首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oocyte differentiation in the polyclad turbellarian Prostheceraeus floridanus has been examined to determine the nature of oogenesis in a primitive spiralian. The process has been divided into five stages. (1) The early oocyte: This stage is characterized by a large germinal vesicle surrounded by dense granular material associated with the nuclear pores and with mitochondria. (2) The vesicle stage: The endoplasmic reticulum is organized into sheets which often contain dense particles. Vesicles are found in clusters in the cytoplasm, some of which are revealed to be lysosomes by treatment with the Gomori acid phosphatase medium. (3) Cortical granule formation: Cortical granules are formed by the fusion of filled Golgi vasuoles which have been released from the Golgi saccules. The association between the endoplasmic reticulum and Golgi suggests that protein is synthesized in the ER and transferred to the Golgi where polysaccharides are added to form nascent cortical granules. (4) Yolk synthesis: After a large number of cortical granules are synthesized, yolk bodies appear. They originate as small membrane-bound vesicles containing flocculent material which subsequently increase in size and become more compact. Connections between the forming yolk bodies and the endoplasmic reticulum indicate that yolk synthesis occurs in the ER. (5) Mature egg: In the final stage, the cortical granules move to the periphery and yolk platelets and glycogen fill the egg. At no time is there any evidence of uptake of macromolecules at the oocyte surface. Except for occasional desmosomes between early oocytes, no membrane specialization or cell associations are seen throughout oogenesis. Each oocyte develops as an independent entity, a conclusion supported by the lack of an organized ovary.  相似文献   

2.
The ovaries consist of large number of panoistic ovarioles in the last instar nymph and the adult dragonfly Orthetrum chrysis (Selys). In the nymph the vitellaria are compactly filled with the primary oocytes and the vitellogenesis takes place only in the adult stage. During vitellogenesis oocytes change widely in their shape, size and cytological organisation and their developmental stages can be divided into pre-vitellogenic, early-vitellogenic, vitellogenic, late-vitellogenic and maturation age. PAS-positive material appears first around the germinal vesicle in the early-vitellogenic stage and lateron it migrates towards the periphery. Glycogen appears in the late-vitellogenic stage. DNA is abundantly present in the nuclei of the oocytes during the pre-vitellogenic and completely absent in early-vitellogenic, vitellogenic, late-vitellogenic and maturation stages. It is observed in the nuclei of follicular epithelial cells of all the stages. RNA is abundantly present in cytoplasm of the pre-vitellogenic oocytes but lateron is gradually decreases. During the early-vitellogenic and vitellogenic stages high concentration of RNA in the follicular epithelial cells has been observed. The protein bodies appear first in the interfollicular spaces and towards the periphery of the oocytes just near the enveloping follicular epithelial cells, during the early-vitellogenic stage suggesting the formation of yolk proteins from the haemolymph. In Orthetrum chrysis the sudanophilic bodies appear first in the follicular cells and then lie in the peripheral region of the oocytes suggesting the incorporation of yolk lipid either from the follicular epithelium or from the haemolymph through the follicular epithelium. The phospholipids are synthesised in pre-vitellogenic to the late-vitellogenic stages. In the late-vitellogenic stages the phospholipid granules are present abundantly in the follicular epithelium while in the maturation stage they disappear suggesting their utilisation in the formation of membranes like vitelline and chorion. The neutral fats are present in the form of large number of droplets in the oocytes during the maturation stage.  相似文献   

3.
Yolk formation in the oocytes of the free-living, marine copepod, Labidocera aestiva (order Calanoida) involves both autosynthetic and heterosynthetic processes. Three morphologically distinct forms of endogenous yolk are produced in the early vitellogenic stages. Type 1 yolk spheres are formed by the accumulation and fusion of dense granules within vesicular and lamellar cisternae of endoplasmic reticulum. A granular form of type 1 yolk, in which the dense granules within the cisternae of endoplasmic reticulum do not fuse, appears to be synthesized by the combined activity of endoplasmic reticulum and Golgi complexes. Type 2 yolk bodies subsequently appear in the ooplasm but their formation could not be attributed to any particular oocytic organelle. In the advanced stages of vitellogenesis, a single narrow layer of follicle cells becomes more developed and forms extensive interdigitations with the oocytes. Extra-oocytic yolk precursors appear to pass from the hemolymph into the follicle cells and subsequently into the oocytes via micropinocytosis. Pinocytotic vesicles fuse in the cortical ooplasm to form heterosynthetically derived type 3 yolk bodies.  相似文献   

