首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 592 毫秒
1.
This is the first mitochondrial phylogeography of the common dormouse, Muscardinus avellanarius (Linnaeus, 1758), a hibernating rodent strictly protected in Europe (Habitat Directive, annex IV; Bern Convention, annex III). The 84 individuals of M. avellanarius, sampled throughout the distributional range of the species, have been sequenced at the mitochondrial DNA gene (cytochrome b, 704 base pairs). The results revealed two highly divergent lineages, with an ancient separation around 7.7 Mya and a genetic divergence of 7.7%. Lineage 1 occurs in Western Europe (France, Belgium, and Switzerland) and Italy, and lineage 2 occurs in Central–Northern Europe (Poland, Germany, Latvia, and Lithuania), on the Balkan Peninsula, and in Turkey. Furthermore, these two lineages are subdivided into five sublineages genetically isolated with a strong geographical association. Therefore, lineage 1 branches into two further sublineages (Western European and Italian), whereas lineage 2 contained three sublineages (Central–Northern European, Turkish, and Balkan). We observed low genetic diversity within the sublineages, in contrast to the significant level of genetic differentiation between them. The understanding of genetic population structure is essential for identifying units to be conserved. Therefore, these results may have important implications for M. avellanarius conservation. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 648–664.  相似文献   

2.
Polyommatus ripartii is a biogeographically and taxonomically poorly understood species of butterfly with a scattered distribution in Europe. Recently, it has been shown that this species includes several European endemic and localized taxa (galloi, exuberans, agenjoi) that were previously considered species and even protected, a result that poses further questions about the processes that led to its current distribution. We analysed mitochondrial DNA and the morphology of P. ripartii specimens to study the phylogeography of European populations. Three genetically differentiated but apparently synmorphic lineages occur in Europe that could be considered evolutionarily significant units for conservation. Their strongly fragmented and counterintuitive distribution seems to be the result of multiple range expansions and contractions along Pleistocene climatic oscillations. Remarkably, based on the 79 specimens studied, these genetic lineages do not seem to extensively coexist in the distributional mosaic, a phenomenon most evident in the Iberian Peninsula. One of the important gaps in the European distribution of P. ripartii is reduced by the discovery of new Croatian populations, which also facilitate a better understanding of the biogeography of the species. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 817‐829.  相似文献   

3.
The large Myotis complex in continental Europe, Asia Minor, and Transcaucasia comprises two sibling bat species, the greater mouse‐eared bat, Myotis myotis, and the lesser mouse‐eared bat, Myotis blythii, also referred to as Myotis oxygnathus. Here, we investigate the phylogeography of these bats using two mitochondrial markers: the second hypervariable domain of the control region (HVII) and a fragment of the cytochrome b gene (cyt b). The HVII haplotypes formed six distinct haplogroups associated with different geographical regions. Most of the European HVII haplotypes were exclusive to M. myotis, whereas the majority of HVII haplotypes found in Asia Minor were exclusive to M. blythii/M. oxygnathus. The phylogenetic reconstruction based on the concatenated cyt b and HVII fragments recovered two major lineages. The first lineage comprised samples from Europe (western lineage), and the second lineage included samples from Asia Minor, Transcaucasia, Crimea, Western Ukraine, Thrace, the Balkans, and Eastern Europe (eastern lineage). The mitochondrial lineage of M. blythii, reported from Kyrgyzstan, was not present in Asia Minor and Transcaucasia. Therefore, we consider the possibility that the M. blythii/M. oxygnathus found in Europe, Asia Minor, and Transcaucasia are not recent descendants of the Central Asian M. blythii. Instead, we suggest that M. blythii/M. oxygnathus and M. myotis diverged through allopatric speciation in Asia Minor and Europe, and that they are represented by the eastern and western mitochondrial lineages. We also examine an alternative hypothesis: that the large Myotis complex consists of more than two species that diverged independently in Asia Minor and Europe through ecological speciation. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

