首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to quantitatively evaluate the effect of the illumination area and the thickness of the optical panel (OP) on the biomass growth of Chlorella vulgaris (C. vulgaris) algae with simultaneous removal of nutrients. For this purpose, three different thicknesses of OPs were used and designated as follows: 4 mm v-cut OP (Run 1), 6 mm v-cut OP (Run 2) and 8 mm v-cut OP (Run 3). The results indicated that the Run 2 and Run 3 samples possessed higher chlorophyll content, as calculated per cell and per unit area of the cell volume, and a shorter doubling time compared to the Run 1 samples. The growth of the biomass using Run 2 and Run 3 was approximately 11.18 %, and this growth was higher than that of Run 1. Furthermore, higher nutrient removal was observed with Run 2 than Run 1. The nutrient removal, biomass growth and specific growth rate for the Run 2 and Run 3 fractions were found to be almost identical. However, in terms of economic consideration, Run 2 with simultaneous nutrient removal was more effective than Run 1 and Run 3 in cultivating the microalgae C. vulgaris.  相似文献   

2.
The present study investigated growth and biodegradation of 4-bromophenol (4-BP) by Arthrobacter chlorophenolicus A6 in batch shake flasks as well as in a continuously operated packed bed reactor (PBR). Batch growth kinetics of A. chlorophenolicus A6 in presence of 4-BP followed substrate inhibition kinetics with the estimated biokinetic parameters value of μ max = 0.246 h?1, K i = 111 mg L?1, K s  = 30.77 mg L?1 and K = 100 mg L?1. In addition, variations in the observed and theoretical biomass yield coefficient and maintenance energy of the culture were investigated at different initial 4-BP concentration. Results indicates that the toxicity tolerance and the biomass yield of A. chlorophenolicus A6 towards 4-BP was found to be poor as the organism utilized the substrate mainly for its metabolic maintenance energy. Further, 4-BP biodegradation performance by the microorganism was evaluated in a continuously operated PBR by varying the influent concentration and hydraulic retention time in the ranges 400–1,200 mg L?1 and 24–7.5 h, respectively. Complete removal of 4-BP was achieved in the PBR up to a loading rate of 2,276 mg L?1 day?1.  相似文献   

3.
The effects of different fertilizers [the control with no fertilizer (C), inorganic fertilization (I), combined inorganic and organic fertilizer (IOHumax1) and (IOHumax2)] on yield and nutrients contents of two spinach varieties (“Balady and Virofly”) were investigated. Significant effects of variety were observed on vegetative growth and nutrients contents. While Virofly had significantly higher leaf area (236.96 cm2), stem diameter (7.43 mm) and fresh weight of vegetative and radical parts (15.05 and 0.96 g, respectively), Balady had significantly higher chlorophyll and carotene contents (0.0023 and 0.0018 g/g fw, respectively). No significant impacts of variety on vitamin C, nitrite, nitrate and oxalates contents were observed. IOHumax2 treatment (4 g/l of Humax + 100 mg/l of NH4NO3 per plant fertigation?1) enhanced stem diameter and root growth and significantly improved the yield by produced plants with higher stem length, leaf number and surface area. This treatment improved the quality of plant by increasing vitamin C content and reducing nitrite and oxalates contents. No significant effects of different fertilizers were observed on NO3 ? content. A fairly balanced yield/NO3 ? and oxalates content can be achieved with combined inorganic and organic fertilizer (IOHumax1) and (IOHumax2).  相似文献   

