首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Genetic control of human NK cell repertoire   总被引:28,自引:0,他引:28  
Through differential killer cell Ig-like receptor (KIR) and CD94:NKG2 gene expression, human NK cells generate diverse repertoires, each cell having an inhibitory receptor for autologous HLA class I. Using a new method for measuring repertoire difference that integrates multiple flow cytometry parameters, we found individual repertoire stability, but population variability. Correlating repertoire differences with KIR and HLA genotype for 85 sibling pairs reveals the dominant influence of KIR genotype; HLA genotype having a subtle, modulating effect on relative KIR expression frequencies. HLA and/or KIR genotype also influences CD94:NKG2A expression. After HLA-matched stem cell transplantation, KIR repertoires either recapitulated that of the donor or were generally depressed for KIR expression. Human NK cell repertoires are defined by combinations of variable KIR and HLA class I genes and conserved CD94:NKG2 genes.  相似文献   

2.
The proximal region of the NK gene complex encodes the NKR-P1 family of killer cell lectin-like receptors which in mice bind members of the genetically linked C-type lectin-related family, while the distal region encodes Ly49 receptors for polymorphic MHC class I molecules. Although certain members of the NKR-P1 family are expressed by all NK cells, we have identified a novel inhibitory rat NKR-P1 molecule termed NKR-P1C that is selectively expressed by a Ly49-negative NK subset with unique functional characteristics. NKR-P1C(+) NK cells efficiently lyse certain tumor target cells, secrete cytokines upon stimulation, and functionally recognize a nonpolymorphic ligand on Con A-activated lymphoblasts. However, they specifically fail to kill MHC-mismatched lymphoblast target cells. The NKR-P1C(+) NK cell subset also appears earlier during development and shows a tissue distribution distinct from its complementary Ly49s3(+) subset, which expresses a wide range of Ly49 receptors. These data suggest the existence of two major, functionally distinct populations of rat NK cells possessing very different killer cell lectin-like receptor repertoires.  相似文献   

3.
Killer cell Ig-like receptor (KIR) and CD94:NKG2A molecules were first defined as human NK cell receptors (NKR), but now are known to be expressed and to function on subpopulations of T cells. Here the repertoires of KIR and CD94:NKG2A expression by T cells from two donors were examined and compared with their previously defined NK cell repertoires. T cell clones generated from peripheral blood of both donors expressed multiple NKR in different combinations and used the range of receptors expressed by NK cells. In both donors alpha beta T cells less frequently expressed the inhibitory receptors CD94:NKG2A and KIR2DL1 than either gamma delta T cells or NK cells. In contrast to NK cells, not all NKR(+) T cells expressed an inhibitory receptor for autologous HLA class I. This lack of specific inhibitory NKR was especially apparent on alpha beta T cells of one donor. Overall, alpha beta T cells exhibited a distinct pattern of NKR expression different from that of gamma delta T and NK cells, which expressed highly similar NKR repertoires. In one donor, analysis of TCR rearrangement revealed a dominant subset of NKR(+) T cells sharing identical TCR alpha- and beta-chains. Remarkably, among 55 T cell clones sharing the same TCR alpha beta rearrangement 18 different KIR phenotypes were seen, suggesting that KIR expression was initiated subsequently to TCR rearrangement.  相似文献   

4.
The major subset of human blood gammadelta T lymphocytes expresses the variable-region genes Vgamma9 and Vdelta2. These cells recognize non-peptidic phosphoantigens that are present in some microbial extracts, as well as the beta(2)-microglobulin-deficient Burkitt's lymphoma Daudi. Most cytotoxic human Vgamma9/Vdelta2 T cells express inhibitory natural killer cell receptors for HLA class I that downmodulate the responses of the gammadelta T lymphocytes against HLA class I expressing cells. In this study we show that transfection of the human beta(2)-microglobulin cDNA into Daudi cells markedly inhibits the cytotoxic and proliferative responses of human Vgamma9/Vdelta2 T cells. This provides direct evidence that the "innate" specificity of human Vgamma9/Vdelta2 T-lymphocytes for Daudi cells is uncovered by the loss of beta(2)m by Daudi. However, Daudi cells that express HLA class I in association with mouse beta(2)m at the cell surface are recognized by human Vgamma9/Vdelta2 T cells close to the same degree as the parental HLA class I deficient Daudi cell line. Thus, proper conformation of the HLA class I molecules is required for binding to natural killer cell receptors. Cloning of the HLA class I A, B, and C molecules of Daudi cells and transfer of the individual HLA class I molecules of Daudi cells into the HLA class I deficient recipient cell lines.221 and C1R demonstrate that for some human gammadelta T-cell clones cytolysis can be entirely inhibited by single HLA class I alleles while for other clones single HLA class I alleles only partially inhibit cytotoxicity. Thus, most human Vgamma9/Vdelta2 T cells represent a population of killer cells that evolved like NK cells to destroy target cells that have lost expression of individual HLA class I molecules but with a specificity that is determined by the Vgamma9/Vdelta2 TCR.  相似文献   