4.
ELECTRON MICROSCOPY OF GROWING OOCYTES OF RANA PIPIENS   总被引:16,自引:12,他引:4       下载免费PDF全文
1. In the cytoplasm of oocytes of stage Y0, prior to the appearance of yolk, one observes a few scattered profiles of endoplasmic reticulum and numerous filamentous mitochondria, usually distributed at random but sometimes clustered. As the nuclear membrane begins to bulge outward, small granules and short rods appear in the perinuclear cytoplasm and endoplasmic reticulum becomes more prominent throughout the cytoplasm. 2. Coincident with the appearance of the first yolk platelets, which are deposited in a narrow peripheral ring within the endoplasm at stage Y1, protoplasmic processes, the microvilli, push out all over the surface of the oocyte. At the same time follicle cells pull away but remain attached to the oocyte at some points through finger-like processes which interdigitate with neighboring microvilli. It is estimated that the microvilli increase the absorptive area of the surface to about thirty-five times that of a simple sphere. Just beneath the microvillous layer is the basal protoplasm of the cortex, now containing tiny granules probably synthesized from newly absorbed raw materials. Cortical granules appear and become aligned below the basal layer on the external border of the endoplasm. Both the cortical granules and the yolk platelets measure up to 1 µ in diameter at this stage. 3. By stage Y3 (yolk filling peripheral three-fourths of cytoplasm), the basal layer of the cortex is folded so that it appears in section as alternating ridges and valleys. The microvilli now extend from the summits of the cortical ridges. Small, ring-shaped granules are abundant in the cortex. Cortical granules have increased to 2 µ in diameter. 4. Yolk platelets continue to be synthesized around the cortical granules and in the subjacent endoplasm. The largest platelets measured in the interior cytoplasm at stage Y4 (cytoplasm filled with yolk) were 3.7 µ wide by 5.8 µ long. Pigment granules increase in size from 0.15 µ in diameter at stage Y3 to 0.30 µ in diameter at stage Y4.  相似文献   

5.
Oocytes from the land hermit crab, Coenobita clypeatus, in various stages of vitellogenesis were examined by light and electron microscopy. Early vitellogenic oocytes are characterized by accumulations of discrete vesicles of endoplasmic reticulum in the perinuclear cytoplasm. As oocytes develop, the endoplasmic reticulum becomes abundant, and numerous Golgi complexes are seen. There is a well developed Golgi-endoplasmic reticulum interaction. Within the confines of the reticulum are discrete intracisternal granules, which can be seen coalescing into electron-dense yolk bodies. Lipid accumulation is seen throughout the cytoplasm. Coincident with the burst of intra-oocytic metabolism are oolemma modifications and micropinocytosis, which provide ultrastructural evidence for extra-oocytic yolk production. The mature oocyte contains numerous yolk and lipid vesicles of varying electron density that comprise both intra- and extra-oocytic substrates.  相似文献   