4.
There has been renewed interest in the combined use of high-rate algal ponds (HRAP) for wastewater treatment and biofuel production. Successful wastewater treatment requires year-round efficient nutrient removal while high microalgal biomass yields are required to make biofuel production cost-effective. This paper investigates the year-round performance of microalgae in a 5-ha demonstration HRAP system treating primary settled wastewater in Christchurch, New Zealand. Microalgal performance was measured in terms of biomass production, nutrient removal efficiency, light absorption and photosynthetic potential on seasonal timescales. Retention time-corrected microalgal biomass (chlorophyll a) varied seasonally, being lowest in autumn and winter (287 and 364 mg m?3day?1, respectively) and highest in summer (703 mg m?3day?1), while the conversion efficiency of light to biomass was greatest in winter (0.39 mg Chl- a per μmol) and lowest in early summer (0.08 mg Chl- a per μmol). The percentage of ammonium (NH4–N) removed was highest in spring (79 %) and summer (77 %) and lowest in autumn (47 %) and winter (53 %), while the efficiency of NH4–N removal per unit biomass was highest in autumn and summer and lowest in winter and spring. Chlorophyll-specific light absorption per unit biomass decreased as total chlorophyll increased, partially due to the package effect, particularly in summer. The proportional increase in the maximum electron transport rate from winter to summer was significantly lower than the proportional increase in the mean light intensity of the water column. We concluded that microalgal growth and nutrient assimilation was constrained in spring and summer and carbon limitation may be the likely cause.  相似文献   

5.
Products from phototrophic dinoflagellates such as toxins or pigments are potentially important for applications in the biomedical sciences, especially in drug development. However, the technical cultivation of these organisms is often problematic due to their sensitivity to hydrodynamic (shear) stress that is a characteristic of suspension-based closed photobioreactors (PBRs). It is thus often thought that most species of dinoflagellates are non-cultivable at a technical scale. Recent advances in the development of biofilm PBRs that rely on immobilization of microalgae may hold potential to circumvent this major technical problem in dinoflagellate cultivation. In the present study, the dinoflagellate Symbiodinium voratum was grown immobilized on a Twin-Layer PBR for isolation of the carotenoid peridinin, an anti-cancerogenic compound. Biomass productivities ranged from 1.0 to 11.0 g m?2 day?1 dry matter per vertical growth surface and a maximal biomass yield of 114.5 g m?2, depending on light intensity, supplementary CO2, and type of substrate (paper or polycarbonate membrane) used. Compared to a suspension culture, the performance of the Twin-Layer PBRs exhibited significantly higher growth rates and maximal biomass yield. In the Twin-Layer PBR a maximal peridinin productivity of 24 mg m?2 day?1 was determined at a light intensity of 74 μmol m?2 s?1, although the highest peridinin content per dry weight (1.7 % w/w) was attained at lower light intensities. The results demonstrate that a biofilm-based PBR that minimizes hydrodynamic shear forces is applicable to technical-scale cultivation of dinoflagellates and may foster biotechnological applications of these abundant marine protists.  相似文献   

6.
The present work was aimed at analysing the role of inoculated microalgae in nutrient dynamics, bioremediation and biomass production of sewage water. Preliminary microscopic analyses of sewage water revealed the presence of different algal groups, with predominance of Cyanophyta. Among the inoculated strains, Calothrix showed highest dry cell weight (916.67 mg L?1), chlorophyll and carotenoid content in tap water + sewage water (1:1) treatment. Significant removal of NO3-N ranging from 57–78% and PO4-P (44–91%) was recorded in microalgae inoculated tap water + sewage water. The total dissolved solids and electrical conductivity of tap water + sewage water after incubation with Calothrix sp. decreased by 28.5 and 28.0%, accompanied by an increase in dissolved oxygen from 4.4 to 6.4 mg L?1 on the 20th day. Our investigation revealed the robustness of Calothrix sp. in sequestering nutrients (N and P), improving water quality and proliferating in sewage water.  相似文献   

