首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Stable isotopic ratios integrate ecosystem variability while reflecting change in both environmental and biological processes. At sites, where climate does not strongly limit tree growth, co-occurring trees may display large discrepancies in stable oxygen isotopic ratios (δ18O) due to the interplay between biological processes (competition for light and nutrients, individual tree physiology, etc.) and climate. For a better quantification of the isotope variability within and among trees, the climatic and/or individual tree effects on seasonal δ18O variations in precipitation, soil water, leaf water and leaf organic material (whole leaf, cellulose and starch) and annual δ18O variations in tree-ring cellulose for Fagus sylvatica (Fs), Quercus robur (Qr), Carpinus betulus (Cb) and Pinus sylvestris (Ps) were studied in a mature temperate forest in Switzerland, using a mixed linear regression model technique. Furthermore, the influence of environmental factors on δ18O was assessed by means of three common isotope fractionation models. Our statistical analysis showed that except for Ps, a greater portion of δ18O variance in leaf compounds can be explained by individual tree effects, compared to temperature. Concerning tree-ring cellulose, only Fs and Ps show a significant temperature signal (maximum 12% of the variance explained), while the individual tree effect significantly explains δ18O for all species for a period of 38 years. Large species differences resulted in a limited ability of the isotope fractionation models to predict measured values. Overall, we conclude that in a diverse mixed forest stand, individual tree responses reduce the potential extraction of a temperature signal from δ18O.  相似文献   

2.
Isotopic ratios of fish otoliths have been used in numerous studies as natural tags or markers to aid in the study of connectivity among fish populations. We investigated the use of spatial and temporal changes in the stable carbon and oxygen isotope ratios of otoliths to differentiate juvenile habitats of winter flounder (Pseudopleuronectes americanus). Young-of-the-year (YOY) juvenile winter flounder were collected annually over a three-year period from 18 stations along the coast of Rhode Island, USA. Sagittal otoliths were removed from fish and analyzed for stable carbon (13C/12C or δ13C) and oxygen (18O/16O or δ18O) isotope ratios using continuous flow isotope ratio mass spectrometry. Differences in isotope ratios were observed among stations and along salinity gradients in the Narragansett Bay estuary and an estuarine river system (Narrow River). Overall, the isotope ratio patterns observed among stations were consistent over the three sampling years; however, differences were noted in isotope ratios and the magnitude of the isotope ratio gradients among years. Significant positive correlations were noted between salinity and δ13C for two of the three years. For each of the three years sampled there was a highly significant positive correlation (2002, r = 0.93, P < 0.01; 2003, r = 0.85, P < 0.01; 2004, r = 0.97, P < 0.01) between δ18O and the salinity of the collection site. Also, there was a significant negative correlation between the number of months of above average river flow and δ18O for the three sampling years (r = 0.99, P < 0.05). These findings suggest that yearly changes in the volume of freshwater inputs to these estuarine habitats may be related to the differences observed in otolith δ18O isotope ratios. Because of these year-to-year differences, sampling of each cohort may be necessary in order to use this isotopic technique for winter flounder connectivity studies.  相似文献   

3.
Growth rhythms in the reef coral Porites lobata are revealed by X-radiography and stable carbon and oxygen isotopic analysis. High density increments were deposited during warm temperatures in summer and low density increments during winter. The seasonal temperature variations are reflected in the oxygen isotope ratios. The coral carbonate shows a constant depletion in 18O of –2.7%0 relative to calcite in equilibrium with the ambient seawater. The mean annual growth rate of the specimen studied was 1.3±0.3 cm/year.  相似文献   

4.
Stable isotopic structure of aquatic ecosystems   总被引:1,自引:0,他引:1  
Isotopic, biogeochemical and ecological structure can provide a new dimension for understanding material flows, and the simultaneous function and structure of an ecosystem. Distributions ofδ 13C andδ 15N for biogenic substances in the Nanakita river estuary involving Gamo lagoon in Japan were investigated to construct isotope biogeochemical and ecological structure for assessing fate and transfer of organic matter, and food web structure. The isotopic framework of the ecosystem was successfully described in aδ 15N–δ 13C map. In this estuary the variations of isotope ratios of biogenic substances were clearly explained by the mixing of land-derived organic matter, and marine-derived organic matter. A trophic-level effect of15N enrichment was clearly observed. Organisms were classified into three groups depending upon the contribution of land-derived organic matter in a food chain. Almost all biota except mollusca in the lagoon depend on organic matter of marine origin. The contributions of both land and marine organic matter were comparable for mollusca in the lagoon.  相似文献   

