首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
Verticillium dahliae Kleb. is a phytopathogenic fungus that causes wilt diseases in hundreds of dicotyledonous plant species. Previous research has demonstrated that the secretome plays an important role in the pathogenicity of V. dahliae. In this study, the specific secreted protein gene (VdSSP1) in highly virulent defoliating V. dahliae strain VDG1 was cloned, and considered to be a secreted protein by signal peptide activity assay. VdSSP1 deletion mutants in VDG1 significantly compromised virulence, and the fungal growth decreased in media with pectin and starch as carbon sources. Pathogenicity and carbon utilization were restored upon complementation of the VdSSP1 deletion strains or low virulence non-defoliating strain VDG2, which lacks VdSSP1. It is indicated that the virulence role of VdSSP1 is associated with plant cell wall degradation. In conclusion, our data suggested that VdSSP1 is a secreted protein that is engaged in the pathogenicity of the highly virulent defoliating V. dahliae.  相似文献   

3.
Rivin CJ  Grudt T 《Plant physiology》1991,95(2):358-365
The relationship of abscisic acid (ABA) inhibition of precocious germination and ABA-induced storage protein accumulation was examined over the course of embryogenesis in wild-type and viviparous mutants of maize (Zea mays L.). We show that a high level of embryo ABA and the product of the Viviparous-1 gene are both required in early maturation phase for germination suppression and the accumulation of storage globulins encoded by the gene Glb1. Suppressing precocious germination with a high osmoticum is not sufficient to initiate Glb1 protein synthesis, although continued accumulation is contingent upon this inhibition; germination of immature or mature embryos leads to a decline in synthesis and the degradation of stored globulins. Late in embryogenesis, fragments of Glb1 protein accumulate, coinciding with the loss of ABA sensitivity. These results suggest that ABA influences storage globulin accumulation by initiating synthesis, suppressing degradation, and inhibiting precocious germination.  相似文献   

4.
Summary Mutation breeding has been used to improve the speed of germination in the high-yielding spring barley variety Troubadour. Five mutants were selected which combined fast germination and good agronomic performance. Two of these mutants yielded significantly more than did Troubadour over eight environments, and showed a clear improvement in their malting quality through an increase in extract yield. The improvement in malting quality appeared to be due to a decrease in the -glucan content, which seemed to enhance the germination speed and thus the starch degradation. The improvement in grain yield is postulated to be due to a better early growth caused by the enhanced germination speed. All the described changes could theoretically be explained by a single mutation event in each of the mutant genotypes, affecting the quantity of -glucans present in the endosperm.  相似文献   

5.
6.
A 2 × 2 factorial feeding experiment was conducted to examine the effects of varying the maturity level of the grass used to prepare silage and the nature of concentrate starch source and their interactions on dry matter intake (DMI), diet digestibility, energy corrected milk (ECM) production and milk composition in dairy cows. Twenty-eight multiparous Swedish Red dairy cows, 133 ± 45 days in milk (DIM), with an average milk yield of 30 ± 4 kg/day and a live weight of 624 ± 69 kg were blocked by DIM and randomly assigned to seven replicated balanced 4 × 4 Latin squares with four 21-day experimental periods. The experimental diets consisted of four total mixed rations (TMR) consisting of early-cut grass silage (EGS) supplemented with either barley- or maize-based concentrate and late-cut grass silage (LGS) supplemented with either barley- or maize-based concentrate. All TMR contained identical proportions of forage (51%) and concentrate (49%). Total tract digestibility was estimated by determining indigestible NDF (iNDF) concentrations in feeds and faeces and using iNDF as an internal marker. The feeds’ ruminal degradation parameters were determined using both in situ (nylon bag) and in vitro (gas production (GP)) techniques. Cows offered diets containing EGS had greater (P < 0.001) daily dry matter (DM) intakes, ECM yields and total tract digestibilities for DM and organic matter (OM), but these were not affected by the nature of the concentrate starch source. No interaction between the maturity of the silage and the nature of the concentrate starch source was observed for DMI, diet digestibility or ECM yield. Both grass silages and concentrates had similar rates of ruminal degradation of NDF when measured in situ. The in situ DM (P < 0.001) and starch (P = 0.001) degradation rates of barley-based concentrate were greater than those for maize-based concentrate. In vitro OM GP rates and extents were similar for both concentrate feeds. The results showed that diets containing EGS offered better animal performance and diet digestibility than diets containing LGS. The concentrate starch source did not affect animal performance, but total NDF digestibility was better with diet containing barley- than maize-based concentrate.  相似文献   

