首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. Leaf litter constitutes the major source of organic matter and energy in woodland stream ecosystems. A substantial part of leaf litter entering running waters may be buried in the streambed as a consequence of flooding and sediment movement. While decomposition of leaf litter in surface waters is relatively well understood, its fate when incorporated into river sediments, as well as the involvement of invertebrate and fungal decomposers in such conditions, remain poorly documented. 2. We tested experimentally the hypotheses that the small interstices of the sediment restrict the access of the largest shredders to buried organic matter without compromising that of aquatic hyphomycetes and that fungal decomposers in the hyporheic zone, at least partly, compensate for the role of invertebrate detritivores in the benthic zone. 3. Alder leaves were introduced in a stream either buried in the sediment (hyporheic), buried after 2 weeks of exposure at the sediment surface (benthic‐hyporheic), or exposed at the sediment surface for the entire experiment (benthic). Leaf decomposition was markedly faster on the streambed surface than in the two other treatments (2.1‐ and 2.8‐fold faster than in the benthic‐hyporheic and hyporheic treatments, respectively). 4. Fungal assemblages were generally less diverse in the hyporheic habitat with a few species tending to be relatively favoured by such conditions. Both fungal biomass and sporulation rates were reduced in the hyporheic treatment, with the leaves subject to the benthic‐hyporheic treatment exhibiting an intermediate pattern. The initial 2‐week stage in the benthic habitat shaped the fungal assemblages, even for leaves later subjected to the hyporheic conditions. 5. The abundance and biomass of shredders drastically decreased with burial, except for Leuctra spp., which increased and was by far the most common leaf‐associated taxon in the hyporheic zone. Leuctra spp. was one of the rare shredder taxa displaying morphological characteristics that increased performance within the limited space of sediment interstices. 6. The carbon budgets indicated that the relative contributions of the two main decomposers, shredders and fungi, varied considerably depending on the location within the streambed. While the shredder biomass represented almost 50% of the initial carbon transformed after 80 days in the benthic treatment, its contribution was <0.3% in the hyporheic one and 2.0% in the combined benthic‐hyporheic treatment. In contrast, mycelial and conidial production in the permanently hyporheic environment accounted for 12% of leaf mass loss, i.e. 2–3 times more than in the two other conditions. These results suggest that the role of fungi is particularly important in the hyporheic zone. 7. Our findings indicate that burial within the substratum reduces the litter breakdown rate by limiting the access of both invertebrate and fungal decomposers to leaves. As a consequence, the hyporheic zone may be an important region of organic matter storage in woodland streams and serve as a fungal inoculum reservoir contributing to further dispersal. Through the temporary retention of litter by burial, the hyporheic zone must play a significant role in the carbon metabolism and overall functioning of headwater stream ecosystems.  相似文献   

2.
1. A substantial portion of particulate organic matter (POM) is stored in the sediment of rivers and streams. Leaf litter breakdown as an ecosystem process mediated by microorganisms and invertebrates is well documented in surface waters. In contrast, this process and especially the implication for invertebrates in subsurface environments remain poorly studied. 2. In the hyporheic zone, sediment grain size distribution exerts a strong influence on hydrodynamics and habitability for invertebrates. We expected that the influence of shredders on organic matter breakdown in river sediments would be influenced strongly by the physical structure of the interstitial habitat. 3. To test this hypothesis, the influence of gammarids (shredders commonly encountered in the hyporheos) on degradation of buried leaf litter was measured in experimental systems (slow filtration columns). We manipulated the structure of the sedimentary habitat by addition of sand to a gravel‐based sediment column to reproduce three conditions of accessible pore volume. Ten gammarids were introduced in columns together with litter bags containing alder leaves at a depth of 8 cm in sediment. Leaves were collected after 28 days to determine leaf mass loss and associated microbial activity (fungal biomass, bacterial abundance and glucosidase, xylosidase and aminopeptidase activities). 4. As predicted, the consumption of buried leaf litter by shredders was strongly influenced by the sediment structure. Effective porosity of 35% and 25% allowed the access to buried leaf litter for gammarids, whereas a lower porosity (12%) did not. As a consequence, leaf litter breakdown rates in columns with 35% and 25% effective porosity were twice as high as in the 12% condition. Microbial activity was poorly stimulated by gammarids, suggesting a low microbial contribution to leaf mass loss and a direct effect of gammarids through feeding activity. 5. Our results show that breakdown of POM in subsurface waters depends on the accessibility of food patches to shredders.  相似文献   