4.
There is now considerable evidence for the survival of temperate species within glacial refugia that were situated at relatively high latitudes, notably the Carpathian Basin and Dordogne region in Europe. However, the prevalence of fossil remains in such locations is rarely matched by molecular evidence for their contribution to subsequent geographical and demographic expansion of the species in question. One obstacle to this has been insufficient analysis of modern samples from the relevant areas, in particular the parts of eastern Europe that surround the Carpathian refugium. In the present study, we examine the patterns of variation in mitochondrial DNA of the common vole (Microtus arvalis), obtained from existing museum specimens and from newly‐collected samples obtained in this area. We show that common voles from one of six extant mitochondrial DNA lineages have colonized most of the species' range in eastern Europe. We contend that the post‐glacial dispersal of this lineage most likely originated from the Carpathian refugium, adding support to the argument that such northern refugia made an important contribution to existing genetic diversity in Europe. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, ●● , ●●–●●.  相似文献   

5.
The phylogeographic architecture of the common vole, Microtus arvalis, has been well‐studied using mitochondrial DNA and used to test hypotheses relating to glacial refugia. The distribution of the five described cytochrome b (cyt b) lineages in Europe west of Russia has been interpreted as a consequence of postglacial expansion from both southern and central European refugia. A recently proposed competing model suggests that the ‘cradle’ of the M. arvalis lineages is in western central Europe from where they dispersed in different directions after the Last Glacial Maximum. In the present study, we report a new cyt b lineage of the common vole from the Balkans that is not closely related to any other lineage and whose presence might help resolve these issues of glacial refugia. The Balkan phylogroup occurs along the southern distributional border of M. arvalis in central and eastern Bosnia and Herzegovina, Montenegro, and eastern Serbia. Further north and west in Slovenia, Bosnia and Herzegovina, and Serbia, common voles belong to the previously‐described Eastern lineage, whereas both lineages are sympatric in one site in Bosnia and Herzegovina. The Balkan phylogroup most reasonably occupied a glacial refugium already known for various Balkan endemic species, in contrast to the recently proposed model. South‐east Europe is an absolutely crucial area for understanding the postglacial colonization history of small mammals in Europe and the present study adds to the very few previous detailed phylogeographic studies of this region. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 788–796.  相似文献   

6.
Phylogeography of red deer (Cervus elaphus) in Europe   总被引:1,自引:0,他引:1  
Aim To investigate the phylogeographical patterns of red deer (Cervus elaphus) in Europe, and to disentangle the influence of ancient (e.g. Pleistocene ice ages) from more recent processes (e.g. human translocations). Location Europe. Methods In this study we provide by far the most extensive analysis of genetic structure in European red deer, based on analyses of variation at two mitochondrial markers (cyt b and D‐loop) in a large number of individuals from 39 locations. Relationships of mitochondrial DNA haplotypes were determined using minimum spanning networks and phylogenetic analyses. Population structure was examined by analyses of molecular variance. Historical processes shaping the present patterns were inferred from nested clade analysis and nucleotide diversity statistics. Results Within Europe, we detected three deeply divergent mitochondrial DNA lineages. The three lineages displayed a phylogeographical pattern dividing individuals into western European, eastern European and Mediterranean (Sardinia, Spain and Africa) groups, suggesting contraction into three separate refugia during the last glaciation. Few haplotypes were shared among these three groups, a finding also confirmed by FST values. Calculations of divergence times suggest that the groups probably split during the Pleistocene. Main conclusions The observed pattern is interpreted to result from isolation in different refugia during the last glaciation. The western and eastern European lineages could be linked to an Iberian and Balkan refugium, respectively. The third lineage might originate from a Sardinian or African refugium. We link local phylogeographical patterns observed in Europe to the post‐glacial recolonization process, shaped by the geographical localization of refugia and barriers to gene flow. Regardless of the importance of red deer as a game species and the tradition of translocating red deer in Europe, we detected few individuals that did not match the trichotomous pattern, suggesting that translocations have occurred mainly at smaller spatial scales.  相似文献   

7.
Late- and Post-Glacial history of the Mustelidae in Europe   总被引:3,自引:0,他引:3  
1. Analyses of the subfossil records of mustelid species in Europe indicate specific differences in the pattern of temporal and spatial recolonization of central Europe after the maximum glaciation of the last glacial period. 2. For Meles meles, Martes martes and (with some reservations) Mustela putorius it can be seen that the populations were separated in several glacial refugia during the maximum glaciation of the Weichselian. In contrast, the European population of Lutra lutra was restricted to a single glacial refuge, which had not been clearly localized until now. 3. Besides the known glacial refugia of the Iberian Peninsula, Italian Peninsula and the Balkans, there is evidence of possible additional glacial refugia for mustelids near the Carpathians, in western Moldova and in the northern Pontic region. 4. Gulo gulo, Mustela nivalis, and Mustela erminea show adaptations for survival in Pleistocene conditions, but they were historically also distributed in the warmer areas of southern Europe. 5. Among the more thermophilic mustelid species, Mustela putorius is likely to have been the earliest immigrant following the maximum glaciation. Meles meles has been recorded in comparably early times and also seems to be relatively tolerant of climatic extremes. It is clear that Martes martes had already arrived in central Europe during the Allerød, in connection with the recolonization by birch and pine woods. Lutra lutra, by contrast, seems to have been an absolute Holocene immigrant.  相似文献   

