首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The release of the internal content of negatively charged phosphatidylcholine/phosphatidylserine vesicles under the influence of high density lipoprotein was studied. Under standard conditions (the same composition outside and inside the compartment) the leakage of negative liposomes increased significantly. However, a high internal concentration of calcein provoked a sealing effect, exhibited both in sucrose and in calcein release. This sealing effect is not related to the size of vesicles, the fluidity of the membrane, the distribution of phosphatidylserine molecules, or the membrane potential. Our data indicate that surface potential influences this effect, probably in addition to a lateral pressure effect such as with cholesterol. The surface potential, as measured by the water-lipid partition coefficient of fatty acids, is strongly affected by internal ionic strength when liposomes contain calcein as well as other polyanions (6-carboxyfluorescein, sodium citrate).  相似文献   

2.
Bilayer membrane destabilization induced by dolichylphosphate   总被引:1,自引:0,他引:1  
Small vesicles containing the fluorescent probe calcein were used to investigate the effect of dolichyl phosphate (Dol-P) on phospholipid bilayer stability. In the absence of Dol-P, phospholipid vesicles retained the fluorescent probe upon the addition of divalent cations. Small vesicles containing Dol-P, however, exhibited calcein leakage when incubated in the presence of divalent cations. This effect was observed in liposomes composed of a mixture of phosphatidylethanolamine (PE), phosphatidylcholine (PC) and Dol-P, but not in PC/Dol-P liposomes. The rate of calcein leakage was proportional to divalent cation concentration and to temperature, but was independent of vesicle concentration. These results demonstrate that Dol-P has significant effects on the stability of PE containing phospholipid bilayers. Vesicle leakage was also promoted by the addition of rat liver Dol-P-mannose synthase (EC 2.4.1.83) to intact PE/PC/Dol-P vesicles. Enzyme induced leakage from phospholipid vesicles required the presence of both unsaturated PE and Dol-P. The phospholipid composition of leaky vesicles could be correlated with the lipid matrix required for maximal transferase activity of the rat liver synthase. The destabilizing effects of Dol-P on phospholipid bilayers may therefore be involved in the translocation of activated sugars across biological membranes.  相似文献   

3.
Proton-induced fusion of oleic acid-phosphatidylethanolamine liposomes   总被引:2,自引:0,他引:2  
Liposomes composed of oleic acid and phosphatidylethanolamine (3:7 mole ratio) aggregate, become destabilized, and fuse below pH 6.5 in 150 mM NaCl. Fusion is monitored by (i) the intermixing of internal aqueous contents of liposomes, utilizing the quenching of aminonaphthalene-3,6,8-trisulfonic acid (ANTS) by N,N'-p-xylylenebis(pyridinium bromide) (DPX) encapsulated in two separate populations of vesicles, (ii) a resonance energy transfer assay for the dilution of fluorescent phospholipids from labeled to unlabeled liposomes, (iii) irreversible changes in turbidity, and (iv) quick-freezing freeze-fracture electron microscopy. Destabilization is followed by the fluorescence increase caused by the leakage of coencapsulated ANTS/DPX or of calcein. Ca2+ and Mg2+ also induce fusion of these vesicles at 3 and 4 mM, respectively. The threshold for fusion is at a higher pH in the presence of low (subfusogenic) concentrations of these divalent cations. Vesicles composed of phosphatidylserine/phosphatidylethanolamine or of oleic acid/phosphatidylcholine (3:7 mole ratio) do not aggregate, destabilize, or fuse in the pH range 7-4, indicating that phosphatidylserine and phosphatidylcholine cannot be substituted for oleic acid and phosphatidylethanolamine, respectively, for proton-induced membrane fusion. Freeze-fracture replicas of oleic acid/phosphatidylethanolamine liposomes frozen within 1 s of stimulation with pH 5.3 display larger vesicles and vesicles undergoing fusion, with membrane ridges and areas of bilayer continuity between them. The construction of pH-sensitive liposomes is useful as a model for studying the molecular requirements for proton-induced membrane fusion in biological systems and for the cytoplasmic delivery of macromolecules.  相似文献   