3.
1. Large amounts of coarse particulate organic matter (CPOM) are buried in the sand and gravel beds of many rivers during spates. The effects of these patchily distributed resources on hyporheic invertebrates and water chemistry are poorly understood. Buried CPOM may provide local ‘hot-spots’ of food for hyporheic detritivores and their predators, alter nutrient supply to nearby sediment biofilms, and generate habitat for some invertebrates. 2. To examine potential short-term effects on hyporheic water chemistry, nutrient concentrations and invertebrate assemblage composition, leaf packs were buried in downwelling (surface water infiltrating the hyporheic zone) and upwelling (hyporheic water emerging to the surface) zones at two sites along a gravel-bed river in northern New South Wales. At one site, pits were excavated to simulate leaf burial (procedural control) and plastic ‘leaves’ were buried to test whether invertebrates might respond to leaves as refuges rather than food. Hyporheic CPOM, sediment size fractions, and interstitial silt content were also quantified at these sites. 3. Dry weights of naturally buried CPOM (leaf litter and wood fragments) varied substantially (0.6–71.7 g L–1 sediment). Amounts of CPOM did not differ between up- vs. downwelling zones or between sites. Hyporheic dissolved oxygen saturation was generally high (> 75%), and was lower in upwelling zones. The hyporheos was dominated taxonomically by water mites (≈ 20 species), whereas small oligochaetes were most abundant (40% of total abundance). Tiny instars of elmid beetle larvae and leptophlebiid mayfly nymphs were also common. Before experimental manipulation, faunal composition differed between up- and downwelling zones. In upwelling zones, bathynellaceans and blind peracarids were found, whereas small individuals of the surface benthos were common in samples from downwelling zones. This validated stratification of the experiment across zones of hydrologic exchange. 4. Twenty days after leaf burial, there was no effect of the treatments at either site on changes in most variables, including mean numbers of taxa and individuals per sample. Similarly, changes in faunal composition of the hyporheos in the treatments paralleled those in the controls except for a weak response in the buried leaves treatment in the upwelling zone at site 1. Artificially buried leaf litter does not seem to influence hyporheic water chemistry or fauna at these two sites. It is probable that naturally buried leaf litter is swiftly processed soon after entrainment and that repeating this experiment immediately after a flood may yield different results.  相似文献   

4.
5.
In many terrestrial ecosystems, large amounts of leaf litter are consumed by macroarthropods. Most of it is deposited as faeces that are easily transferred into deeper soil layers. However, the decomposition of this large pool of organic matter remains poorly studied. We addressed the question of how leaf litter transformation into macroarthropod faeces, and their burial in the soil, affect organic matter decomposition in a Mediterranean dry shrubland. We compared mass loss of intact leaf litter of two dominant shrub species (Quercus coccifera, Cistus albidus) with that of leaf litter-specific faeces from the abundant millipede Ommatoiulus sabulosus. Leaf litter and faeces were exposed in the field for 1 year, either on the soil surface or buried at 5 cm soil depth. Chemical and physical quality of faeces differed strongly from that of leaf litter, but distinctively between the two shrub species. On the soil surface, faeces decomposed faster than intact leaf litter in Quercus, but at similar rates in Cistus. When buried in the soil, faeces and leaf litter decomposed at similar rates in either species, but significantly faster compared to the soil surface, most likely because of higher moisture within the soil enhancing microbial activity. The combined effects of leaf litter transformation into faeces and their subsequent burial in the topsoil led to a 1.5-fold increase in the annual mass loss. These direct and indirect macroarthropod effects on ecosystem-scale decomposition are likely more widespread than currently acknowledged, and may play a particularly important role in drought-influenced ecosystems.  相似文献   