8.
The increase in gene diversity from high to low latitudes is a widely recognized biogeographical pattern, often shaped by differential effects of Late Quaternary climatic changes. Here, we evaluate the effects of Pleistocene climatic changes from northern Europe to North Africa and their implications on the population differentiation of the widespread, short‐lived herb Plantago coronopus. We used amplified fragment length polymorphism to investigate the population structure and phylogeography of P. coronopus in 273 individuals from 29 populations covering its complete latitudinal range. Although Bayesian clustering, principal coordinates analysis and a consensus UPGMA tree were not fully congruent, two well‐supported clades, associated with distinct latitudinal zones (northern Europe and the Mediterranean region), were revealed as a general pattern. Moreover, populations from the western Atlantic edge and, to a lesser extent, the central Mediterranean region exhibited signs of admixture, suggesting secondary contacts. The admixed populations in the western Atlantic and central Mediterranean are geographically intermediate between the northern and southern lineages. The northernmost lineage exhibited low genetic diversity, a clear sign of a recent colonization. In contrast, populations from the southernmost part of the range showed the highest level of genetic diversity, indicating possible refugia for the species during the Quaternary ice ages. Overall, our study allows spatial structure of the genetic variation of a widespread herb across its latitudinal range to be disentangled and provides insights into how past climatic history influences present genetic patterns. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 618–634.  相似文献   

9.
The lesser Egyptian jerboa Jaculus jaculus is a desert dwelling rodent that inhabits a broad Arabian–Saharan arid zone. Recently, two distant sympatric lineages were described in North‐West Africa, based on morphometric and molecular data, which may correspond to two cryptic species. In the current study, phylogenetic relationships and phylogeographical structure among those lineages and geographical populations from North Africa and the Middle East were investigated. The phylogeographical patterns and genetic diversity of the cytochrome b gene (1110 bp) were addressed on 111 jerboas from 41 localities. We found that the variation in Africa is partitioned into two divergent mitochondrial clades (10.5% divergence relating to 1.65–4.92 Mya) that corresponds to the two cryptic species: J. jaculus and J. deserti. Diversifications within those cryptic species/clades were dated to 0.23–1.13 Mya, suggesting that the Middle Pleistocene climatic change and its environmental consequences affected the evolutionary history of African jerboas. The third distant clade detected, found in the Middle East region, most likely represents a distinct evolutionary unit, independent of the two African lineages. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

10.
Mussels of the genus Mytilus have been used to assess the circumglacial phylogeography of the intertidal zone. These mussels are representative components of the intertidal zone and have rapidly evolving mitochondrial DNA, suitable for high resolution phylogeographic analyses. In Europe, the three Mytilus species currently share mitochondrial haplotypes, owing to the cases of extensive genetic introgression. Genetic diversity of Mytilus edulis, Mytilus trossulus and Mytilus galloprovincialis was studied using a 900-bp long part of the most variable fragment of the control region from one of their two mitochondrial genomes. To this end, 985 specimens were sampled along the European coasts, at sites ranging from the Black Sea to the White Sea. The relevant DNA fragments were amplified, sequenced and analyzed. Contrary to the earlier findings, our coalescence and nested cladistics results show that only a single M. edulis glacial refugium existed in the Atlantic. Despite that, the species survived the glaciation retaining much of its diversity. Unsurprisingly, M. galloprovincialis survived in the Mediterranean Sea. In a relatively short time period, around the climatic optimum at 10 ky ago, the species underwent rapid expansion coupled with population differentiation. Following the expansion, further contemporary gene flow between populations was limited.  相似文献   