4.
Effect of spectrin from human erythrocytes on structure properties of lipid bilayers formed from a mixture of phosphatidylethanolamine/phosphatidylserine (PE/PS) and/or phosphatidylethanolamine/phosphatidylcholine (PE/PC) was studied with the use of fluorescence and microcalorimetric methods. Spectrin did not affect the order parameter of lipids in PE/PS vesicles. However, spectrin binding to liposomes did influence temperature, half-width and enthalpy of phase transitions in mixtures of dimyristoylphosphatidylethanolamine (DMPE) and dimyristoylphosphatidylcholine (DMPC), and this effect was dependent on DMPE to DMPC weight ratio. A change in miscibility of the components in the presence of spectrin was observed and it might be due to spectrin-PE interactions.  相似文献   

5.
A C Newton  D E Koshland 《Biochemistry》1990,29(28):6656-6661
Protein kinase C substrate phosphorylation and autophosphorylation are differentially modulated by the phosphatidylserine concentration in model membranes. Both substrate phosphorylation and auto-phosphorylation display a cooperative dependence on phosphatidylserine in sonicated vesicles composed of diacylglycerol and either phosphatidylcholine or a mixture of cell lipids (cholesterol, sphingomyelin, phosphatidylethanolamine, and phosphatidylcholine). However, the concentration of phosphatidylserine required to support phosphorylation varies with individual substrates. In general, autophosphorylation is favored at intermediate phosphatidylserine concentrations, while substrate phosphorylation dominates at high phosphatidylserine concentrations. These different phosphatidylserine dependencies may reflect different affinities of particular substrates for negatively charged membranes. Increasing the negative surface charge of sonicated vesicles increases the rate of substrate phosphorylation. In contrast to the modulation exerted by phosphatidylserine, diacylglycerol activates protein kinase C equally toward substrate phosphorylation and autophosphorylation. These results indicate that both diacylglycerol and phosphatidylserine regulate protein kinase C activity in the membrane: diacylglycerol turns the enzyme on, while phosphatidylserine affects the specificity toward different substrates.  相似文献   

6.
Powl AM  East JM  Lee AG 《Biochemistry》2008,47(46):12175-12184
We have studied the effects of lipid structure on the function of the mechanosensitive channel of large conductance (MscL) from Escherichia coli to determine whether effects follow from direct interaction between the lipids and protein or whether they follow indirectly from changes in the curvature stress in the membrane. The G22C mutant of MscL was reconstituted into sealed vesicles containing the fluorescent molecule calcein, and the release of calcein from the vesicles was measured following opening of the channel by reaction with [2-(triethylammonium)ethyl] methanethiosulfonate (MTSET), which introduces five positive charges into the region of the pore constriction. The presence of anionic lipids in the vesicle membrane changed the rates and amplitudes of calcein release, the effects not correlating with calculated changes in lipid spontaneous curvature. Mutation of charged residues in the Arg-104, Lys-105, Lys-106 cluster removed high-affinity binding of anionic lipids to MscL, and the presence of anionic lipid no longer affected calcein flux through MscL. Changing the zwitterionic lipid from phosphatidylcholine to phosphatidylethanolamine resulted in a large decrease in the rate of calcein release, the change in rate varying linearly with lipid composition, as expected if spontaneous curvature affected the rate of release. However, rates of release of calcein measured in the presence of phosphatidylethanolamine- N-methyl and phosphatidylethanolamine- N, N-dimethyl did not fit the correlation between rate and curvature established for the phosphatidylcholine/phosphatidylethanolamine mixtures. Rather, the effects of zwitterionic lipid headgroup on calcein flux suggested that what was important was the presence of a proton in the headgroup, able to take part in hydrogen bonding to MscL. We conclude that the function of MscL is likely to be modulated by direct interaction with the surrounding, annular phospholipids that contact the protein in the membrane.  相似文献   