5.
Coral reef restoration methods such as coral gardening are becoming increasingly considered as viable options to mitigate reef degradation and enhance recovery of depleted coral populations. In this study, we describe several aspects of the coral gardening approach that demonstrate this methodology is an effective way of propagating the threatened Caribbean staghorn coral Acropora cervicornis: (1) the growth of colonies within the nursery exceeded the growth rates of wild staghorn colonies in the same region; (2) the collection of branch tips did not result in any further mortality to the donor colonies beyond the coral removed for transplantation; (3) decreases in linear extension of the donor branches were only temporary and donor branches grew faster than control branches after an initial recovery period of approximately 3–6 weeks; (4) fragmentation did not affect the growth rates of non-donor branches within the same colony; (5) small branch tips experienced initial mortality due to handling and transportation but surviving tips grew well over time; and (6) when the growth of the branch tips is added to the regrowth of the fragmented donor branches, the new coral produced was 1.4–1.8 times more than new growth in undisturbed colonies. Based on these results, the collection of small (2.5–3.5 cm) branch tips was an effective propagation method for this branching coral species resulting in increased biomass accumulation and limited damage to parental stocks.  相似文献   

6.
We conducted stable oxygen and carbon isotope analyses for otoliths of Atlantic salmon (Salmo salar), in an attempt to develop a reference database on isotopic variability among private and federal hatcheries in Maine which currently support the salmon aquaculture industry and recovery of endangered populations. During the first phase of our study, we collected 40–50 sagittal otoliths of juvenile Atlantic salmon from each of the five hatcheries and analyzed for stable oxygen and carbon isotope ratios (18O/16O or δ18O, and 13C/12C or δ13C). Combination of δ18O and δ13C signatures in otoliths showed that the five hatcheries can be clearly separated and chemically distinguished. By identifying stable isotopic variations of otoliths from different hatchery settings, we were able to establish some isotopic criteria or standards to assign a likelihood that an individual Atlantic salmon came from a specific hatchery within the reference database. If successful, a diagnostic tool that can provide definitive information on identification of the hatchery origin could serve as a novel marking technique, and the chemical method may provide a more effective alternative to DNA analysis for mixed stocks. Overall our isotopic data from otoliths support the hypothesis that there are detectable differences between the five hatcheries, and multiple statistical analyses indicated that we can correctly distinguish individual Atlantic salmon into a hatchery with high confidence.  相似文献   

7.
Hydrogen isotope fractionation during water uptake by woody xerophytes   总被引:8,自引:0,他引:8  
Stable isotope measurements are employed extensively in plant–water relations research to investigate physiological and hydrological processes from whole plant to ecosystem scales. Stable isotopes of hydrogen and oxygen are routinely measured to identify plant source water. This application relies on the assumption that no fractionation of oxygen and hydrogen isotopes in water occurs during uptake by roots. However, a large fraction of the water taken up through roots in halophytic and xerophytic plants transverses cell membranes in the endodermis before entering the root xylem. Passage of water through this symplastic pathway has been hypothesized to cause fractionation leading to a decrease in 2H of root xylem water relative to that in the surrounding soil medium. We examined 16 woody halophytic and xerophytic plant species in controlled conditions for evidence of hydrogen isotope fractionation during uptake at the root–soil interface. Isotopic separation (Δ2H = δ2Hsoil water − δ2Hxylem water) ranging from 3‰ to 9‰ was observed in 12 species. A significant positive correlation between salinity tolerance and the magnitude of Δ2H was observed. Water in whole stem segments, sapwood, and roots had significantly lower δ2H values relative to soil water in Prosopis velutina Woot., the species expressing the greatest Δ2H values among the 16 species examined. Pressurized water flow through intact root systems of Artemisia tridentata Nutt. and Atriplex canescens (Pursh) Nutt. caused the δ2H values to decrease as flow rate increased. This relationship was not observed in P. velutina. Destroying the plasma membranes of root cells by excessive heat from boiling did not significantly alter the relationship between δ2H of expressed water and flow rate. In light of these results, care should be taken when using the stable isotope method to examine source-water use in halophytic and xerophytic species.  相似文献   