11.
Our understanding of the effect of Pleistocene climatic changes on the biodiversity of European mammals mostly comes from phylogeographical studies of non‐subterranean mammals, whereas the influence of glaciation cycles on subterranean mammals has received little attention. The lack of data raises the question of how and to what extent the current amount and distribution of genetic variation in subterranean mammals is the result of Pleistocene range contractions/expansions. The common mole (Talpa europaea) is a strictly subterranean mammal, widespread across Europe, and represents one of the best candidates for studying the influence of Quaternary climatic oscillation on subterranean mammals. Cytochrome b sequences, as obtained from a sampling covering the majority of the distribution area, were used to evaluate whether Pleistocene climate change influenced the evolution of T. europaea and left a trace in the genetic diversity comparable to that observed in non‐subterranean small mammals. Subsequently, we investigated the occurrence of glacial refugia by comparing the results of phylogeographical analysis with species distribution modelling. We found three differentiated mitochondrial DNA lineages: two restricted to Spain and Italy and a third that was widespread across Europe. Phylogenetic inferences and the molecular clock suggest that the Spanish moles represent a highly divergent and ancient lineage, highlighting for the first time the paraphyly of T. europaea. Furthermore, our analyses suggest that the genetic break between the Italian and the European lineages predates the last glacial phase. Historical demography and spatial principal component analysis further suggest that the Last Glacial Maximum left a signature both in the Italian and in the European lineages. Genetic data combined with species distribution models support the presence of at least three putative glacial refugia in southern Europe (France, Balkan Peninsula and Black Sea) during thelast glacial maximum that likely contributed to post‐glacial recolonization of Europe. By contrast, the Italian lineage remained trapped in the Italian peninsula and, according to the pattern observed in other subterranean mammals, did not contribute to the recolonization of northern latitudes. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 495–512.  相似文献   

12.
The least weasel (Mustela nivalis) is one of the most widely distributed carnivorans. While previous studies have identified distinct western and eastern mitochondrial DNA (mtDNA) lineages of the species in the western Palearctic, their broader distributions across the Palearctic have remained unknown. To address the broad-scale phylogeographical structure, we expanded the sampling to populations in Eastern Europe, the Urals, the Russian Far East, and Japan, and analyzed the mtDNA control region and cytochrome b, the final intron of the zinc finger protein on Y chromosome (ZFY), and the autosomal agouti signaling protein gene (ASIP). The mtDNA data analysis exposed the previous western lineage (Clade I) but poorly supported assemblage extending across Palearctic, whereas the previous eastern lineage (Clade II) was reconfirmed and limited in the south western part of the Palearctic. The ZFY phylogeny showed a distinctive split that corresponding to the mtDNA lineage split, although less phylogeographical structure was seen in the ASIP variation. Our data concur with the previous inference of the Black Sea–Caspian Sea area having an ancestral character. The Urals region harbored high mitochondrial diversity, with an estimated coalescent time of around 100,000 years, suggesting this could have been a cryptic refugium. Based on the coalescent-based demographic reconstructions, the expansion of Clade I across the Palearctic was remarkably rapid, while Clade II was relatively stable for a longer time. It seems that Clade II has maintained a constant population size in the temperate region, and the expansive Clade I represents adaptation to the cold regions.  相似文献   

13.
We assess the role of the Carpathians as an extra‐Mediterranean glacial refugium for the crested newt Triturus cristatus. We combine a multilocus phylogeography (one mitochondrial protein‐coding gene, three nuclear introns, and one major histocompatibility complex gene) with species distribution modelling (projected on current and Last Glacial Maximum climate layers). All genetic markers consistently show extensive genetic variation within and genetic depletion outside the Carpathians. The species distribution model suggests that most of the current range was unsuitable at the Last Glacial Maximum, but a small suitable area remained in the Carpathians. Triturus cristatus dramatically expanded its postglacial range, colonizing much of temperate Eurasia from a glacial refugium in the Carpathians. Within the Carpathians, T. cristatus persisted in multiple geographically discrete regions, providing further support for a Carpathian ‘refugia within refugia’ scenario. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 574–587.  相似文献   