6.
东方扁虾卵子发生的超微结构   总被引:2,自引:0,他引:2  
根据卵细胞的形态、内部结构特征及卵母细胞与滤泡细胞之间的关系,东方扁虾的卵子发生可划分为卵原细胞、卵黄发生前卵母细胞、卵黄发生卵母细胞和成熟卵母细胞等四个时期。卵原细胞胞质稀少,胞器以滑面内质网为主。卵黄发生前卵母细胞核明显膨大,特称为生发泡;在靠近核外膜的胞质中可观察到核仁外排物。卵黄发生卵母细胞逐渐为滤泡细胞所包围;卵黄合成旺盛,胞质中因而形成并积累了越来越多的卵黄粒。东方扁虾卵母细胞的卵黄发生是二源的。游离型核糖体率先参与内源性卵黄合成形成无膜卵黄粒。粗面内质网是内源性卵黄形成的主要胞器。滑面内质网、线粒体和溶酶体以多种方式活跃地参与卵黄粒形成。卵周隙内的外源性物质有两个来源:滤泡细胞的合成产物和血淋巴携带、转运的卵黄蛋白前体物。这些外源性物质主要通过质膜的微吞饮作用和微绒毛的吸收作用这两种方式进入卵母细胞,进而形成外源性卵黄。内源性和外源性的卵黄物质共同参与成熟卵母细胞中富含髓样小体的卵黄粒的形成。卵壳的形成和微绒毛的回缩被认为是东方扁虾卵母细胞成熟的形态学标志。    相似文献   

7.
利用透射电镜观察了泥螺卵子发生过程。结果表明 ,泥螺的卵子发生可划分为卵原细胞、卵黄发生早期、卵黄发生中期及卵黄发生后期卵母细胞 4个时期。卵原细胞核大而圆 ,胞质内分布有少量的线粒体和高尔基囊泡 ,细胞表面具微绒毛。卵黄发生早期的卵母细胞 ,胞质中各类细胞器发达 ,并出现数量较多的类朦胧子。卵黄发生中期的卵母细胞胞体迅速增大 ,核伸出伪足状突起 ,卵质中各种细胞器活动活跃 ,并参与形成卵黄粒和脂滴。此期还可观察到卵母细胞与滤泡细胞间的物质交换现象。卵黄发生后期的卵母细胞体积增至最大 ,细胞器数量减少。本文就卵黄发生前后卵母细胞内部构造的变化、意义及滤泡细胞与卵母细胞蛋白来源间的关系作了探讨  相似文献   

8.
The ovaries of the largescale yellowfish, Labeobarbus marequensis (Teleostei: Cypriniformes: Cyprinidae), are made up of the germinal epithelium, nests of late chromatin nucleolus stage oocytes, and ovarian follicles. Each follicle is composed of a single oocyte, which is surrounded by somatic follicular cells and a basal lamina covered by thecal cells. We describe polarization and ultrastructure of oocytes during the primary growth stage. The oocyte nucleus contains lampbrush chromosomes, nuclear bodies and fibrillar material in which multiple nucleoli arise. Nuage aggregations composed of material of a nuclear origin are present in the perinuclear cytoplasm. The Balbiani body (Bb) contains aggregations of nuage, rough endoplasmic reticulum, individual mitochondria and complexes of mitochondria with nuage (cement). Some mitochondria in the Bb come into close contact with endoplasmic reticulum cisternae and vesicles that contain granular material. At the start of primary growth, the Bb is present in the cytoplasm close to the nucleus. Next, it expands towards the oocyte plasma membrane. In these oocytes, a spherical structure, the so-called yolk nucleus, arises in the Bb. It consists of granular nuage in which mitochondria and vesicles containing granular material are immersed. Later, the Bb becomes fragmented and a fully grown yolk nucleus is present in the vegetal region. It contains numerous threads composed of granular nuage, mitochondria, lysosome-like organelles and autophagosomes. We discuss the formation of autophagosomes in the cytoplasm of primary growth oocytes. During the final step of primary growth, the cortical alveoli arise in the cytoplasm and are distributed evenly. The eggshell is deposited on the external surface of the oocyte plasma membrane and is made up of two egg envelopes that are pierced by numerous pore canals. The external egg envelope is covered in protuberances. During primary growth no lipid droplets are synthesized or stored in the oocytes.  相似文献   