8.
Sub-fossil wood is often affected by the decaying process that introduces uncertainties in the measurement of oxygen and carbon stable isotope composition in cellulose. Although the cellulose stable isotopes are widely used as climatic proxies, our understanding of processes controlling their behavior is very limited. We present here a comparative study of stable oxygen and carbon isotope ratios in tree ring cellulose in decayed and non-decayed wood samples of Swiss stone pine (Pinus cembra) trees. The intra-ring stable isotope variability (around the circumference of a single ring) was between 0.1 and 0.5‰ for δ18O values and between 0.5 and 1.6‰ for δ13C values for both decayed and non-decayed wood. Observed intra-tree δ18O variability is less than that reported in the literature (0.5–1.5‰), however, for δ13C it is larger than the reported values (0.7–1.2‰). The inter-tree variability for non-decayed wood ranges between 1.1 and 2.3‰ for δ18O values, and between 2 and 4.7‰ for δ13C values. The inter-tree differences for δ18O values are similar to those reported in the literature (1–2‰ for oxygen and 1–3‰ for carbon) but are larger for δ13C values. We have found that the differences for δ18O and δ13C values between decayed and non-decayed wood are smaller than the variation among different trees from the same site, suggesting that the decayed wood can be used for isotopic paleoclimate research.  相似文献   

9.
 A core from a coral colony of Porites lutea was analysed for stable oxygen isotopic composition*. A 200-year proxy record of sea surface temperatures from the Houtman Abrolhos Islands off west Australia was obtained from coral δ18O. At 29′S, the Houtman Abrolhos are the southernmost major reef complex of the Indian Ocean. They are located on the path of the Leeuwin Current, a southward flow of warm, tropical water, which is coupled to Indonesian throughflow. Coral δ18O primarily reflects local oceanographic and climatic variability, which is largely determined by spatial variability of the Leeuwin Current. However, coherence between coral δ18O and the current strength itself is relatively weak. Evolutionary spectral and singular spectrum analyses of coral δ18O demonstrate a high variability in spectral composition through time. Oscillations in the 5–7-y, 14–15-y, and quasi-biennial bands reflect teleconnections of local sea surface temperature (SST) to tropical Pacific climate variability. Deviations between local (coral-based) and regional (instrument) SST contain a cyclic component with a period of 15 y. Coral δ18O suggests a rise in SST by 0.6 ′C since AD 1944, consistent with available instrumental SST records. A long-term warming by 1.4 ′C since AD 1795 is inferred from the coral record. Accepted: 3 July 1998  相似文献   

10.
Workers of Paraponera clavata, a common Neotropical ant, collect both nectar and insect prey. Previous reports show that nectar accounts for up to 90 percent of the ants’ food loads, while calculations suggest that nectar contributes only 10 percent of colonies’ energy supply. We assessed the trophic source of carbon and nitrogen in adult workers using stable isotope analysis. Carbon in adult workers was largely derived from plant sources. Worker nitrogen isotopic ratios varied significantly among colonies and were enriched compared to prey. Prey nitrogen isotope ratios suggest considerable intercolonial variation in diet, with some colonies collecting prey from lower trophic levels than other colonies. The importance of nectar as a source of metabolic carbon in adult worker biomass, coupled with the high frequency of nectar collection, supports the conclusion that omnivory is a key to supporting this species’ biomass in Neotropical wet forests.  相似文献   

11.
Recent studies indicate that the incidence and persistence of damage from coral reef bleaching are often highest in areas of restricted water motion, and that resistance to and recovery from bleaching is increased by enhanced water motion. We examined the hypothesis that water motion increases the efflux of oxygen from coral tissue thereby reducing oxidative stress on the photosynthetic apparatus of endosymbiotic zooxanthellae. We experimentally exposed colonies of Montastrea annularis and Agaricia agaricites to manipulations of water flow, light intensity, and oxygen concentration in the field using a novel mini-flume. We measured photosynthetic efficiency using a pulse amplitude modulated fluorometer to test the short-term response of corals to our manipulations. Under normal oxygen concentrations, A. agaricites showed a significant 8% increase in photosynthetic efficiency from 0.238 (± 0.032) in still water to 0.256 (± 0.037) in 15 cm s−1 flow, while M. annularis exhibited no detectable change. Under high-ambient oxygen concentrations, the observed effect of flow on A. agaricites was reversed: photosynthetic efficiencies showed a significant 11% decrease from 0.236 (± 0.056) in still water to 0.211 (± 0.048) in 15 cm s−1 flow. These results support the hypothesis that water motion helps to remove oxygen from coral tissues during periods of maximal photosynthesis. Flow mitigation of oxidative stress may at least partially explain the increased incidence and severity of coral bleaching in low flow areas and observations of enhanced recovery in high-flow areas.  相似文献   