7.
Sendai virus induced leakage of liposomes containing gangliosides   总被引:2,自引:0,他引:2  
Y S Tsao  L Huang 《Biochemistry》1985,24(5):1092-1098
Sendai virus induced liposome leakage has been studied by using liposomes containing a self-quenching fluorescent dye, calcein. The liposomes used in this study were prepared by a freeze and thaw method and were composed of phosphatidylcholine, phosphatidylserine, and phosphatidylethanolamine (1:2.60:1.48 molar ratio) as well as various amounts of gangliosides and cholesterol. The leakage rate was calculated from the fluorescence increment as the entrapped calcein leaked out of the liposomal compartment and was diluted into the media. It was shown that the target liposome leakage was virus dose dependent. Trypsin-treated Sendai virus in which the F protein had been quantitatively removed did not induce liposome leakage, indicating that the leakage was a direct result of F-protein interaction with the target bilayer membrane. The activation energy of this process was approximately 12 kcal/mol below 17 degrees C and approximately 25 kcal/mol above 17 degrees C. Gangliosides GM1, GD1a, and GT1b could serve as viral receptor under appropriate conditions. Liposome leakage showed a bell-shaped curve dependence on the concentration of ganglioside in the liposomes. No leakage was observed if the ganglioside content was too low or too high. Inclusion of cholesterol in the liposome bilayer suppressed the leakage rate of liposomes containing GD1a. It is speculated that the liposome leakage is a consequence of fusion between Sendai virus and liposomes.  相似文献   

8.
Tamba Y  Yamazaki M 《Biochemistry》2005,44(48):15823-15833
It is thought that magainin 2, an antimicrobial peptide, acts by binding to lipid membranes. Recent studies using a suspension of large unilamellar vesicles (LUVs) indicate that magainin 2 causes gradual leakage from LUVs containing negatively charged lipids. However, the details of the characteristics of the membrane permeability and the mechanism of pore formation remain unclear. In this report, we investigated the interaction of magainin 2 with single giant unilamellar vesicles (GUVs) composed of a dioleoylphosphatidylcholine and dioleoylphosphatidylglycerol mixture (50% DOPG/50% DOPC GUVs) containing the fluorescent dye, calcein, by phase contrast, fluorescence microscopy using the single GUV method. Low concentrations (3-10 microM) of magainin 2 caused the rapid leakage of calcein from single GUVs but did not disrupt the liposomes or change the membrane structure, showing directly that magainin 2 forms membrane pores through which calcein leaked. The rapid leakage of calcein from a GUV started stochastically, and once it began, the complete leakage occurred rapidly (6-60 s). The fraction of completely leaked GUV, P(L), increased with time and also with an increase in magainin 2 concentration. Shape changes in these GUVs occurred prior to the pore formation and also at lower concentrations of magainin 2, which could not induce the pore formation. Their analysis indicates that binding of magainin 2 to the external monolayer of the GUV increases its membrane area, thereby raising its surface pressure. The addition of lysophosphatidylcholine into the external monolayer of GUVs increased P(L). On the basis of these results, we propose the two-state transition model for the pore formation.  相似文献   