7.
8.
Starch phosphate ester content is known to alter the physicochemical properties of starch, including its susceptibility to degradation. Previous work producing wheat (Triticum aestivum) with down‐regulated glucan, water dikinase, the primary gene responsible for addition of phosphate groups to starch, in a grain‐specific manner found unexpected phenotypic alteration in grain and growth. Here, we report on further characterization of these lines focussing on mature grain and early growth. We find that coleoptile length has been increased in these transgenic lines independently of grain size increases. No changes in starch degradation rates during germination could be identified, or any major alteration in soluble sugar levels that may explain the coleoptile growth modification. We identify some alteration in hormones in the tissues in question. Mature grain size is examined, as is Hardness Index and starch conformation. We find no evidence that the increased growth of coleoptiles in these lines is connected to starch conformation or degradation or soluble sugar content and suggest these findings provide a novel means of increasing coleoptile growth and early seedling establishment in cereal crop species.  相似文献   

9.
A forced heterocaryon was established between two auxotrophic conidial color mutants of Metarhizium anisopliae. From the heterocaryon, a prototrophic somatic diploid was selected which, in turn, yielded somatic segregants. The virulence of the original mutants, the somatic diploid, and the somatic segregants was evaluated on three species of mosquitoes as well as on Ostrinia nubilalis larvae. The virulence of the somatic diploid was comparable to that of the wild-type parental strain while the auxotrophic somatic segregants exhibited virulence approximately equal to that of the auxotrophic components of the heterocaryon. Putative somatic diploids were obtained between morphological mutants of the two species varieties (M. anisopliae var. minor and var. major). The presumptive diploids were avirulent for the insect species to which the parental strains exhibited virulence.  相似文献   

10.
In this study, we attempted two investigational systems: one is treatment of sago industry effluent by aerobic bacterial consortium and the other is impact of treated and untreated effluent on seed germination. For the treatment system, the starch degrading bacteria were isolated from sago industry effluent and effluent contaminated soil. The genera, Alcaligenes, Bacillus and Corynebacterium were found efficient in starch degradation. The selected isolates were tested for their efficiency on the degradation of starch both in Mineral Salts Medium (MSM) and in sago industry effluent. About 85% of the starch was degraded in MSM by a bacterial consortium composed of Alcaligenes, Bacillus and Corynebacterium, whereas in effluent the degradation of starch was only 63%. The physico-chemical properties such as electrical conductivity, total solids, suspended solids, dissolved solids, BOD, COD, nitrogen and phosphate were found decreased in effluent after 72 h. The pH of the effluent was relatively increased from 3 to 6.7. The study of seed germination (maize and green gram) was carried out at 25, 50, 75 and 100% concentrations of treated and untreated effluent using soil sowing method. Shoot length, root length, fresh weight, dry weight and chlorophyll content showed an increase when treated effluent was tested whereas a decrease of growth was noticed in untreated effluent tested seedlings. The results revealed that effluent treated by aerobic microorganisms has no negative impact on the seed germination and can be effectively used for irrigation.  相似文献   

11.
Methionine (Met) plays an important role in various cellular processes in both eukaryotes and prokaryotes. Cystathionine gamma-synthase encoded by STR2 gene is a key enzyme in Met biosynthesis in Saccharomyces cerevisiae. In this study, we identified FgMETB, a homologue of S. cerevisiae STR2, from Fusarium graminearum using the Protein Basic Local Alignment Search Tool (BLASTP) program. The FgMETB deletion mutants were unable to grow on fructose gelatin agar (FGA) medium containing SO42 as sole sulphur source. In addition, more than 90 % conidia of the mutants were not able to germinate in 2 % sucrose solution within 6 or 12 h of incubation. Supplementation of 1 mM Met or 0.5 mg ml−1 homocysteine, but not 1 mM cysteine or 0.5 mg ml−1 glutathione, rescued the defect of mycelial growth and spore germination of FgMETB deletion mutants. These results indicated that the enzyme encoded by FgMETB is involved in conversion of cysteine into homocysteine. Inoculation tests showed that the FgMETB deletion mutant exhibited decreased virulence significantly on wheat heads, which is consistent with a low level of deoxynivalenol (DON) production of the mutant in wheat kernels. Fungicide sensitivity assays revealed FgMETB deletion mutants showed increased sensitivity to the sterol demethylation inhibitor tebuconazole, but did not change their sensitivities to other fungicides. Taken together, results of this study indicated that FgMETB plays a critical role in the regulation of various cellular processes in F. graminearum.  相似文献   