6.
Stream fungi have the capacity to degrade leaf litter and, through their activities, to transform it into a more palatable food source for invertebrate detritivores. The objectives of the present study were to characterize various aspects of fungal modification of the leaf substrate and to examine the effects these changes have on leaf palatability to detritivores. Fungal species were grown on aspen leaves for two incubation times. Leaves were analyzed to determine the weight loss, the degree of softening of the leaf matrix, and the concentrations of ATP and nitrogen associated with leaves. The activities of a protease and 10 polysaccharide-degrading enzymes produced by each fungus were also determined. Most fungi caused similar changes in physicochemical characteristics of the leaves. All fungi exhibited the capability to depolymerize pectin, xylan, and cellulose. Differences among fungi were found in their capabilities to produce protease and certain glycosidases. Leaf palatability was assessed by offering leaves of all treatments to larvae of two caddisfly shredders (Trichoptera). Feeding preferences exhibited by the shredders were similar and indicated that they perceived distinct differences among fungi. Two fungal species were highly consumed, some moderately and others only slightly. No relationships were found between any of the fungal characteristics measured and detritivore feeding preferences. Apparently, interspecific differences among fungi other than parameters associated with biomass or degradation of structural polysaccharides influence fungal palatability to caddisfly detritivores.  相似文献   

7.
How are resource consumption and growth rates of litter‐consuming detritivores affected by imbalances between consumer and litter C:N:P ratios? To address this question, we offered leaf litter as food to three aquatic detritivore species, which represent a gradient of increasing body N:P ratios: a crustacean, a caddisfly and a stonefly. The detritivores were placed in microcosms and submerged in a natural stream. Four contrasting leaf species were offered, both singly and in two‐species mixtures, to obtain different levels of stoichiometric imbalance between the resources and their consumers. The results suggest that detritivore growth was constrained by N rather than C or P, even though 1) the N:P ratios of the consumers’ body tissue was relatively low and 2) microbial leaf conditioning during the experiment reduced the N:P imbalance between detritivores and leaf litter. This surprisingly consistent N limitation may be a consequence of cumulative N‐demand arising from the production of N‐rich chitin in the exoskeletons of all three consumer species, which is lost during regular moults, in addition to N‐demand for silk production by the caddisfly. These N requirements are not commonly quantified in stoichiometric analyses of arthropod consumers. There was no evidence for compensatory feeding, but when offered mixed‐species litter varying in C:N:P ratios, detritivores consumed more of the litter species showing the highest N:P and lowest C:N ratio, accelerating the mass loss of the preferred leaf species in the litter mixture. These results show that imbalances in consumer–resource stoichiometry can have contrasting effects on coupled processes, highlighting a challenge in developing a mechanistic understanding of the role of stoichiometry in regulating ecosystem processes such as leaf litter decomposition.  相似文献   

8.
We tested the hypothesis that selective feeding by insect herbivores in an old‐field plant community induces a shift of community structure towards less palatable plant species with lower leaf and litter tissue quality and may therefore affect nutrient cycling. Leaf palatability of 20 herbaceous plant species which are common during the early successional stages of an old‐field plant community was assayed using the generalist herbivores Deroceras reticulatum (Mollusca: Agriolomacidae) and Acheta domesticus (Ensifera: Gryllidae). Palatability was positively correlated with nitrogen content, specific leaf area and water content of leaves and negatively correlated with leaf carbon content and leaf C/N‐ratio. Specific decomposition rates were assessed in a litter bag experiment. Decomposition was positively correlated with nitrogen content of litter, specific leaf area and water content of living leaves and negatively correlated with leaf C/N‐ratio. When using phylogentically independent contrasts the correlations between palatability and decomposition versus leaf and litter traits remained significant (except for specific leaf area) and may therefore reflect functional relationships. As palatability and decomposition show similar correlations to leaf and litter traits, the correlation between leaf palatability and litter decomposition rate was also significant, and this held even in a phylogenetically controlled analysis. This correlation highlights the possible effects of invertebrate herbivory on resource dynamics. In a two‐year experiment we reduced the density of above‐ground and below‐ground insect herbivores in an early successional old‐field community in a two‐factorial design by insecticide application. The palatability ranking of plants showed no relationship with the specific change of cover abundance of plants due to the reduction of above‐ or below‐ground herbivory. Thus, changes in the dominance structure as well as potentially associated changes in the resource dynamics are not the result of differences in palatability between plant species. This highlights fundamental differences between the effects of insect herbivory on ecosystems and published results from vertebrate‐grazing systems.  相似文献   