9.
Oocytes (future egg cells) of various animal groups often contain complex organelle assemblages (Balbiani bodies, yolk nuclei). The molecular composition and function of Balbiani bodies, such as those found in the oocytes of Xenopus laevis, have been recently recognized. In contrast, the functional significance of more complex and highly ordered yolk nuclei has not been elucidated to date. In this report we describe the structure, cytochemical content and evolution of the yolk nucleus in the oocytes of a common spider, Clubiona sp. We show that the yolk nucleus is a spherical, rather compact and persistent cytoplasmic accumulation of several different organelles. It consists predominantly of a highly elaborate cytoskeletal scaffold of condensed filamentous actin and a dense meshwork of intermediate-sized filaments. The yolk nucleus also comprises cisterns of endoplasmic reticulum, mitochondria, lipid droplets and other organelles. Nascent lipid droplets are regularly found in the cortical regions of the yolk nucleus in association with the endoplasmic reticulum. Single lipid droplets become surrounded by filamentous cages formed by intermediate filaments. Coexistence of the forming lipid droplets with the endoplasmic reticulum in the cortical zone of the yolk nucleus and their later investment by intermediate-sized filamentous cages suggest that the yolk nucleus is the birthplace of lipid droplets.  相似文献   

10.
Temereva, E.N., Malakhov, V.V. and Yushin, V.V. 2011. Ultrastructural study of oogenesis in Phoronopsis harmeri (Phoronida). —Acta Zoologica (Stockholm) 92 : 241–250. The successive stages of oogenesis in Phoronopsis harmeri were examined by electron microscopy methods. During the oogenesis, each oocyte is encircled by vasoperitoneal (coelomic) cells forming a follicle. The previtellogenic oocytes are small cells which accumulate ribosomes for future synthesis; their cytoplasm contains characteristic clusters of mitochondria and osmiophilic particles resembling a germ plasm of other metazoans. The cytoplasm of the vitellogenic oocytes includes numerous mitochondria, cisternae of the rough endoplasmic reticulum, Golgi bodies and annulate lamellae. The synthesis of three types of inclusions was observed: strongly osmiophilic granules (lipid droplets) as a prevalent component, distinctly larger granules surrounded by membrane (proteinaceous yolk) and numerous large vesicles with pale flocculent content. No inclusions which could be unequivocally interpreted as the cortical granules were detected. The surface of the vitellogenic oocytes is covered by microvilli which increase in number and length during development. The oogenesis in Phoronida may be interpreted as follicular because of close association of oocytes with the vasoperitoneal tissue. However, well‐developed synthetic apparatus together with a strongly developed microvillous surface and absence of endocytosis indicate a clear case of autosynthetic vitellogenesis. Thus, in phoronids, there is a combination of simply developed follicle and autosynthesis that, apparently, is plesiomorphic character.  相似文献   

11.
Ovaries from the spider crab, Libinia emarginata L. were studied to learn more of vitellogenesis in crustaceans. Oogonia and previtellogenic oocytes were found in the core of the ovaries. Vitellogenic oocytes are located more peripherally. Profiles of the endoplasmic reticulum are abundant in the vitellogenic oocytes. The granular and agranular reticulum as well as the Golgi complex are active in yolk synthesis. As vitellogenesis proceeds, yolk precursors are incorporated into the egg by micropinocytosis at the egg surface. Thus, in Libinia, yolk materials appear to be derived from both intra- and extraoocytic sources.  相似文献   