5.
Murine natural killer (NK) cells express inhibitory Ly49 receptors for MHC class I molecules, which allows for “missing self” recognition of cells that downregulate MHC class I expression. During murine NK cell development, host MHC class I molecules impose an “educating impact” on the NK cell pool. As a result, mice with different MHC class I expression display different frequency distributions of Ly49 receptor combinations on NK cells. Two models have been put forward to explain this impact. The two-step selection model proposes a stochastic Ly49 receptor expression followed by selection for NK cells expressing appropriate receptor combinations. The sequential model, on the other hand, proposes that each NK cell sequentially expresses Ly49 receptors until an interaction of sufficient magnitude with self-class I MHC is reached for the NK cell to mature. With the aim to clarify which one of these models is most likely to reflect the actual biological process, we simulated the two educational schemes by mathematical modelling, and fitted the results to Ly49 expression patterns, which were analyzed in mice expressing single MHC class I molecules. Our results favour the two-step selection model over the sequential model. Furthermore, the MHC class I environment favoured maturation of NK cells expressing one or a few self receptors, suggesting a possible step of positive selection in NK cell education. Based on the predicted Ly49 binding preferences revealed by the model, we also propose, that Ly49 receptors are more promiscuous than previously thought in their interactions with MHC class I molecules, which was supported by functional studies of NK cell subsets expressing individual Ly49 receptors.  相似文献   

6.
Natural killer (NK) cells are circulating lymphocytes that function in innate immunity and placental reproduction. Regulating both development and function of NK cells is an array of variable and conserved receptors that interact with major histocompatibility complex (MHC) class I molecules. Families of lectin‐like and immunoglobulin‐like receptors are determined by genes in the natural killer complex (NKC) and leukocyte receptor complex (LRC), respectively. As a consequence of the strong, varying pressures on the immune and reproductive systems, NK cell receptors and their MHC class I ligands evolve rapidly, are highly diverse and exhibit dramatic species‐specific differences. The variable, polymorphic family of killer cell immunoglobulin‐like receptors (KIR) that regulate human NK cell development and function arose recently, from a single‐copy gene during the evolution of simian primates. Our studies of KIR and MHC class I genes in representative species show how these two unlinked but functionally intertwined genetic complexes have co‐evolved. In humans, combinations of KIR and HLA class I factors are associated with infectious diseases, including HIV/AIDS, autoimmunity, reproductive success and the outcome of therapeutic transplantation. The extraordinary, and unanticipated, divergence of human NK cell receptors and MHC class I ligands from their mouse counterparts can in part explain the difficulties experienced in finding informative mouse models for human diseases. Non‐human primate models have far greater potential, but to realize their promise will first require more complete definition of the genetics and function of KIR and MHC variation in non‐human primate species, at a level comparable to that achieved for the human species.  相似文献   