12.
13.
Stable isotope analyses were employed to explore feeding and foraging habitats and trophic levels of littoral fishes in a western Mediterranean Marine Protected Area (Egadi Islands, Sicily, Italy). Carbon and nitrogen stable isotope ratios were measured in primary producers, invertebrates and fishes collected in December 2001 and January 2002. Fishes of the littoral region of the Egadi Islands had isotopic signatures that fell into a wider range for δ 13C (about 6‰) than for δ 15N (about 3‰). Carbon isotope ratios were consistent with a food web based on mixed sources and two trophic pathways leading to different fish species. Differences in the isotopic composition between islands were higher for benthivorous than for planktivorous fishes. The overall picture gained from this study is of a isotopic distinction between planktivorous and benthivorous fishes, resource partitioning facilitating the coexistence of similar species within the same ecosystem, and spatial variability in the isotopic signatures and trophic level of fishes. Asymmetrical analysis of variance showed that estimated trophic levels were lower in the area with the highest level of protection (Zone A) for only two out of the nine fishes analysed. As a consequence, overall spatial differences do not seem to be a consequence of protection, since in most cases trophic levels did not change significantly between zone A and zones C where professional fishing (trawling apart) is permitted, but of natural sources of variation (e.g. variability in food availability and site-specific food preferences of fishes). However, the results of this study suggest a different response at the species compared to the community level.  相似文献   

14.
S. Ohsawa  Y. Yusa 《Limnology》2000,1(2):143-149
The stable isotope ratios of hydrogen and oxygen were measured for rainwater samples from Typhoon No. 13, which struck Japan on September 1993, and Typhoon No. 6, which passed in July 1996. Rainwater was collected every hour over 2- to 3-day periods at Beppu, Japan (33°16′N, 131°29′E), which lies on or close to the typhoon routes. The deuterium excess parameters (δD – 8 ·δ18O) of the rainwaters vary over wide ranges from 19.22 to 1.52 for Typhoon No. 13, 1993, and from 6.02 to −8.10 for Typhoon No. 6, 1996, respectively. Rainwaters with higher d-values precipitated in the forward parts of the typhoons. This is ascribed to the possibility that the water vapors supplied by the bottom air currents from the front (rear) of the typhoons may be originally formed by rapid (gentle) evaporation of seawater. Symmetrical patterns of spatial δD and δ18O distributions within the typhoon precipitations, as estimated from the variations in the isotope ratios of the typhoon rainwaters, should appear from a continuous isotopic fractionation of water vapors with the bottom air currents converging toward the typhoon center. The weighted means of δD and δ18O of the typhoon precipitations are more negative than those of ordinary rainfall, suggesting that an isotopic influence of typhoon precipitation on surface waters, e.g., river, stream, lake, and spring waters, may be important. Received: January 22, 2000 / Accepted: March 24, 2000  相似文献   

15.
The objective of this study was to measure the tissue-specific response of isotope δ15N to changes in isotopic signature of diet in an adult Pacific herring, Clupea pallasi, and to examine the importance of growth and metabolism in this shift. This was accomplished by placing wild adult Pacific herring in captivity and monitoring isotopic shift in tissues with a corresponding isotopic shift in diet, and the application of a metabolism/growth mixing model. Tissues examined were blood, eye, heart, liver, and white muscle. One group of herring was given a δ15N diet depleted by approximately 5.4‰, and another given a 15N-enriched diet labeled with 98 atom% l-phenylalanine. This study showed that (i) isotopic response of individual tissues following an isotopic shift in diet varied in both rate of change and fractionation level, (ii) most of this isotopic shift is due to growth, and (iii) white muscle and liver tissue appeared the most responsive to isotopic shift in diet, reaching isotopic equilibrium with diet in a matter of months (not years). For trophic studies using δ15N, these results indicate that field measurement of Pacific herring should be done after much of summer growth has occurred.  相似文献   