7.
Understanding the dynamics of upwelling systems, especially the interactions between nutrients and light, has benefited from the application of models of varying complexity. Validation of such models using unialgal cultures or field observations has often proven difficult, but short-term incubations of contained natural assemblages and use of instantaneous physiological indicators offer an alternative approach. In May and June 1996, phytoplankton communities deep in the euphotic zone were sampled from nearly identical physical environments. Replicate samples (20 l volume) were incubated on deck at 50% surface irradiance with either no nutrient additions (Controls) or additions of 20 μM nitrate (Enrichments). Over 24 h, variable fluorescence (F v:F m), nitrate reductase activity (NR), nutrients, chlorophyll a and particulate C and N were monitored. Initial chlorophyll a (~3 μg l?1), phosphate (~0.2 μM), nitrate (~1.5 μM) and silicate (~3 μM) were similar in both months. Changes in NR and F v:F m indicated clear physiological responses to changes in irradiance and added nitrate that differed between months. In May, Controls and Enrichments responded in the same way. F v:F m stayed constant (0.5), chlorophyll a increased slightly, and NR activity increased markedly in all samples. In contrast, in June, treatments responded quite differently. F v:F m was near the theoretical maximum (0.7–0.8) initially and remained constant in Enrichments, but fell sharply in Controls. Declines in controls were also seen for chlorophyll a, and NR activity. Thus, the addition of 20 μM nitrate had a significant effect even though ambient levels of nitrate (>1 μM) should not have been limiting. Small (<20 μm) flagellates predominated in the May samples, but in June large and chain-forming centric diatoms constituted a significant proportion of the phytoplankton community. We conclude that the response of a phytoplankton community to environmental changes can depend on factors that are poorly represented by bulk measurements of chlorophyll, nutrients and particulate elements.  相似文献   

8.
A packed bed reactor (PBR) was fed with nitrate containing synthetic wastewater or effluent from a sequencing batch reactor used for nitrification. The C source introduced into the PBR consisted of volatile fatty acids (VFAs) produced from anaerobic acidogenesis of food wastes. When nitrate loading rates ranged from 0.50 to 1.01 kg N/m3·d, the PBR exhibited 100∼98.8% NO3 -N removal efficiencies and nitrite concentrations in the effluent ranged from 0 to 0.6 NO2 -N mg/L. When the PBR was further investigated to determine nitrate removal activity along the bed height using a nitrate loading rate less than 1.01 kg N/m3·d, 100% nitrate removal efficiency was observed. Approximately 83.2% nitrate removal efficiency was observed in the lower 50% of the packed-bed height. When reactor performance at a C/N ratio of 4 and a C/N ratio of 5 was compared, the PBR showed better removal efficiency (96.5%) of nitrate and less nitrite concentration in the effluent at the C/N ratio of 5. VFAs were found to be a good alternative to methanol as a carbon source for denitrification of a municipal wastewater containing 40 mg-N/L.  相似文献   

9.
The present study is aimed at assessing the extent of arsenic (As) toxicity under three different light intensities—optimum (400 μmole photon m?2 s?1), sub-optimum (225 μmole photon m?2 s?1), and low (75 μmole photon m?2 s?1)—exposed to Helianthus annuus L. var. DRSF-113 seedlings by examining various physiological and biochemical parameters. Irrespective of the light intensities under which H. annuus L. seedlings were grown, there was an As dose (low, i.e., 6 mg kg?1 soil, As1; and high, i.e., 12 mg kg?1 soil, As2)-dependent decrease in all the growth parameters, viz., fresh mass, shoot length, and root length. Optimum light-grown seedlings exhibited better growth performance than the sub-optimum and low light-grown seedlings; however, low light-grown plants had maximum root and shoot lengths. Accumulation of As in the plant tissues depended upon its concentration used, proximity of the plant tissue, and intensity of the light. Greater intensity of light allowed greater assimilation of photosynthates accompanied by more uptake of nutrients along with As from the medium. The levels of chlorophyll a, b, and carotenoids declined with increasing concentrations of As. Seedlings acquired maximum Chl a and b under optimum light which were more compatible to face As1 and As2 doses of As, also evident from the overall status of enzymatic (SOD, POD, CAT, and GST) and non-enzymatic antioxidant (Pro).  相似文献   