14.
The present study considers the genetic structure and phylogeography of the smooth snake (Coronella austriaca) in Central Europe, as analyzed on the basis of 14 microsatellite markers and a 284‐bp fragment of cytochrome b. We found deep divergence between western and south‐eastern Poland, suggesting at least two different colonization routes for Central Europe, originating in at least two different refugia. The west/south‐east divide was reflected in the haplotype distribution and topology of phylogenetic trees as defined by mitochondrial DNA, and in population structuring seen in the admixture analysis of microsatellite data. The well supported western European clade suggests that another refugium might have existed. We also note the isolation‐by‐distance and moderate‐to‐pronounced structuring in the examined geographical demes. Our data fit the assumption of the recently suggested sex‐biased dispersal, in that we found a strong divide in the maternal line, as well as evidence for a small but existent gene flow based on biparentally inherited microsatellite markers. All studied populations were very similar in respect of allelic richness, observed and expected heterozygosities, and inbreeding coefficients. However, some genetic characteristics were different from those expected compared to a similar fine‐scale study of C. austriaca from Great Britain. In the present study, we observed heterozygosity deficit, high inbreeding, and low Garza–Williamson indices, suggesting a reduction in population size. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115 , 195–210.  相似文献   

15.
The European brown bear (Ursus arctos) shows a particular phylogeography that has been used to illustrate the model for contraction-expansion dynamics related to glacial refugia in Southern European peninsulas. Recent studies, however, have nuanced the once generally accepted paradigm, indicating the existence of cryptic refugia for some species further north. In this paper we collected available data on chronology and mitochondrial haplotypes from Western European brown bears, adding new sequences from present day individuals from the Cantabrian (North Iberia) area, in order to reconstruct the dynamics of the species in the region. Both genetics and chronology show that the Iberian Pleistocene lineages were not the direct ancestors of the Holocene ones, the latter entering the Peninsula belatedly (around 10,000 years BP) with respect to other areas such as the British Isles. We therefore propose the existence of a cryptic refugium in continental Atlantic Europe, from where the bears would expand as the ice receded. The delay in the recolonization of the Iberian Peninsula could be due to the orographic characteristics of the Pyrenean-Cantabrian region and to the abundant presence of humans in the natural entrance to the Peninsula.  相似文献   

16.
1. We investigated the Pleistocene and Holocene history of the rare mayfly Ameletus inopinatus EATON 1887 (Ephemeroptera: Siphlonuridae) in Europe. We used A. inopinatus as a model species to explore the phylogeography of montane, cold‐tolerant aquatic insects with arctic–alpine distributions. 2. Using species distribution models, we developed hypotheses about the species demographic history in Central Europe and the recolonisation history of Fennoscandia. We tested these hypotheses using mitochondrial cytochrome oxidase I (mtCOI) sequence data and compared our genetic results with previously generated microsatellite data to explore genetic diversity distributions of A. inopinatus. 3. We observed old lineages, deep splits and almost complete lineage sorting of mtCOI sequences among mountain ranges. These results support a periglacial survival, i.e. persistence at the periphery of Pleistocene glaciers in Central Europe. 4. There was strong differentiation between the Fennoscandian and all other populations, indicating that Fennoscandia was recolonised from a refugium not accounted for in our sampling. High degrees of population genetic structure within the northern samples suggest that Fennoscandia was recolonised by more than one lineage. However, this structure was not apparent in previously published microsatellite data, consistent with secondary contact without sexual incompatibility or with sex‐biased dispersal. 5. Our demographic analyses indicate that (i) the separation of northern and Central European lineages occurred during the early Pleistocene; (ii) Central European populations have persisted independently throughout the Pleistocene and (iii) the species extended its range about 150 000 years ago.  相似文献   

17.
The genetic diversity and phylogeography of maternal lineages in Ursus arctos Linnaeus, 1758 (the brown bear) have been studied extensively over the last two decades; however, sampling has largely been limited to the northern Holarctic, and was possibly biased towards lineages that recolonized the vast expanses of the north as the Last Glacial Maximum (LGM) ended. Here we report the genetic diversity and phylogeography of U. arctos from Turkey based on 35 non‐invasive samples, including five from captive individuals. Bayesian phylogenetic analyses based on a 269‐bp fragment of the mitochondrial DNA control region revealed 14 novel haplotypes belonging to three major lineages. The most widespread lineage was found to be the Eastern clade 3a, whereas geographically more restricted Western and Middle Eastern lineages were reported for the first time in Turkey. A specimen from the Taurus mountain range carried a haplotype closely related to the presumably extinct bears in Lebanon. Moreover, we identify a unique new lineage that appears to have split early within the Middle Eastern clade. Despite limited sampling, our study reveals a high level of mitochondrial diversity in Turkish U. arctos, shows that the ranges of both European and Middle Eastern clades extend into Turkey, and identifies a new divergent lineage of possibly wider historical occurrence. Obtaining these results with 35 samples also demonstrates the value of proper sampling from regions that have not been significantly affected by the LGM. © 2015 The Linnean Society of London  相似文献   