16.
Aim We sought to quantify geographical variation in the stable isotope values of mouse lemurs (Microcebus) and to determine whether this variation reflects trophic differences among populations or baseline isotopic differences among habitats. If the latter pattern is demonstrated, then Microcebus can become a proxy for tracking baseline habitat isotopic variability. Establishing such a baseline is crucial for identifying niche partitioning in modern and ancient communities. Location We studied five species of Microcebus from eight distinct habitats across Madagascar. Methods We compared isotopic variation in C3 plants and Microcebus fur within and among localities. We predicted that carbon and nitrogen isotope values of Microcebus should: (1) vary as a function of abiotic variables such as rainfall and temperature, and (2) covary with isotopic values in plants. We checked for trophic differences among Microcebus populations by comparing the average difference between mouse lemur and plant isotope values for each locality. We then used multiple regression models to explain spatial isotope variation in mouse lemurs, testing a suite of explanatory abiotic variables. Results We found substantial isotopic variation geographically. Ranges for mean isotope values were similar for both Microcebus and plants across localities (carbon 3.5–4.0‰; nitrogen 10.5–11.0‰). Mean mouse lemur and plant isotope values were lowest in cool, moist localities and highest in hot, dry localities. Rainfall explained 58% of the variation in Microcebus carbon isotope values, and mean plant nitrogen isotope values explained 99.7% of the variation in Microcebus nitrogen isotope values. Average differences between mouse lemur and plant isotope values (carbon 5.0‰; nitrogen 5.9‰) were similar across localities. Main conclusions Isotopic data suggest that trophic differences among Microcebus populations were small. Carbon isotope values in mouse lemurs were negatively correlated with rainfall. Nitrogen isotope values in Microcebus and plants covaried. Such findings suggest that nitrogen isotope values for Microcebus are a particularly good proxy for tracking baseline isotopic differences among habitats. Our results will facilitate future comparative research on modern mouse lemur communities, and ecological interpretations of extinct Holocene communities.  相似文献   

17.
Balter V  Simon L  Fouillet H  Lécuyer C 《Oecologia》2006,147(2):212-222
The 15N/14N signature of animal proteins is now commonly used to understand their physiology and quantify the flows of nutrient in trophic webs. These studies assume that animals are predictably 15N-enriched relative to their food, but the isotopic mechanism which accounts for this enrichment remains unknown. We developed a box model of the nitrogen isotope cycle in mammals in order to predict the 15N/14N ratios of body reservoirs as a function of time, N intake and body mass. Results of modeling show that a combination of kinetic isotope fractionation during the N transfer between amines and equilibrium fractionation related to the reversible conversion of N-amine into ammonia is required to account for the well-established ≈4‰ 15N-enrichment of body proteins relative to the diet. This isotopic enrichment observed in proteins is due to the partial recycling of 15N-enriched urea and the urinary excretion of a fraction of the strongly 15N-depleted ammonia reservoir. For a given body mass and diet δ15N, the isotopic compositions are mainly controlled by the N intake. Increase of the urea turnover combined with a decrease of the N intake lead to calculate a δ15N increase of the proteins, in agreement with the observed increase of collagen δ15N of herbivorous animals with aridity. We further show that the low δ15N collagen values of cave bears cannot be attributed to the dormancy periods as it is commonly thought, but inversely to the hyperphagia behavior. This model highlights the need for experimental investigations performed with large mammals in order to improve our understanding of natural variations of δ15N collagen.  相似文献   