10.
Salinity is a widespread adverse environmental problem globally, and significantly limits crop production. In this study, the possibility of enhancing salinity stress tolerance of Swiss chard (Beta vulgaris L. var. cicla) by 5-aminolevulinic acid (ALA) foliar application was investigated. The Swiss chard plants were grown in hydroponic culture. Twelve-week-old uniform seedlings were treated by 0 and 40 mM saline regimes generated by the mixture of sodium chloride and sodium sulfate (molar ratio NaCl:Na2SO4 = 9:1), and were foliar-sprayed with 0 and 60 μM L?1 ALA (every 3 days) for 6 days; then the plants were treated for another 7 days (every 3 day) with increased concentration of salinity and ALA, 80 mM and 120 μM L?1. Salinity without ALA application significantly decreased plant growth [43 % in shoot dry weight (DW), 21 % in root DW, 24 % in relative growth rate (RGR), 43 % in leaf area (LA)], water uptake [20.8 % in relative water content (RWC), 47.9 % in osmotic potential (OP)], chlorophyll (Chl) a content (10 %), Pn (36 %), Gs (72 %) and Tr (59 %) compared with those in control plants; however, under saline conditions, ALA foliar application improved plant growth (49.7 % in shoot DW, 27 % in root DW, 42.3 % in RGR, 72.1 % in LA) and increased RWC (12 %), Chl a content (10 %) and photosynthetic parameters (27 % in Pn, 28 % in Gs, 14 % in Tr) compared with those in untreated plants. Salinity significantly increased Na+ content, resulting in the reduction of Mg2+ and K+ contents. ALA foliar application alleviated ionic toxicity through the reduction of Na+ content and Na+/K+ ratio. On the other hand, it increased total nitrogen and glycine betaine (GB) content. ALA foliar application slightly reduced malondialdehyde (MDA) content, indicating that ALA has the potential to alleviate oxidative stress in salinity-stressed Swiss chard.  相似文献   

11.
Discontinuous airlift mixing was realized by injecting pressured air at time intervals with a frequency between 0.033 and 0.25 Hz (at 80 kPa; i.e., every 4–30 s; valve opening time 800 ms) into outdoor flat panel photobioreactors ( $ 200\, \times \,100\, \times \,2.1\,{\text{cm}} $ ). This caused a flow velocity between 2 and 20 cm s?1 of the culture medium within the photobioreactor and the mixing time was between 38 and 103.5 s, requiring 0.175–1.340 Lgas volume L photobioreactor volume ?1  min?1 pressured air. In order to detect the effect on growth of Scenedesmus obliquus during outdoor experiments and to be able to compare obtained results, a batch run with an airlift frequency of 0.25 Hz was simultaneously used as control. Growth at different airlift frequencies was measured by the increase of cell dry weight (CDW) during 3–5 days and biomass yield on light energy was calculated. With increasing airlift frequencies, growth increased from 52 to 91 % compared to the control. When CDW was at around 1.0–1.5 g L?1, airlift frequency had no effect on growth, indicating that mass transfer gradients of nutrients and gas were not the limiting factors of growth. Above 1.5 g CDW L?1, growth increased with increasing airlift frequency and light limitation for a single cell occurred. This effect was observed during low and high irradiance and it is concluded that a higher mean flow causes a better light distribution, resulting in an enhanced growth. Biomass productivity and demand of pressured air are correlated logarithmically, which enables to save mixing energy during cultivation.  相似文献   

12.
Anaerobically digested stillage (ADS) requires treatment before being discharged into water bodies or soils to avoid adverse effects. Phytofiltration systems are eco-friendly technologies for wastewater treatment, and they simultaneously serve as a source of biomass for biofuel production. The aim of the present study was to investigate the phytofiltration of ADS using Azolla sp. The effects of the ADS strength (dilutions 1:?50 and 1?:?25 v/v) and initial biomass density (IBD) [15.44 (IBD1) and 23.16 (IBD2) g dry weight (dw) m?2] on plant growth and pollutant removal were assessed. Productivities obtained at ADS 1:?50 (2.93 and 3.04 g m?2 d?1 for IBD1 and IBD2, respectively) were not significantly different from those of a synthetic medium (2.56 and 3.15 g m?2 for IBD1 and IBD2, respectively). Higher organic matter removal was found using ADS at 1:?25 than that obtained using ADS 1:?50 (52.16–53.34 vs 32.29–38.16%), while no IBD effect was observed. The nutrient concentrations in ADS were reduced significantly, especially the concentrations of NH4-N (75.11–82.54%), PO4-P (88.72–92.90%) and SO4-S (55.95–66.61%). The conversion of nutrients from ADS into Azolla biomass may result in an effective way to produce an attractive feedstock for biofuel production.  相似文献   