12.
The ovaries of the largemouth bass Micropterus salmoides, an alien and invasive species in South Africa, contain a germinal epithelium which consists of germline and somatic cells, as well as previtellogenic and late vitellogenic ovarian follicles. The ovarian follicle consists of an oocyte surrounded by follicular cells and a basal lamina; thecal cells adjacent to this lamina are covered by an extracellular matrix. In this article, we describe the Balbiani body and the polarization and ultrastructure of the cytoplasm (ooplasm) in previtellogenic oocytes. The nucleoplasm in all examined oocytes contains lampbrush chromosomes, nuclear bodies and several nucleoli near the nuclear envelope. The ultrastructure of the nucleoli is described. Numerous nuage aggregations are present in the perinuclear cytoplasm in germline cells as well as in the ooplasm. Possible roles of these aggregations are discussed. The ooplasm contains the Balbiani body, which defines the future vegetal region in early previtellogenic oocytes. It is comprised of nuage aggregations, rough endoplasmic reticulum, Golgi apparatus, mitochondria, complexes of mitochondria with nuage-like material, and lysosome-like organelles. In mid-previtellogenic oocytes, the Balbiani body surrounds the nucleus and later disperses in the ooplasm. The lysosome-like organelles fuse and transform into vesicles containing material which is highly electron dense. As a result of the fusion of the vesicles of Golgi and rough endoplasmic reticulum, the cortical alveoli arise and distribute uniformly throughout the ooplasm of late previtellogenic oocytes. During this stage, the deposition of the eggshell (zona radiata) begins. The eggshell is penetrated by canals containing microvilli and consists of the following: the internal and the external egg envelope. In the external envelope three sublayers can be distinguished.  相似文献   

13.
Ultrastructural study of oogenesis in the acoel turbellarian Convoluta   总被引:2,自引:0,他引:2  
An ultrastructural investigation of oogenesis has been carried out on the acoel turbellarian Convoluta psammophyla. Developing female germ cells are not contained in well delimited ovaries but are freely distributed in the parenchyma and are surrounded by narrow cytoplasmic projections of accessory-follicle cells. Oogenesis can be divided into two periods, the previtellogenic and the vitellogenic phase. In the first period the oocyte undergoes a number of cell differentiations necessary for the intense biosynthetic activity of the second period. The ample development of nucleolus, ribosomes, endoplasmic reticulum and Golgi complexes along with the appearance of large lipid droplets and clusters of electron dense granules characterize the previtellogenic phase. The formation of yolk globules is the main feature of the second period of oogenesis. It occurs by an autosynthetic mechanism involving endoplasmic reticulum and Golgi complexes, since no endocytotic activity has been detected in the developing oocyte. The electron dense granules apparently move towards the cortical ooplasm during the late vitellogenic phase and take part in egg covering formation. Hypotheses on the role of follicle cells and on the phylogenetic significance of a comparative analysis of egg inclusions with homologous structures of other Turbellaria are suggested.  相似文献   

14.
《Journal of morphology》2017,278(1):50-61
Previtellogenic and vitellogenic oocytes in ovarian follicles from cultured Siberian sturgeon Acipenser baerii were examined. In previtellogenic oocytes, granular and homogeneous zones in the cytoplasm (the ooplasm) are distinguished. Material of nuclear origin, rough endoplasmic reticulum, Golgi complexes, complexes of mitochondria with cement and round bodies are numerous in the granular ooplasm. In vitellogenic oocytes, the ooplasm comprises three zones: perinuclear area, endoplasm and periplasm. The endoplasm contains yolk platelets, lipid droplets, and aggregations of mitochondria and granules immersed in amorphous material. In the nucleoplasm, lampbrush chromosomes, nucleoli, and two types of nuclear bodies are present. The first type of nuclear bodies is initially composed of fibrillar threads only. Their ultrastructure subsequently changes and they contain threads and medium electron dense material. The second type of nuclear bodies is only composed of electron dense particles. All nuclear bodies impregnate with silver, stain with propidium iodide, and are DAPI‐negative. Their possible role is discussed. All oocytes are surrounded by follicular cells and a basal lamina which is covered by thecal cells. Egg envelopes are not present in previtellogenic oocytes. In vitellogenic oocytes, the plasma membrane (the oolemma) is covered by three envelopes: vitelline envelope, chorion, and extrachorion. Vitelline envelope comprises four sublayers: filamentous layer, trabecular layer 2 (t2), homogeneous layer, and trabecular layer 1 (t1). In the chorion, porous layer 1 and porous layer 2 are distinguished in most voluminous examined oocytes. Three micropylar cells that are necessary for the formation of micropyles are present between follicular cells at the animal hemisphere. J. Morphol. 278:50–61, 2017. ©© 2016 Wiley Periodicals,Inc.  相似文献   