18.
Studies of food webs often employ stable isotopic approaches to infer trophic position and interaction strength without consideration of spatio-temporal variation in resource assimilation by constituent species. Using results from laboratory diet manipulations and monthly sampling of field populations, we illustrate how nitrogen isotopes may be used to quantify spatio-temporal variation in resource assimilation in ants. First, we determined nitrogen enrichment using a controlled laboratory experiment with the invasive Argentine ant (Linepithema humile). After 12 weeks, worker δ15N values from colonies fed an animal-based diet had δ15N values that were 5.51% greater compared to colonies fed a plant-based diet. The shift in δ15N values in response to the experimental diet occurred within 10 weeks. We next reared Argentine ant colonies with or without access to honeydew-producing aphids and found that after 8 weeks workers from colonies without access to aphids had δ15N values that were 6.31% larger compared to colonies with access to honeydew. Second, we sampled field populations over a 1-year period to quantify spatio-temporal variability in isotopic ratios of L. humile and those of a common native ant (Solenopsis xyloni). Samples from free-living colonies revealed that fluctuations in δ15N were 1.6–2.4‰ for L. humile and 1.8–2.9‰ for S. xyloni. Variation was also detected among L. humile castes: time averaged means of δ15N varied from 1.2 to 2.5‰ depending on the site, with δ15N values for queens ≥ workers > brood. The estimated trophic positions of L. humile and S. xyloni were similar within a site; however, trophic position for each species differed significantly at larger spatial scales. While stable isotopes are clearly useful for examining the trophic ecology of arthropod communities, our results suggest that caution is warranted when making ecological interpretations when stable isotope collections come from single time periods or life stages.  相似文献   

19.
Long-term management plans for restoration of natural flow conditions through the Everglades increase the importance of understanding potential nutrient impacts of increased freshwater delivery on Florida Bay biogeochemistry. Planktonic communities respond quickly to changes in water quality, thus spatial variability in community composition and relationships to nutrient parameters must be understood in order to evaluate future downstream impacts of modifications to Everglades hydrology. Here we present initial results combining flow cytometry analyses of phytoplankton and bacterial populations (0.1–50 μm size fraction) with measurements of δ13C and δ15N composition and dissolved inorganic nutrient concentrations to explore proxies for planktonic species assemblage compositions and nutrient cycling. Particulate organic material in the 0.1–50 μm size fraction was collected from five stations in Northeastern and Western Florida Bay to characterize spatial variability in species assemblage and stable isotopic composition. A dense bloom of the picocyanobacterium, Synechococcus elongatus, was observed at Western Florida Bay sites. Smaller Synechococcus sp. were present at Northeast sites in much lower abundance. Bacteria and detrital particles were also more abundant at Western Florida Bay stations than in the northeast region. The highest abundance of detritus occurred at Trout Creek, which receives freshwater discharge from the Everglades through Taylor Slough. In terms of nutrient availability and stable isotopic values, the S. elongatus population in the Western bay corresponded to low DIN (0.5 μM NH 4 + ; 0.2 μM NO 3 ) concentrations and depleted δ15N signatures ranging from +0.3 to +0.8‰, suggesting that the bloom supported high productivity levels through N2-fixation. δ15N values from the Northeast bay were more enriched (+2.0 to +3.0‰), characteristic of N-recycling. δ13C values were similar for all marine Florida Bay stations, ranging from −17.6 to −14.4‰, however were more depleted at the mangrove ecotone station (−25.5 to −22.3‰). The difference in the isotopic values reflects differences in carbon sources. These findings imply that variations in resource availability and nutrient sources exert significant control over planktonic community composition, which is reflected by stable isotopic signatures.  相似文献   

20.
Stable isotope data are often used to assess diet, trophic level, trophic niche width and the extent of omnivory. Notwithstanding ongoing discussions about the value of these approaches, variations in isotopic signatures among individuals depend on inherent variability as well as differences in feeding habitats. Remarkably, the relative contributions of diet variation and inherent variability to differences in δ15N and δ13C among individuals have not been quantified for the same species at the same life history stages, and inherent variability has been ignored or assumed. We quantified inherent variability in δ13C and δ15N among individuals of a marine fish (the European sea bass, Dicentrarchus labrax) reared in a controlled environment on a diet of constant isotopic composition and compared it with variability in δ13C and δ15N among individuals from wild bass populations. The analysis showed that inherent variability among reared individuals on a controlled diet was equivalent to a large proportion of the observed variability among wild individuals and, therefore, that inherent variability should be measured to establish baseline variability in wild populations before any assumptions are made about the influence of diet. Given that inherent variability is known to be dependent on species, life history stage and the environment, our results show that it should be quantified on a case-by-case basis if diet studies are intended to provide absolute assessments of dietary habits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号