7.
Modulation of inhibitory and activating natural killer (NK) receptor ligands on tumor cells represents a promising therapeutic approach against cancer, including multiple myeloma (MM). Human leukocyte antigen (HLA) class I molecules, the NK cell inhibitory killer cell immunoglobulin-like receptor (KIR) ligands, are critical determinants of NK cell activity. Proteasome inhibitors have demonstrated significant anti-myeloma activity in MM patients. In this study, we evaluated the effect of proteasome inhibitors on the surface expression of class I in human MM cells. We found that proteasome inhibitors downregulated surface expression of class I in a dose- and time-dependent manner in MM cell line and patient MM cells. No significant changes in the expression of the MHC class I chain-related molecules (MIC) A/B and the UL16-binding proteins (ULBPs) 1–3 were observed. Downregulation of class I by lactacystin (LAC) significantly enhances NK cell-mediated lysis of MM. Furthermore, the downregulation degree of class I was associated with increased susceptibility of myeloma cells to NK cell killing. HLA blocking antibody produced results that were similar to the findings from proteasome inhibitor. Taken together, our data suggest that proteasome inhibitors, possible targeting inhibitory KIR ligand class I on tumor cells, may contribute to the activation of cytolytic effector NK cells in vitro, enhancing their anti-myeloma activity. Our findings provide a rationale for clinical evaluation of proteasome inhibitor, alone or in combination, as a novel approach to immunotherapy of MM.  相似文献   

8.
Development of natural killer cells from hematopoietic stem cells   总被引:1,自引:0,他引:1  
  相似文献   

9.
The lack of classical HLA molecules on trophoblast prevents allorecognition by maternal T lymphocytes, but poses the problem of susceptibility to NK lysis. Expression of the nonclassical class I molecule, HLA-G, on cytotrophoblast may provide the protective effect. However, the class I-negative syncytiotrophoblast escapes NK lysis by maternal PBL. In addition, while HLA-G-expressing transfectants of LCL.721.221 cells are protected from lymphokine-activated killer lysis, extravillous cytotrophoblast cells and HLA-G-expressing choriocarcinoma cells (CC) are not. The aim of this work was therefore to clarify the role of HLA class I expression on trophoblast cell resistance to NK lysis and on their susceptibility to lymphokine-activated killer lysis. Our results showed that both JAR (HLA class I-negative) and JEG-3 (HLA-G- and HLA-Cw4-positive) cells were resistant to NK lysis by PBL and were equally lysed by IL-2-stimulated PBL isolated from a given donor. In agreement, down-regulating HLA class I expression on JEG-3 cells by acid treatment, masking these molecules or the putative HLA-G (or HLA-E) receptor CD94/NKG2 and the CD158a/p58.1 NKR with mAbs, and inducing self class I molecule expression on JAR cells did not affect NK or LAK lysis of CC. These results demonstrate that the resistance of CC to NK lysis mainly involves an HLA class I-independent mechanism(s). In addition, we show that the expression of a classical class I target molecule (HLA-B7) on JAR cells is insufficient to induce lysis by allospecific polyclonal CTL.  相似文献   

10.
Natural killer (NK) cells and dendritic cells (DC) are thought to play critical roles in the first phases of HIV infection. In this study, we examined changes in the NK cell repertoire and functions occurring in response to early interaction with HIV-infected DC, using an autologous in vitro NK/DC coculture system. We show that NK cell interaction with HIV-1-infected autologous monocyte-derived DC (MDDC) modulates NK receptor expression. In particular, expression of the CD85j receptor on NK cells was strongly down-regulated upon coculture with HIV-1-infected MDDC. We demonstrate that CD85j(+) NK cells exert potent control of HIV-1 replication in single-round and productively HIV-1-infected MDDC, whereas CD85j(-) NK cells induce a modest and transient decrease of HIV-1 replication. HIV-1 suppression in MDCC by CD85j(+) NK cells required cell-to-cell contact and did not appear mediated by cytotoxicity or by soluble factors. HIV-1 inhibition was abolished when NK-MDDC interaction through the CD85j receptor was blocked with a recombinant CD85j molecule, whereas inhibition was only slightly counteracted by blocking HLA class I molecules, which are known CD85j ligands. After masking HLA class I molecules with specific antibodies, a fraction of HIV-1 infected MDDC was still strongly stained by a recombinant CD85j protein. These results suggest that CD85j(+) NK cell inhibition of HIV-1 replication in MDDC is mainly mediated by CD85j interaction with an unknown ligand (distinct from HLA class I molecules) preferentially expressed on HIV-1-infected MDDC.  相似文献   

