequent and short-lived due to unfavourable light conditions and a low abundance of propagules. By contrast, the development of a litter layer was the main reason for the decreased mean number of bryophytes on old mounds. Our study supports the view that groups of species differing in important life history traits exhibit different responses to soil disturbance.  相似文献   

14.
15.
Abstract Analysis was performed of the richness and abundance of woody species, forbs, and annual grasses in the easily germinating soil seed bank (henceforth seed bank) in a mediterranean shrubland of central Chile. The effects of successional development after fire and by microsite type (underneath or outside shrubs) on the density of seeds in the soil, and the relationship of species abundance in the seed bank with its abundance in the above‐ground vegetation was examined. A total of 64 plant species were recorded in the seed bank, of which 44 were annual or biannual. Eight species were woody and another eight were perennial herbs. Four could not be identified to species level. The highest richness of established herbaceous species was recorded in late spring, with 31 species. The regeneration of the herbaceous vegetation was driven by the annual production of seeds and by a reserve of short‐lived propagules in the soil. Density of all germinating seeds was significantly higher during late spring and late summer. Density of grass seeds was greater during late spring, while that of all other species was greater during late summer. Annual grass seeds accumulated in higher proportion at exposed microsites rather than under woody canopy, and in young (< 5 years old) and intermediate‐age patches (10–20 years old) rather than in mature vegetation (30–50 years old). The abundance of established woody and herb species was uncorrelated with that of the seed bank.  相似文献   

16.
Aquatic plant diversity in riverine wetlands: the role of connectivity   总被引:14,自引:1,他引:13  
1. The hypothesis was tested that intermediate connectivity to a river results in propagule inputs to wetlands, whereas excessive connectivity impedes recruitment, and insufficient connectivity causes less competitive species to be eliminated, with no recruitment of new species. As a consequence, very low or very high nutrient levels should decrease species richness by selecting specialized species, whereas intermediate nutrient levels should favour the co-occurrence of species with contrasting nutrient requirements. 2. Among cut-off channels with high sinuosity and which are infrequently flooded by the river (low flood scouring), one example possesses high species richness because most species are saved from extinction by long-term isolation of the channel and cold groundwater supplies. Other channels are poorly supplied with groundwater and show a lower richness of species, because of low propagule inputs and low recruitment potential. 3. Cut-off channels with low sinuosity and which are flooded at intermediate frequencies were divided into three groups. The first group was species-poor, being closely connected to the river through downstream backflows which maintain nutrient-rich and turbid waters, in keeping with the hypothesis. The second group presents intermediate richness caused by: (i) lower river backflows; and (ii) floods that partly scour substrate and plants, and afford regeneration niches for transported propagules. The third group was species-poor because of excessive groundwater supplies, which probably acted as a limiting factor for species growth and recruitment. 4. The most frequently flooded channel shows the highest species richness, and occurrence of rare and fugitive species, because of floods which compensate competition by scouring sediments and plants, and afford regeneration niches for propagules. In this case, conservation of biodiversity necessitates propagule sources at the level of the river landscape.  相似文献   

17.
Abstract. Drift of aquatic macrophyte propagules was investigated in a wetland along the River Rhône, during the first flood after the growing season (i.e. in the winter of 1995–1996). Input and output drift were studied at the beginning, around the top, and at the end of the river overflow in the upper reach of a cut-off channel. The soil propagule bank was sampled along the study area before and after the flood. The amount and composition of viable propagule drift and bank were determined, analysed and compared. Drift densities and richness were on average higher at the outlet of the channel than at the inlet (respectively: 23.2 vs 13.1 viable propagules/100 m3 of water and 8.7 vs 2.6 taxa per sample). Immigrating taxa were mostly in the form of helophyte seeds, whereas numerous resident hydrophyte species left the disturbed area rather as vegetative propagules. Temporal variability in propagule bank structure was weak, and mean bank densities did not change before and after the flood (respectively: 33 047 ± 10 510 vs 35 653 ± 15 070 viable propagules/m2 of ground, including Chara). However, the density of Elodea canadensis significantly increased after the flood while that of Eleocharis acicularis decreased. This contrast suggests that flood responses vary among species. Despite a broad overlap in the taxa (18 out of 25 were common both to drift and bank collections), no significant relationship occurred in composition or structural changes between flood drift and propagule bank. Flood acted as a means of distribution of existing propagules and also as a provider of new vegetative dispersal units.  相似文献   