15.
The ultrastructure of the ovary during development and yolk production is poorly known in Brachyura and Majoidea in particular. Here, we describe the histology, histochemistry and ultrastructure of the adult ovarian cycle in four Mithracidae species from three different genera: Mithrax hispidus, Mithrax tortugae, Mithraculus forceps and Omalacantha bicornuta. All species showed a similar pattern of ovarian development and vitellogenesis. Macroscopically, we detected three stages of ovarian development: rudimentary (RUD), developing (DE) and mature (MAT); however, in histological and ultrastructural analyses, we identified four stages of development. The oocytes of the RUD stage, during endogenous vitellogenesis, have basophilic cytoplasm filled with dilated rough endoplasmic reticulum. The reticulum lumen showed many granular to electron-dense materials among the different stages of development. The Golgi complexes were only observed in the RUD stage and are responsible for releasing vesicles that merge to the endogenous or immature yolk vesicles. At the early DE stage, the oolemma showed many coated and endocytic vesicles at the cortex. The endocytic vesicles merge with the endogenous yolk to form the exogenous or mature yolk vesicles, always surrounded by a membrane, characterizing exogenous vitellogenesis. The exogenous yolk vesicles comprise glycoproteins, showing only neutral polysaccharides. At the late DE stage, endocytosis still occurs, but the amount of endogenous yolk decreases while the exogenous yolk increases. The late DE stage is characterized by the beginning of chorion production among the microvilli. The MAT stage is similar to the late DE, but the endogenous yolk is restricted to a few cytoplasmic areas, the ooplasma is filled with exogenous yolk, and the oolemma has very few coated vesicles. In the MAT stage, the chorion is fully formed and shows two electron-dense layers. The ovarian development of the species studied has many similarities with the very little known Majoidea in terms of the composition, arrangement and increment of the yolk vesicles during oocyte maturation. The main differences are in the vitellogenesis process, where immature yolk formation occurs without the direct participation of the mitochondria but with the participation of the rough endoplasmic reticulum in the endogenous phase.  相似文献   

16.
凡纳滨对虾卵母细胞卵黄发生的超微结构   总被引:11,自引:0,他引:11  
利用电镜研究凡纳滨对虾卵母细胞卵黄发生的全过程。结果表明 :凡纳滨对虾卵黄的发生是双源性的。卵黄发生早、中期是内源性卵黄大量合成的阶段 ,卵黄发生中、后期则以外源性卵黄的合成为主。内源性卵黄主要由内质网、线粒体、核糖体、溶酶体、高尔基器等多种胞器活跃参与形成。其中数量众多的囊泡状粗面内质网是形成内源性卵黄粒的最主要的细胞器 ;部分线粒体参与卵黄粒的合成并自身最终演变为卵黄粒 ;丰富的游离核糖体合成了大量致密的蛋白质颗粒并在卵质中直接聚集融合成无膜的卵黄粒 ;溶酶体通过吞噬、消化内含物来形成卵黄粒和脂滴 ,且方式多样 ;高尔基器不直接参与形成卵黄粒。外源性卵黄主要通过卵质膜的微吞饮活动从卵周隙或卵泡细胞中摄取外源物质来形成  相似文献   