11.
12.
13.
In haplo-identical hematopoietic transplantation, donor vs. recipient natural killer (NK) cell alloreactivity derives from a mismatch between donor NK clones bearing inhibitory killer cell Ig-like receptors (KIR) for self-HLA class I molecules and their HLA class I ligands (KIR ligands) on recipient cells. When faced with mismatched allogeneic targets, these NK clones sense the missing expression of self-HLA class I alleles and mediate alloreactions. KIR ligand mismatches in the GvH direction trigger donor vs. recipient NK cell alloreactions, which improve engraftment, do not cause GvHD and control relapse in AML patients . The mechanism whereby alloreactive NK cells exert their benefits in transplantation has been elucidated in mouse models. The infusion of alloreactive NK cells ablates (i) leukemic cells, (ii) recipient T cells that reject the graft and (iii) recipient DC that trigger GvHD, thus protecting from GvHD.  相似文献   

14.
15.
Natural killer (NK) cells require interaction of inhibitory surface receptors with human leukocyte antigen (HLA) ligands during development to acquire functional competence in a process termed "licensing." The quantity of HLA required for this process is unknown. Two polymorphisms affecting HLA-C surface expression (rs9264942 and rs67384697) have recently been identified, and shown to influence progression of HIV infection. We typed a cohort of healthy donors for the two HLA-C-related polymorphisms, KIR2DL1 and KIR2DL3, and their respective HLA-C ligands and analyzed how HLA ligands influenced licensing status of killer cell immunoglobulin-like receptor (KIR)+ NK cells in terms of degranulation and cytokine production in response to HLA-deficient target cells. The presence of respective HLA class I ligands increased the function of KIR2DL1+ and KIR2DL3+ NK cells in a dose-dependent manner. In contrast, neither of the HLA-C-related polymorphisms nor the quantity of cell surface HLA-C had any significant effect on NK cell function. Interestingly, HLA-Cw7-an HLA-C allele with low surface expression-licensed KIR2DL3+ NK cells more strongly than any other KIR2DL3 ligand. The quantity of cell surface HLA-C does not appear to influence licensing of NK cells, and the HLA-C-related polymorphisms presumably influence HIV progression through factors unrelated to NK cell education.  相似文献   

16.
NK cell activity is partially controlled through interactions between killer Ig-like receptors (KIR) on NK cells and their respective HLA class I ligands. Independent segregation of HLA and KIR genes, along with KIR specificity for particular HLA allotypes, raises the possibility that any given individual may express KIR molecules for which no ligand is present. Inhibitory receptor genes KIR2DL2/3 and KIR2DL1 were present in nearly all subjects sampled in this study, whereas their respective activating homologs, KIR2DS2 and KIR2DS1, are each present in about half of the subjects. In this work we report that subjects with activating KIR2DS1 and/or KIR2DS2 genes are susceptible to developing psoriatic arthritis, but only when HLA ligands for their homologous inhibitory receptors, KIR2DL1 and KIR2DL2/3, are missing. Absence of ligands for inhibitory KIRs could potentially lower the threshold for NK (and/or T) cell activation mediated through activating receptors, thereby contributing to pathogenesis of psoriatic arthritis.  相似文献   

17.
Natural killer (NK) cells are circulating lymphocytes that play an important role in the control of viral infections and tumors. Their functions are regulated by several activating and inhibitory receptors. A subset of these receptors in human NK cells are the killer immunoglobulin-like receptors (KIRs), which interact with the highly polymorphic MHC class I molecules. One important function of NK cells is to detect cells that have down-regulated MHC expression (missing-self). Because MHC molecules have non polymorphic regions, their expression could have been monitored with a limited set of monomorphic receptors. Surprisingly, the KIR family has a remarkable genetic diversity, the function of which remains poorly understood. The mouse cytomegalovirus (MCMV) is able to evade NK cell responses by coding “decoy” molecules that mimic MHC class I. This interaction was suggested to have driven the evolution of novel NK cell receptors. Inspired by the MCMV system, we develop an agent-based model of a host population infected with viruses that are able to evolve MHC down-regulation and decoy molecules. Our simulations show that specific recognition of MHC class I molecules by inhibitory KIRs provides excellent protection against viruses evolving decoys, and that the diversity of inhibitory KIRs will subsequently evolve as a result of the required discrimination between host MHC molecules and decoy molecules.  相似文献   

18.