18.
Few field experiments have examined the effects of both resource availability and propagule pressure on plant community invasibility. Two non-native forest species, a herb and a shrub ( Hesperis matronalis and Rhamnus cathartica , respectively), were sown into 60 1-m2 sub-plots distributed across three plots. These contained reconstructed native plant communities in a replaced surface soil layer in a North American forest interior. Resource availability and propagule pressure were manipulated as follows: understorey light level (shaded/unshaded), nutrient availability (control/fertilized), and seed pressures of the two non-native species (control/low/high). Hesperis and Rhamnus cover and the above-ground biomass of Hesperis were significantly higher in shaded sub-plots and at greater propagule pressures. Similarly, the above-ground biomass of Rhamnus was significantly increased with propagule pressure, although this was a function of density. In contrast, of species that seeded into plots from the surrounding forest during the growing season, the non-native species had significantly greater cover in unshaded sub-plots. Plants in these unshaded sub-plots were significantly taller than plants in shaded sub-plots, suggesting a greater fitness. Total and non-native species richness varied significantly among plots indicating the importance of fine-scale dispersal patterns. None of the experimental treatments influenced native species. Since the forest seed bank in our study was colonized primarily by non-native ruderal species that dominated understorey vegetation, the management of invasions by non-native species in forest understoreys will have to address factors that influence light levels and dispersal pathways.  相似文献   

19.
Invasive plants significantly threaten native plant biodiversity, yet the mechanisms by which they drive species losses and maintain their own dominance are poorly known. We examined the effects of alien grass invasion (Stenotaphrum secundatum) on (1) abundance and frequency of occurrence, (2) reproductive effort (flowering) and output (fruit production) and (3) soil seed banks for three focal native plants that are characteristic of endangered coastal forest of south-eastern Australia. First, we sampled and compared the foliage cover abundance and frequency (proportion of sites occupied) of the focal natives across invaded and non-invaded (reference) sites (n = 20). We then intensively sampled reproductive effort and output (range of 5–9 sites per species), and density of propagules within the soil (using a standard glasshouse ‘emergence’ method; n = 26) for each species. Invasion was associated with reduced population sizes of all species within the standing vegetation but did not affect population frequency (i.e. proportion of sites where each species was present). Reproductive effort and output were about 75 % lower at invaded than native sites for all species. However, invasion had no effect on propagule densities of the focal natives within the seed bank, despite the substantial reduction in their reproduction. This indicates that the ultimate driver of population declines across invaded landscapes is post-settlement recruitment limitation from the seed bank (e.g. low rates of germination and seedling survival) rather than a reduction in the arrival and storage of propagules at invaded sites. Removal of Stenotaphrum alone might thus be sufficient to stimulate the recovery of native populations from the seed bank.  相似文献   

20.
Abstract. The dynamics of the seed bank may provide clues to the process of recovery of the vegetation of disturbed sites. The role of the seed bank may be more important in areas with a seasonal climate than in areas where seedling recruitment is not limited to one season. We studied the seed bank and the seed rain in three sites of the Chilean mediterranean-climate region (33° 48'S) which differed in the degree of anthropic disturbance: a closed-canopy, second-growth forest; an open matorral; and an old-field. Additionally, we tested the germination of seeds from the soil and from the current-year seed crop. The seed bank varied considerably between the two years of study, although no change in the vegetation could be observed. Seed density and species richness were lower in 1989 than in 1988. The seed bank of the second-growth forest changed less between years, while the old-field showed the largest change. The highest seed rain occurred under shrub patches in the open matorral, while few seeds fell in the spaces between shrub clumps or in the old-field. In the forest, seed rain was low and correlated with species cover. Germination was low (0 - 15%) in tests using either soil samples or fresh seeds. These results indicate that matorral succession is a very slow process, limited mainly by low germination and low arrival of propagules to open areas. Most woody species have animal-disseminated fleshy propagules. The presence of established shrubs which may serve as perches or refuges for animals increases species richness in the seed rain and the seed bank.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号