9.
The breakdown rate of leaf litter buried inside river sediments (i.e., in the hyporheic zone) remains poorly known. The burial of large bags (15 × 15 cm) used in the benthic layer generates disturbances of the vertical connectivity with surface water, and thus affects the breakdown rate. We performed field and laboratory experiments to test the suitability of two leaf litter containers: small litter bags (5 × 4 cm) and perforated stainless steel cylinders (6 cm long, 1.6 cm in diameter), both introduced inside sediments using mobile mini-piezometers (1 m long, 1.7 cm or 3 cm in diameter). We compared the two containers for (i) the hydrological exchanges toward leaf litter, (ii) the impact of a benthic shredder on leaf breakdown, and (iii) the response of leaf litter breakdown to changes in sediment characteristics. The two methods give similar patterns of breakdown rates with stream sediment characteristics, but the use of perforated stainless steel cylinders provides an artificial empty volume in which invertebrates can over degrade leaf litter. Small plastic bags do not alter physico-chemical conditions around leaf litter and give lower values of breakdown rates in the hyporheic zone.  相似文献   

10.
11.
1. Interest in the effects of biodiversity on ecosystem processes is increasing, stimulated by the global species decline. Different hypotheses about the biodiversity‐ecosystem functioning (BEF) relationship have been put forward and various underlying mechanisms proposed for different ecosystems. 2. We investigated BEF relationships and the role of species interactions in laboratory experiments focussing on aquatic decomposition. Species richness at three different trophic levels (leaf detritus, detritus‐colonising fungi and invertebrate detritivores) was manipulated, and its effects on leaf mass loss and fungal growth were assessed in two experiments. In the first, monocultures and mixtures of reed (Phragmites australis), alder (Alnus glutinosa) and oak (Quercus cerris) leaf disks were incubated with zero, one or eight fungal species. Leaf mixtures were also incubated with combinations of three and five fungal species. In the second experiment, reed leaf disks were incubated with all eight fungal species and offered to combinations of one, two, three, four or five macroinvertebrate detritivores with different feeding modes. 3. Results from the first experiment showed that leaf mass loss was directly related to fungal mass and varied unimodally with the number of fungi, with a maximum rate attained at intermediate diversity in oak and reed and at maximum diversity in alder (the fastest decomposing leaf). 4. Mixing litter species stimulated fungal growth but interactions between species of fungi slowed down decomposition. In contrast, mixtures of macroinvertebrate detritivores reduced fungal mass and accelerated leaf decomposition. Possible explanations of the positive relationship between detritivore diversity and decomposition are a reduction in fungal dominance and a differentiation in the use of different resource patches promoted by higher fungal diversity. 5. In conclusion, the results show a general increase in decomposition rate with increasing biodiversity that is controlled by within‐ and between‐trophic level interactions, and support the hypothesis of both bottom‐up and top‐down effects of diversity on this process.  相似文献   