Background

Despite Natural Killer (NK) cells were originally defined as effectors of spontaneous cytotoxicity against tumors, extremely limited information is so far available in humans on their capability of killing cancer cells in an autologous setting.

Methodology/Principal Findings

We have established a series of primary melanoma cell lines from surgically resected specimens and here showed that human melanoma cells were highly susceptible to lysis by activated autologous NK cells. A variety of NK cell activating receptors were involved in killing: particularly, DNAM-1 and NKp46 were the most frequently involved. Since self HLA class I molecules normally play a protective role from NK cell-mediated attack, we analyzed HLA class I expression on melanomas in comparison to autologous lymphocytes. We found that melanoma cells presented specific allelic losses in 50% of the patients analyzed. In addition, CD107a degranulation assays applied to NK cells expressing a single inhibitory receptor, revealed that, even when expressed, specific HLA class I molecules are present on melanoma cell surface in amount often insufficient to inhibit NK cell cytotoxicity. Remarkably, upon activation, also the so called “unlicensed” NK cells, i.e. NK cells not expressing inhibitory receptor specific for self HLA class I molecules, acquired the capability of efficiently killing autologous melanoma cells, thus additionally contributing to the lysis by a mechanism independent of HLA class I expression on melanoma cells.

Conclusions/Significance

We have investigated in details the mechanisms controlling the recognition and lysis of melanoma cells by autologous NK cells. In these autologous settings, we demonstrated an efficient in vitro killing upon NK cell activation by mechanisms that may be related or not to abnormalities of HLA class I expression on melanoma cells. These findings should be taken into account in the design of novel immunotherapy approaches against melanoma.  相似文献   

19.
Natural killer (NK) cells represent a highly specialized lymphoid population characterized by a potent cytolytic activity against tumor or virally infected cells. Their function is finely regulated by a series of inhibitory or activating receptors. The inhibitory receptors, specific for major histocompatibility complex (MHC) class I molecules, allow NK cells to discriminate between normal cells and cells that have lost the expression of MHC class I (e.g., tumor cells). The major receptors responsible for NK cell triggering are NKp46, NKp30, NKp44 and NKG2D. The NK-mediated lysis of tumor cells involves several such receptors, while killing of dendritic cells involves only NKp30. The target-cell ligands recognized by some receptors have been identified, but those to which major receptors bind are not yet known. Nevertheless, functional data suggest that they are primarily expressed on cells upon activation, proliferation or tumor transformation. Thus, the ability of NK cells to lyse target cells requires both the lack of surface MHC class I molecules and the expression of appropriate ligands that trigger NK receptors.  相似文献   

20.
NK cell function is regulated by Ly49 receptors in mice and killer cell Ig-like receptors in humans. Although inhibitory Ly49 and killer cell Ig-like receptors predominantly ligate classical MHC class I molecules, recent studies suggest that their activating counterparts recognize infection. The quintessential example is resistance to the mouse CMV in C57BL/6 mice, which depends on the functional recognition of m157, a mouse CMV-encoded MHC class I-like molecule, by Ly49H, an activating NK cell receptor. We have taken advantage of the natural variation in closely related members of the Ly49C-like receptors and the availability of Ly49 crystal structures to understand the molecular determinants of the Ly49H-m157 interaction and to identify amino acid residues discriminating between m157 binding and nonbinding receptors. Using a site-directed mutagenesis approach, we have targeted residues conserved in receptors binding to m157 (Ly49H and Ly49I(129)) but different from receptors lacking m157 recognition (Ly49C, Ly49I(B6), and Ly49U). Wild-type and mutant receptors were transfected into reporter cells, and physical binding as well as functional activation by m157 was studied. Our findings suggested that the Ly49 MHC class I contact "site 2," I226, may not be involved in m157 binding. In contrast, residue Y146 and G151, mapping at the receptor homodimer interface, are likely critical for functional recognition of the m157 glycoprotein. Our combined functional and three-dimensional modeling approach suggested that the architecture of the Ly49H dimer is crucial to accessing m157, but not MHC class I. These results link Ly49 homodimerization variability to the direct recognition of pathogen products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号