13.
This research studied the effects of inorganic nutrient removal by free and immobilized Scenedesmus bijugatus cells, measured by algal growth (i.e., the chlorophyll a concentration) and the efficiency of the uptake of inorganic nutrients by the cells (uptake rate (b) and removal percentage) in water samples from the organically polluted Pinang River estuary (PRE). Water samples from the PRE were collected during low and high tide. S. bijugatus cells had a higher growth rate when incubated in low tide PRE water samples compared to high tide PRE water samples, with a growth rate of 0.29 µgml?1d?1 and 0.06 µgml?1d?1 for free and immobilized cells, respectively. S. bijugatus was able to more efficiently remove nitrogen, especially ammonium (81–94%), compared to phosphate (62–88%) from both low and high tide water samples. S. bijugatus cells in low tide PRE water samples recorded highest phosphate (0.36 mgL?1d?1 and 0.25 mgL?1d?1 for free and immobilized cells, respectively) and ammonium uptake rates (0.44 mgL?1d?1 and 0.29 mgL?1d?1 for free and immobilized cells respectively). Both inorganic nutrient removal and microalgal cell growth were not significantly different between free and immobilized S. bijugatus (p > 0.05). The data obtained indicated that the removal of nutrients by microalgae was affected by salinity and the immobilization technique applied may have good potential for bioremediation.  相似文献   

14.

Scenedesmus is a genus of microalgae employed for several industrial uses. Industrial cultivations are performed in open ponds or in closed photobioreactors (PBRs). In the last years, a novel type of PBR based on immobilized microalgae has been developed termed porous substrate photobioreactors (PSBR) to achieve significant higher biomass density during cultivation in comparison to classical PBRs. This work presents a study of the growth of Scenedesmus vacuolatus in a Twin Layer System PSBR at different light intensities (600 μmol photons m−2 s−1 or 1000 μmol photons m−2 s−1), different types and concentrations of the nitrogen sources (nitrate or urea), and at two CO2 levels in the gas phase (2% or 0.04% v/v). The microalgal growth was followed by monitoring the attached biomass density as dry weight, the specific growth rate and pigment accumulation. The highest productivity (29 g m−2 d−1) was observed at a light intensity of 600 μmol photons m−2 s−1 and 2% CO2. The types and concentrations of nitrogen sources did not influence the biomass productivity. Instead, the higher light intensity of 1000 μmol photons m−2 s−1 and an ambient CO2 concentration (0.04%) resulted in a significant decrease of productivity to 18 and 10–12 g m−2 d−1, respectively. When compared to the performance of similar cultivation systems (15–30 g m−2 d−1), these results indicate that the Twin Layer cultivation System is a competitive technique for intensified microalgal cultivation in terms of productivity and, at the same time, biomass density.