12.
The present study aimed to experimentally quantify the influence of a reduction of surface sediment permeability on microbial characteristics and ecological processes (respiration and leaf litter decomposition) occurring in the hyporheic zone (i.e. the sedimentary interface between surface water and groundwater). The physical structure of the water–sediment interface was manipulated by adding a 2-cm layer of coarse sand (unclogged systems) or fine sand (clogged systems) at the sediment surface of slow filtration columns filled with a heterogeneous gravel/sand sedimentary matrix. The influence of clogging was quantified through measurements of hydraulic conductivity, water chemistry, microbial abundances and activities and associated processes (decomposition of alder leaf litter inserted at a depth of 9 cm in sediments, oxygen and nitrate consumption by microorganisms). Fine sand deposits drastically reduced hydraulic conductivity (by around 8-fold in comparison with unclogged systems topped by coarse sand) and associated water flow, leading to a sharp decrease in oxygen (reaching less than 1 mg L−1 at 3 cm depth) and nitrate concentrations with depth in sediments. The shift from aerobic to anaerobic conditions in clogged systems favoured the establishment of denitrifying bacteria living on sediments. Analyses performed on buried leaf litter showed a reduction by 30% of organic matter decomposition in clogged systems in comparison with unclogged systems. This reduction was linked to a negative influence of clogging on the activities and abundances of leaf-associated microorganisms. Finally, our study clearly demonstrated that microbial processes involved in organic matter decomposition were dependent on hydraulic conductivity and oxygen availability in the hyporheic zone.  相似文献   

13.
1. We investigated the effects of riparian plant diversity (species number and identity) and temperature on microbially mediated leaf decomposition by assessing fungal biodiversity, fungal reproduction and leaf mass loss. 2. Leaves of five riparian plant species were first immersed in a stream to allow microbial colonisation and were then exposed, alone or in all possible combinations, at 16 or 24 °C in laboratory microcosms. 3. Fungal biodiversity was reduced by temperature but was not affected by litter diversity. Temperature altered fungal community composition with species of warmer climate, such as Lunulospora curvula, becoming dominant. 4. Fungal reproduction was affected by litter diversity, but not by temperature. Fungal reproduction in leaf mixtures did not differ or was lower than that expected from the weighted sum of fungal sporulation on individual leaf species. At the higher temperature, the negative effect of litter diversity on fungal reproduction decreased with the number of leaf species. 5. Leaf mass loss was affected by the identity of leaf mixtures (i.e. litter quality), but not by leaf species number. This was mainly explained by the negative correlation between leaf decomposition and initial lignin concentration of leaves. 6. At 24 °C, the negative effects of lignin on microbially mediated leaf decomposition diminished, suggesting that higher temperatures may weaken the effects of litter quality on plant litter decomposition in streams. 7. The reduction in the negative effects of lignin at the higher temperature resulted in an increased microbially mediated litter decomposition, which may favour invertebrate‐mediated litter decomposition leading to a depletion of litter stocks in streams.  相似文献   

14.
Swan CM  Palmer MA 《Oecologia》2006,147(3):469-478
Leaf litter derived from riparian trees can control secondary production of detritivores in forested streams. Species-rich assemblages of leaf litter reflect riparian plant species richness and represent a heterogeneous resource for stream consumers. Such variation in resource quality may alter consumer growth and thus the feedback on leaf breakdown rate via changes in feeding activity. To assess the consequences of this type of resource heterogeneity on both consumer growth and subsequent litter breakdown, we performed a laboratory experiment where we offered a leaf-shredding stream detritivore (the stonefly Tallaperla maria, Peltoperlidae) ten treatments of either single- or mixed-species leaf litter. We measured consumer growth rate, breakdown rate and feeding activity both with and without consumers for each treatment and showed that all three variables responded to speciose leaf litter. However, the number of leaf species was not responsible for these results, but leaf species composition explained the apparent non-additive effects. T. maria growth responded both positively and negatively to litter composition, and growth on mixed-litter could not always be predicted by averaging estimates of growth in single-species treatments. Furthermore, breakdown and feeding rates in mixed litter treatments could not always be predicted from estimates of single-species rates. Given that species richness and composition of senesced leaves in streams reflects riparian plant species richness, in-stream secondary production of detritivores and organic matter dynamics may be related to species loss of trees in the riparian zone. Loss of key species may be more critical to maintaining such processes than species richness per se.  相似文献   