18.
The evolutionary history of the Mexican sierras has been shaped by various geological and climatic events over the past several million years. The relative impacts of these historical events on diversification in highland taxa, however, remain largely uncertain owing to a paucity of studies on broadly‐distributed montane species. We investigated the origins of genetic diversification in widely‐distributed endemic alligator lizards in the genus Barisia to help develop a better understanding of the complex processes structuring biological diversity in the Mexican highlands. We estimated lineage divergence dates and the diversification rate from mitochondrial DNA sequences, and combined divergence dates with reconstructions of ancestral geographical ranges to track lineage diversification across geography through time. Based on our results, we inferred ten geographically structured, well supported mitochondrial lineages within Barisia. Diversification of a widely‐distributed ancestor appears tied to the formation of the Trans‐Mexican Volcanic Belt across central Mexico during the Miocene and Pliocene. The formation of filter barriers such as major river drainages may have later subdivided lineages. The results of the present study provide additional support for the increasing number of studies that suggest Neogene events heavily impacted genetic diversification in widespread montane taxa. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 382–394.  相似文献   

19.
Although free‐living protists play essential roles in aquatic and soil ecology, little is known about their diversity and phylogeography, especially in terrestrial ecosystems. We used mitochondrial cytochrome c oxidase subunit 1 (COI) gene sequences to investigate the genetic diversity and phylogeography of the testate amoeba morphospecies Hyalosphenia papilio in 42 Sphagnum (moss)dominated peatlands in North America, Europe and Asia. Based on ≥1% sequence divergence threshold, our results from single‐cell PCRs of 301 individuals revealed 12 different genetic lineages and both the general mixed Yule‐coalescent (GMYC) model and the automatic barcode gap discovery (ABGD) methods largely support the hypothesis that these 12 H. papilio lineages correspond to evolutionary independent units (i.e. cryptic species). Our data also showed a high degree of genetic heterogeneity within different geographical regions. Furthermore, we used variation partitioning based on partial redundancy analyses (pRDA) to evaluate the contributions of climate and dispersal limitations on the distribution patterns of the different genetic lineages. The largest fraction of the variation in genetic lineage distribution was attributed to purely climatic factors (21%), followed by the joint effect of spatial and bioclimatic factors (13%), and a purely spatial effect (3%). Therefore, these data suggest that the distribution patterns of H. papilio genetic lineages in the Northern Hemisphere are more influenced by climatic conditions than by dispersal limitations.  相似文献   

20.
The aim of the present study was to investigate the genetic structure of the Valais shrew (Sorex antinorii) by a combined phylogeographical and landscape genetic approach, and thereby to infer the locations of glacial refugia and establish the influence of geographical barriers. We sequenced part of the mitochondrial cytochrome b (cyt b) gene of 179 individuals of S. antinorii sampled across the entire species' range. Six specimens attributed to S. arunchi were included in the analysis. The phylogeographical pattern was assessed by Bayesian molecular phylogenetic reconstruction, population genetic analyses, and a species distribution modelling (SDM)‐based hindcasting approach. We also used landscape genetics (including isolation‐by‐resistance) to infer the determinants of current intra‐specific genetic structure. The phylogeographical analysis revealed shallow divergence among haplotypes and no clear substructure within S. antinorii. The starlike structure of the median‐joining network is consistent with population expansion from a single refugium, probably located in the Apennines. Long branches observed on the same network also suggest that another refugium may have existed in the north‐eastern part of Italy. This result is consistent with SDM, which also suggests several habitable areas for S. antinorii in the Italian peninsula during the LGM. Therefore S. antinorii appears to have occupied disconnected glacial refugia in the Italian peninsula, supporting previous data for other species showing multiple refugia within southern refugial areas. By coupling genetic analyses and SDM, we were able to infer how past climatic suitability contributed to genetic divergence of populations. The genetic differentiation shown in the present study does not support the specific status of S. arunchi. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 864–880.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号