  相似文献   

15.
Immobilization appears to be one of the best techniques to separate physically micro-algal cells from their culture medium for the purpose of algal tertiary wastewater treatment. High operation costs and other drawbacks of large-scale physico-chemical methods of harvest led to a comparative study of biotreatment systems. Before treatment began, Scenedesmus bicellularis cells were conditioned (starved) under four different sets of conditions: 1) non-immobilized cells with air bubbling (NCA); 2) cells immobilized in alginate beads (CBW) and 3) cells immobilized on alginate screens (CSW), all conditioned in synthetic culture medium depleted in N and P; 4) cells immobilized on alginate screens but conditioned in air at 100% relative humidity (CSA). Starvation was started under a light:dark photoperiod of 16:8 h. Starved cells were then used to treat wastewater for a 2-h period. The performance of each system was evaluated by determination of residual NH4-N and phosphate ions and by growth (dry weight, total chlorophyll, cell count, protein content). We then tested the capacity of microalgae immobilized on screens to eliminate N and P from a secondary municipal wastewater effluent and examined the influence of temperature and starvation. The quality of treated effluents was improved considerably with the system using CSA or CSW model. For CSA model, the protein content was 22.4 pg cell-1 compared to 12.9, 9.5, 9.1 pg cell-1 for NCA, CBW and CSW models, respectively. The CBW and CSW models were efficient for chlorophyll synthesis. The residual ammonium content in natural wastewater after 2 h of treatment with CSA model was 39% at 6±2 °C and reached 100% removal at 18±2 °C. With the first 2 h, the removal of orthophosphate was inferior (53%) at 6±2 °C, but 88 to 100% at 18±2 °C depending on starvation times. Long starvation times (72 or 96 h) caused damage to cells and uptake of nutrients was lower than with 54 h starvation. This work demonstrates that by using immobilization on screens, removal of nutrients from wastewater was higher than with conventional biological tertiary wastewater treatments (free cells or bead-shaped alginate particles).  相似文献   

16.
In this study, a novel halophilic cyanobacterium was isolated and identified as Euhalothece sp. KZN. This fast-growing strain had the ability to synthesise high yields (12 mg g?1) of C-phycocyanin (C-PC), a highly fluorescent blue light-harvesting pigment with numerous potential uses in the biotechnology and commercial sectors. This study elucidated the individual and interactive role of different nutrients in BG11 growth medium for enhancing C-PC production in Euhalothece sp. KZN. Nine components of BG11 medium were screened for their effects via fractional factorial design (FFD). The results revealed a significant influence of nutrients, viz. MgSO4, NaNO3 and minor nutrients (citric acid, EDTA-iron citrate, CaCl2 and Na2CO3) on C-PC yield. These three components were further explored for their optimum concentration for enhancing C-PC production using a central composite design. The optimum values for these essential nutrients were found to be as follows: 0.10 g L?1 of MgSO4, 1.67 g L?1 of NaNO3 and 10 mL L?1 of minor nutrients which resulted in a 280% increase in C-PC yield with predicted and actual values of 43.97 and 45 mg g?1, respectively. Euhalothece sp. KZN is a strong potential candidate for C-PC production and can be further exploited to produce this industrially valuable compound.  相似文献   

17.
Crop residues like corn (Zea mays L.) stover perform important functions that promote soil health and provide ecosystem services that influence agricultural sustainability and global biogeochemical cycles. We evaluated the effect of corn stover removal from a no-till, corn-soybean (Glycine max (L.) Merr) rotation on soil greenhouse gas (GHG; CO2, N2O, CH4) fluxes, crop yields, and soil organic carbon (SOC) dynamics. We conducted a 4-year study using replicated field plots managed with two levels of corn stover removal (none; 55 % stover removal) for four complete crop cycles prior to initiation of ground surface gas flux measurements. Corn and soybean yields were not affected by stover removal with yields averaging 7.28 Mg ha?1 for corn and 2.64 Mg ha?1 for soybean. Corn stover removal treatment did not affect soil GHG fluxes from the corn phase; however, the treatment did significantly increase (107 %, P?=?0.037) N2O fluxes during the soybean phase. The plots were a net source of CH4 (~0.5 kg CH4-C ha?1 year?1 average of all treatments and crops) during the generally wet study duration. Soil organic carbon stocks increased in both treatments during the 4-year study (initiated following 8 years of stover removal), with significantly higher SOC accumulation in the control plots compared to plots with corn stover removal (0–15 cm, P?=?0.048). Non-CO2 greenhouse gas emissions (945 kg CO2-eq ha?1 year?1) were roughly half of SOC (0–30 cm) gains with corn stover removal (1.841 Mg CO2-eq ha?1 year?1) indicating that no-till practices greatly improve the viability of biennial corn stover harvesting under local soil-climatic conditions. Our results also show that repeated corn stover harvesting may increase N loss (as N2O) from fields and thereby contribute to GHG production and loss of potential plant nutrients.  相似文献   