17.
Light and electron microscope studies were made on harvestman oocytes during the course of their origin, differentiation, and vitellogenesis. The germ cells appear to originate from the ovarian epithelium. They subsequently migrate to the outer surface of the epithelium, where they remain attached often by means of stalk cells which suspend them in the hemocoel during oogenesis. The “Balbiani bodies,” “yolk nuclei,” or “nuage” constitute a prominent feature of young, previtellogenic oocytes, and take the form of large, but variable sizes of electron-dense cytoplasmic aggregates with small fibrogranular components. The cytoplasmic aggregates fragment and disperse, and cannot be detected in vitellogenic oocytes. The young oocytes become surrounded by a vitelline envelope that appears to represent a secretory product of the oocyte. The previtellogenic oocytes are impermeable to horseradish peroxidase under both in vivo and in vitro conditions. In addition to mitochondria, dictyosomes, and abundant ribosomes, the ooplasm of the previtellogenic oocyte acquires both vesicular and lamellar forms of the rough-surfaced endoplasmic reticulum. In many areas, a dense homogeneous product appears within the cisternae of the endoplasmic reticulum and represents nascent yolk protein synthesized by the oocyte during early stages of vitellogenesis. Later in vitellogenesis, the oocyte becomes permeable to horseradish peroxidase under both in vivo and in vitro conditions. This change is associated with a massive process of micropinocytosis which is reflected in the presence of large numbers of vesicles of variable form and structure in the cortical ooplasm. Both spherical and tubular vesicles are present, as are coated and uncoated vesicles. Stages in the fusion of the vesicles with each other and with developing yolk platelets are illustrated. In the harvester oocytes, vitellogenesis is a process that involves both autosynthetic and heterosynthetic mechanisms.  相似文献   

18.
Histology of the ovary of the spider mite Tetranychus urticae is described light and electron microscopically with special reference to oogenesis and vitellogenesis of this mite. Morphology of the ovary is comparable to the typical sac-like chelicerate ovary with oocytes protruding from the ovarian surface, thus resulting in a grape-like appearance. According to different oogenetic stages, a germ, pre-vitellogenic and vitellogenic region can be observed. Oogonia and primary oocytes characterized by extranuclear material or 'yolk nuclei' are situated in the germ region. Primary oocytes develop into three-nucleated nurse cells situated in the periphery of the pre-vitellogenic region, and into pre-vitellogenic oocytes protruding from the ovarian surface. Growth of oocytes is performed while they are in ovarian pouches by uptake of nurse cell cytoplasm and following extraovarian yolk precursors. Intraoocyte yolk synthesis interpreted from altered cytoplasmic organelles also occurs. Processes taking place during oogenesis and vitellogenesis in T. urticae are compared to published information on yolk synthesis of other animal species.  相似文献   

19.
The endomembranous system of Serrasalmus spilopleura oocyte secondary growth was analysed using structural and ultrastructural cytochemical techniques. In vitellogenic oocytes, the endoplasmic reticulum components, the nuclear envelope intermembranous space, some Golgi dictiossomes, lysosomes, yolk granules, regions of the egg envelope and sites of the follicle cells react to acid phosphatase detection (AcPase). The cortical alveoli, some heterogeneous cytoplasmic structures, regions of the egg envelope, and sites of the follicle cells are strongly contrasted by osmium tetroxide and zinc iodide impregnation (ZIO). The endoplasmic reticulum components, some vesicles, and sites of the follicle cells also react to osmium tetroxide and potassium iodide impregnation (KI). The biosynthetic pathway of lysosomal proteins, such as acid phosphatase, required for vitellogenesis, involves the endoplasmic reticulum, Golgi complex, vesicles with inactive hydrolytic enzymes, and, finally, lysosomes. In S. spilopleura oocytes at secondary growth, the endomembranous system takes part in the production of the enzymes needed for vitellogenesis, and in the metabolism of yolk exogenous components (AcPase detection). The endomembranous system compartments also show reduction capacity (KI reaction) and are involved in the metabolism of proteins rich in SH‐groups (ZIO reaction).  相似文献   

20.
Two vitellogenic female-specific haemolymph proteins and one yolk-specific protein were demonstrated in Dysdercus intermedius. The yolk-specific protein includes all female-specific protein subunits. A cyclical change in the temporal pattern of the female specific polypeptides occurs during the first gonadotropic cycle. Female specific polypeptides do not occur in the haemolymph during the pre-vitellogenic stages of oöcyte development and during formation of the chorion. Volume changes of the corpus allatum are correlated with changes in yolk precursors in the haemolymph. Allatectomy by decapitation of the female during the early pre-vitellogenic stage suppress the formation of the major female-specific polypeptides. Applications of juvenile hormone-III or corpus allatum transplantation restores the ability to produce these polypeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号