12.
Plant pathogens secrete effector proteins to suppress plant immunity. However, the mechanism by which oomycete pathogens deliver effector proteins during plant infection remains unknown. In this report, we characterized a Phytophthora sojae vps1 gene. This gene encodes a homolog of the Saccharomyces cerevisiae vacuolar protein sorting gene vps1 that mediates budding of clathrin-coated vesicles from the late Golgi, which are diverted from the general secretory pathway to the vacuole. PsVPS1-silenced mutants were generated using polyethylene glycol-mediated protoplast stable transformation and were viable but had reduced extracellular protein activity. The PsVPS1-silenced mutants showed impaired hyphal growth, and the shapes of the vacuoles were highly fragmented. Silencing of PsVPS1 affected cyst germination as well as the polarized growth of germinated cysts. Silenced mutants showed impaired invasion of susceptible soybean plants regardless of wounding. These results suggest that PsVPS1 is involved in vacuole morphology and cyst development. Moreover, it is essential for the virulence of P. sojae and extracellular protein secretion.  相似文献   

13.
14.
Enhanced virulence or infectivity after passage through a mammalian host has been reported for a number of enteric food-borne pathogens. Citrobacter rodentium is a mouse pathogen that mimics many aspects of enterohemorrhagic Escherichia coli infection of humans and serves as a useful model for studying virulence mechanisms. Emergence of a hyperinfectious state after passage through mouse gastrointestinal tract was reported for C. rodentium. We wanted to investigate if increased acid tolerance could explain hypervirulence status of C. rodentium. Although we were able to observe hyperinfectious state of C. rodentium upon host passage, the cells were extremely acid sensitive. Growth under mildly acidic conditions (LB-MES, pH 5.5) induced acid tolerance of C. rodentium, but did not improve the organism’s ability to establish infection. Growth under anaerobic environment on fecal components also did not induce hyperinfectious state. Thus, contrary to conventional anticipation, hypervirulent C. rodentium cells were found to be acid sensitive thereby revealing limitations of the role of mouse gastric acidity by itself in elucidating the hypervirulent phenotype.  相似文献   

15.
Depilated is a recessive mutation on Chromosome 4 in the position b-1.93±0.51- dep-3.45±0.68.-Pt. It causes severe abnormalities of hair structure. The site of action of dep was investigated by the method of dermal-epidermal recombination. Skins from 14-day mutant and normal mouse embryos were separated into dermal and epidermal components, recombined, and grown in histocompatible mouse testes for 20 days. The recombinations made were +/+ epidermis with +/+ dermis, +/+ epidermis with dep/dep dermis, dep/dep epidermis with +/+ dermis and dep/dep epidermis with dep/dep dermis. Grafts that contained mutant epidermis as one of the components produced hairs that were similar to those found in depilated mice. There was no observable effect of the dermis on hair types produced in this experiment.  相似文献   

16.
Enzyme Production by Species of Cephalosporium   总被引:2,自引:2,他引:0       下载免费PDF全文
The culture filtrates of ten species of Cephalosporium, which had been grown under conditions of submerged culture, were tested for enzymatic activity against each of seven substrates. The latter included casein, gelatin, milk, hemoglobin, human plasma clots, starch, and N-acetyl-β-D-glucosaminide. All organisms tested were active, but to varying degrees. The most pronounced activities were obtained against the proteinaceous substrates. Two unidentified species of Cephalosporium exhibited the highest over-all activities, but no one organism predominated for all enzymatic functions. The ability of a filtrate to degrade a specific substrate was not always correlated with its ability to attack other substrates. The fibrinolytic properties of three of the cephalosporia were of particular interest. α-Amylase activity was not significant. The results obtained suggest the possible use of selected species of Cephalosporium as sources of a variety of microbial enzymes.  相似文献   