15.
SUMMARY. 1. Differences in decay rates of autumn and spring balsam poplar (Populus balsamifera L.) leaf litter input to a stream and their effects on a lotic detritivore Tipula commiscibilis Diane were investigated.
2. Autumnal leaf litter decay rates were significantly greater than spring decay rates despite higher initial quality of spring leaves. Reduced spring/summer decomposition rates were the result of decreased microbial activity and biomass, and significantly lower numbers, kinds and biomass of macroinvertebrate detritivores.
3. Growth of the detritivore Tipula commiscibilis was significantly lower when fed spring leaves indicating that they were a poorer quality food source than autumn leaves.
4. Lower numbers of detritivores coupled with reduced leaf quality resulted in lower leaf litter decay rates characteristic of spring/summer.  相似文献   

16.
The importance of leaf litter diversity for decomposition, an important process in terrestrial ecosystems, is much debated. Previous leaf litter‐mixing studies have shown that non‐additive leaf litter diversity effects can occur, but it is not clear why they occurred in only half of the studies and which underlying mechanisms can explain these conflicting results. We hypothesized that incorporating the role of macro‐detritivores could be important. Although often ignored, macro‐detritivores are known to strongly influence decomposition. To better understand the importance of macro‐detritivores for leaf litter mixing effects during decomposition, four common leaf litter species were added separately and in two and four species combinations to monocultures of three different macro‐detritivores and a control without fauna. Our results clearly show that leaf litter‐mixing effects occurred only in the presence of two macro‐detritivores (earthworms and woodlice). Application of the additive partitioning method revealed that in the specific combination of woodlice and the presence of a slow‐decomposing leaf litter species in the mixture, leaf litter mixing effects were strongly driven by a selection effect. This was caused by food preference of the isopod: the animals avoided the slow decomposing species when given the choice. However, most leaf litter mixing effects were caused by complementarity effects. The potential mechanisms underlying the complementarity effects are discussed. Our results clearly show that that both leaf litter and macro‐detritivore identity can affect litter diversity. This may help to explain the conflicting results obtained in previous experiments.  相似文献   

17.
1. Decomposition of litter mixtures in both terrestrial and aquatic ecosystems often shows non‐additive diversity effects on decomposition rate, generally interpreted in streams as a result of the feeding activity of macroinvertebrates. The extent to which fungal assemblages on mixed litter may influence consumption by macroinvertebrates remains unknown. 2. We assessed the effect of litter mixing on all possible three‐species combinations drawn from four tree species (Alnus glutinosa, Betula pendula, Juglans regia and Quercus robur) on both fungal assemblages and the rate of litter consumption by a common shredder, Gammarus fossarum. After a 9‐week inoculation in a stream, batches of leaf discs were taken from all leaf species within litter mixture combinations. Ergosterol, an indicator of fungal biomass, and the composition of fungal assemblages, assessed from the conidia released, were determined, and incubated litter offered to G. fossarum in a laboratory‐feeding experiment. 3. Mixing leaf litter species enhanced both the Simpson’s index of the fungal assemblage and the consumption of litter by G. fossarum, but had no clear effect on mycelial biomass. Specifically, consumption rates of J. regia were consistently higher for mixed‐species litter packs than for single‐species litter. In contrast, the consumption rates of B. pendula were not affected by litter mixing, because of the occurrence of both positive and negative litter‐mixing effects in different litter species combinations that counteracted each other. 4. In some litter combinations, the greater development of some fungal species (e.g. Clavariopsis aquatica) as shown by higher sporulation rates coincided with increased leaf consumption, which may have resulted from feeding preferences by G. fossarum for these fungi. 5. Where litter mixture effects on decomposition rate are mediated via shredder feeding, this could be due to indirect effects of the fungal assemblage.  相似文献   