18.
The production of exo-polygalacturonase (exo-PG) from orange peel (OP), a food industrial waste, using Aspergillus sojae was studied in submerged culture. A simple, low-cost, industrially significant medium formulation, composed of only OP and (NH4)2SO4 (AS) was developed. At an inoculum size of 2.8 × 103 spores/mL, growth was in the form of pellets, which provided better mixing of the culture broth and higher exo-PG activity. These pellets were successfully used as an inoculum for bioreactors and 173.0 U/mL exo-PG was produced. Fed-batch cultivation further enhanced the exo-PG activity to 244.0 U/mL in 127.5 h. The final morphology in the form of pellets is significant to industrial fermentation easing the subsequent downstream processing. Furthermore, the low pH trend obtained during this fermentation serves an advantage to fungal fermentations prone to contamination problems. As a result, an economical exo-PG production process was defined utilizing a food industrial by-product and producing high amount of enzyme.  相似文献   

19.
A new strain of cyanobacteria was isolated from seawater samples collected near Jimo hot springs, Qingdao, China, and was identified as Cyanobacterium aponinum by 16S rDNA analysis. This study examined the effects of temperature, pH, light quality and high CO2 concentration on the growth of the cyanobacteria. Results showed that the strain exhibited a higher growth rate (about 168.4 mg L?1 day?1) at 35 °C than other temperatures (surviving at up to 50 °C) and a wide growth tolerance to acidic stress (pH 3.0 to 4.0) resulting from either H2SO4 or HNO3. The four light qualities, ranked by greatest to least biomass effect, were as follows: LED white light (LW) > LED red light (LR) > fluorescent white light (FW) > LED blue light (LB), achieving a higher lighting effect at a LW light intensity (60 μmol photons m?2 s?1) lower than other light qualities, which implied less energy consumption therewith. This strain demonstrates excellent CO2 tolerance at least 10% CO2 with the highest productivity in biomass (about 337.8 mg L?1 day?1) measured at 1% CO2 level. Results indicate that this strain is a promising candidate for use in biofixation of CO2 from flue gases emitted by thermoelectric plants.  相似文献   

20.
An algal-bacterial microcosm was synthetically constructed of Chlorella vulgaris MMl and Pseudomonas MTl. This microcosm was able to treat simulated wastewater supplemented with mixtures of phenol and pyridine up to 4.6 and 4.4 mM, respectively, in a continuous stirred tank bioreactor (CSTR) using photosynthetic oxygenation. Complete pollutant removal and detoxification and 82 % removal of introduced chemical oxygen demand (COD) were achieved at a hydraulic retention time (HRT) of 2.7 days. Increasing the influent load to 5.3 and 6.3 mM reduced the removal of phenol, pyridine and COD to 78, 21 and 59 %, respectively. Fertilization of the photobioreactor with 24 mM NaHCO3 restored the treatment and detoxification efficiencies. The system was able to additionally mitigate up to 72 mM NaHCO3 at the same HRT. Although the fertilization increased the system treatment efficiency, the settleability of the algal-bacterial microcosm was significantly reduced. When the photobioreactor was operated at HRT of 2.7 days in a 12/12 h of dark/light cycle, complete removal of 4.7 mM phenol was recorded but only 11 % of 5.7 mM pyridine was removed. The COD removal efficiency and CO2 mitigation were also reduced to 65 and 86 %, respectively, and the effluent retained significant toxicity where 73 % inhibition was recorded. Elongation of the illumination time to 48 h (HRT of 4 days at 12/12 h dark/light cycle) restored the treatment and detoxification efficiencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号