17.
Mutants of Arabidopsis thaliana (L.) Heynh. with altered regulation of starch degradation were identified by screening for plants that retained high levels of leaf starch after a period of extended darkness. The mutant phenotype was also expressed in seeds, flowers, and roots, indicating that the same pathway of starch degradation is used in these tissues. In many respects, the physiological consequences of the mutations were equivalent to the effects observed in previously characterized mutants of Arabidopsis that are unable to synthesize starch. One mutant line, which was characterized in detail, had normal levels of activity of the starch degradative enzymes α-amylase, β-amylase, phosphorylase, D-enzyme, and debranching enzyme. Thus, it was not possible to establish a biochemical basis for the phenotype, which was due to a recessive mutation at a locus designated sex1 at position 12.2 on chromosome 1. This raises the possibility that hitherto unidentified factors, altered by the mutation, play a key role in regulating or catalyzing starch degradation.  相似文献   

18.
The imperfect fungus Metarhizium anisopliae infects and kills larvae of many insect species, including the mosquito Culex pipiens. Mutants of M. anisopliae selected for enhanced production of amylase have been found to have simultaneously acquired hypervirulence against C. pipiens larvae. In the present work, wild-type and some mutant strains of M. anisopliae were found to excrete an acid or acids which alter the pH of fungal cultures below that permissible for amylase activity. The amylase-enhanced hypervirulence mutants did not excrete acid. Detection of protease and lipase activities was complicated by the acid excretion. When this was taken into account, mutants having altered lipase or protease production were found to have no alteration in virulence against mosquito larvae. The link between acid excretion, amylase activity, and hypervirulence is discussed.  相似文献   

19.
Mitogen-activated protein kinases (MAPKs) have been demonstrated to be involved in fungal development, sexual reproduction, pathogenicity and/or virulence in many filamentous plant pathogenic fungi, but genes for MAPKs in the fungal cereal pathogen Bipolaris sorokiniana have not been characterized. In this study, orthologues of three MAPK genes (CsSLT2, CsHOG1 and CsFUS3) and one MAPK kinase kinase (MAPKKK) gene (CsSTE11) were identified in the whole genome sequence of the B. sorokiniana isolate ND90Pr, and knockout mutants were generated for each of them. The ∆Csfus3 and ∆Csste11 mutants were defective in conidiation and formation of appressoria-like structures, showed hypersensitivity to oxidative stress and lost pathogenicity on non-wounded leaves of barley cv. Bowman. When inoculated on wounded leaves of Bowman, the ∆Csfus3 and ∆Csste11 mutants were reduced in virulence compared to the wild type. No morphological changes were observed in the ∆Cshog1 mutants in comparison with the wild type; however, they were slightly reduced in growth under oxidative stress and were hypersensitive to hyperosmotic stress. The ∆Cshog1 mutants formed normal appressoria-like structures but were reduced in virulence when inoculated on Bowman leaves. The ∆Csslt2 mutants produced more vegetative hyphae, had lighter pigmentation, were more sensitive to cell wall degrading enzymes, and were reduced in virulence on Bowman leaves, although they formed normal appressoria like the wild type. Root infection assays indicated that the ∆Cshog1 and ∆Csslt2 mutants were able to infect barley roots while the ∆Csfus3 and ∆Csste11 failed to cause any symptoms. However, no significant difference in virulence was observed for ∆Cshog1 mutants while ∆Csslt2 mutants showed significantly reduced virulence on barley roots in comparison with the wild type. Our results indicated that all of these MAPK and MAPKKK genes are involved in the regulation of fungal development under normal and stress conditions and required for full virulence on barley plants.  相似文献   

20.
To study spore attachment of the cucurbit pathogen Nectria haematococca (anamorph, Fusarium solani f. sp. cucurbitae), mutants with adhesion-deficient macroconidia were isolated. The adhesion-deficient mutants were selected after treatment with N-methyl-N′ -nitro-N-nitrosoguanidine followed by repeated enrichment for macroconidia which did not attach to polystyrene. Two independently derived mutants produced macroconidia with an approximately 50% reduction in attachment to polystyrene and to zucchini fruits. When macroconidia were inoculated into wounded zucchini fruits, the adhesion-deficient mutants were as virulent as the wild-type strain. However, in disease assays in which macroconidia were deposited onto the surface of unwounded zucchini, the mutants were less virulent than the wild type. Thus, adhesion of N. haematococca macroconidia to its host surface appears to be a virulence factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号