18.
Many studies have estimated relationships between biodiversity and ecosystem functioning, and observed generally positive effects. Because detritus is a major food resource in stream ecosystems, decomposition of leaf litter is an important ecosystem process and many studies report the full range of positive, negative and no effects of diversity on decomposition. However, the mechanisms underlying decomposition processes in fresh water remain poorly understood. Organism body stoichiometry relates to consumption rates and tendencies, and decomposition processes of litter may therefore be affected by diversity in detritivore body stoichiometry. We predicted that the stoichiometric diversity of detritivores (differences in C: nutrient ratios among species) would increase the litter processing efficiency (litter mass loss per total capita metabolic capacity) in fresh water through complementation regarding different nutrient requirements. To test this prediction, we conducted a microcosm experiment wherein we manipulated the stoichiometric diversity of detritivores and quantified mass loss of leaf litter mixtures. We compared litter processing efficiency among litter species in each microcosm with single species detritivores, and observed detritivores with nutrient‐rich bodies tended to prefer litter with lower C: nutrient ratios over litter with higher C: nutrient ratios. Furthermore, litter processing efficiencies were significantly higher in the microcosms containing species of detritivores with both nutrient‐rich and ‐poor bodies than microcosms containing species of detritivores including only nutrient‐rich or ‐poor bodies. This might mean a higher stoichiometric diversity of detritivores increased litter processing efficiency. Our results suggest that ecological stoichiometry may improve understanding of links between biodiversity and ecosystem function in freshwater ecosystems.  相似文献   

19.
The hyporheic zone of stream ecosystems is a critical habitat for microbial communities. However, the factors influencing hyporheic bacterial communities along spatial and seasonal gradients remain poorly understood. We sought to characterize patterns in bacterial community composition among the sediments of a small stream in southern Ontario, Canada. We used sampling cores to collect monthly hyporheic water and sediment microbial communities in 2006 and 2007. We described bacterial communities terminal-restriction fragment length polymorphism (TRFLP) and tested for spatial and seasonal relationships with physicochemical parameters using multivariate statistics. Overall, the hyporheic zone appears to be a DOC, oxygen, and nitrogen sink. Microbial communities were distinct from those at the streambed surface and from soil collected in the adjacent watershed. In the sediments, microbial communities were distinct between the fall, spring, and summer seasons, and bacterial communities were more diverse at streambed surface and near-surface sites compared with deeper sites. Moreover, bacterial communities were similar between consecutive fall seasons despite shifting throughout the year, suggesting recurring community assemblages associated with season and location in the hyporheic zone. Using canonical correspondence analysis, seasonal patterns in microbial community composition and environmental parameters were correlated in the following way: temperature was related to summer communities; DOC (likely from biofilm and allochthonous inputs) influenced most fall communities; and nitrogen associated strongly with winter and spring communities. Our results also suggest that labile DOC entering the hyporheic zone occurred in concert with shifts in the bacterial community. Generally, seasonal patterns in hyporheic physicochemistry and microbial biodiversity remain largely unexplored. Therefore, we highlight the importance of seasonal and spatial resolution when assessing surface- and groundwater interactions in stream ecosystems.  相似文献   

20.
Aquatic hyphomycetes strongly contribute to organic matter dynamics in streams, but their abilities to colonize leaf litter buried in streambed sediments remain unexplored. Here, we conducted field and laboratory experiments (slow-filtration columns and stream-simulating microcosms) to test the following hypotheses: (i) that the hyporheic habitat acting as a physical sieve for spores filters out unsuccessful strategists from a potential species pool, (ii) that decreased pore size in sediments reduces species dispersal efficiency in the interstitial water, and (iii) that the physicochemical conditions prevailing in the hyporheic habitat will influence fungal community structure. Our field study showed that spore abundance and species diversity were consistently reduced in the interstitial water compared with surface water within three differing streams. Significant differences occurred among aquatic hyphomycetes, with dispersal efficiency of filiform-spore species being much higher than those with compact or branched/tetraradiate spores. This pattern was remarkably consistent with those found in laboratory experiments that tested the influence of sediment pore size on spore dispersal in microcosms. Furthermore, leaves inoculated in a stream and incubated in slow-filtration columns exhibited a fungal assemblage dominated by only two species, while five species were codominant on leaves from the stream-simulating microcosms. Results of this study highlight that the hyporheic zone exerts two types of selection pressure on the aquatic hyphomycete community, a physiological stress and a physical screening of the benthic spore pool, both leading to drastic changes in the structure of fungal community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号