9.
The effect of synthetic polycations, polyallylamine, and polyethylenimine, on liposomes containing phosphatidylserine was investigated along with that of polylysine and divalent cations. The addition of polycations caused aggregation of sonicated vesicles composed of phosphatidylserine and phosphatidylcholine (molar ratio 1:4) as determined by measuring the turbidity changes. Liposomal turbidity increased 10 times compared with that of control liposomes at charge ratios of polymer/vesicle from 0.23 (polylysine) to 2.5 (linear polyethylenimine), while the turbidity was unchanged by the addition of Ca2+ or Mg2+ at charge ratios up to 500. These polycations also induced intermixing of liposomal membranes as indicated by resonance energy transfer between fluorescent lipids incorporated in lipid bilayers, without inducing drastic permeability changes as determined from the calcein release. Fifty percent intermixing of liposomes (0.05 mM as lipid concentration) was induced by these polycations at charge ratios of around 1.0. However, the highest resonance energy transfer was produced by the addition of polyallylamine, which caused multicycles of membrane intermixing between vesicles. Polycation-induced membrane intermixing and permeability changes of phosphatidylserine liposomes were also investigated. At charge ratios of around 1.0, these polymers caused resonance energy transfer of fluorescent lipids incorporated in separate vesicles; however, polyallylamine and branched polyethylenimine also caused permeability increases of liposomal membranes. Membrane intermixing and permeability changes of phosphatidylserine vesicles induced by polyallylamine were dependent on the polymer/vesicle charge ratio, and were different from those induced by Ca2+ since the latter caused half-maximal membrane intermixing or permeability change of phosphatidylserine vesicles at about 1 mM at the liposomal concentrations investigated.  相似文献   

10.
Effect of bilayer membrane curvature of substrate phosphatidylcholine and inhibitor phosphatidylserine on the activity of phosphatidylcholine exchange protein has been studied by measuring transfer of spin-labeled phosphatidylcholine between vesicles, vesicles and liposomes, and between liposomes. The transfer rate between vesicles was more than 100 times larger than that between vesicles and liposomes. The transfer rate between liposomes was still smaller than that between vesicles and liposomes and nearly the same as that in the absence of exchange protein. The markedly enhanced exchange with vesicles was ascribed to the asymmetric packing of phospholipid molecules in the outer layer of the highly curved bilayer membrane. The inhibitory effect of phosphatidylserine was also greatly dependent on the membrane curvature. The vesicles with diameter of 17 nm showed more than 20 times larger inhibitory activity than those with diameter of 22 nm. The inhibitory effect of liposomes was very small. The size dependence was ascribed to stronger binding of the exchange protein to membranes with higher curvatures. The protein-mediated transfer from vesicles to spiculated erythrocyte ghosts was about four times faster than that to cup-shaped ghosts. This was ascribed to enhanced transfer to the highly curved spiculated membrane sites rather than greater mobility of phosphatidylcholine in the spiculated ghost membrane.  相似文献   

11.
Direct contact between lipids solubilized by octyl glucoside and Amberlite XAD-2 beads yielded large liposomes (240 nm diameter) with no residual detergent molecules, in less than 10 min. This extemporaneous preparation of liposomes was prepared with a detergent/bead ratio no higher than 0.12 (mumol/mg) and a phosphatidylcholine/phosphatidylserine/cholesterol molar ratio of 1:1:1. The liposomes were mainly unilamellar, as deduced from thin section and freeze-fracture electron micrographs and from measurement of calcein incorporation into the vesicles. The relatively large internal volume of these vesicles (8.9 l/mol lipid) accounts for the high percentage of entrapped material observed. The percentage increased with lipid concentration, but could not be increased above 20% corresponding to 20 mM total lipids.  相似文献   

12.
Reconstitution of rabbit thrombomodulin into phospholipid vesicles   总被引:9,自引:0,他引:9  
The influence of phospholipid on thrombin-thrombomodulin-catalyzed activation of protein C has been studied by incorporating thrombomodulin into vesicles by dialysis from octyl glucoside-phospholipid mixtures. Thrombomodulin was incorporated into vesicles ranging from neutral (100% phosphatidylcholine) to highly charged (30% phosphatidylserine and 70% phosphatidylcholine). Thrombomodulin is randomly oriented in vesicles of different phospholipid composition. Incorporation of thrombomodulin into phosphatidylcholine, with or without phosphatidylserine, alters the Ca2+ concentration dependence of protein C activation. Soluble thrombomodulin showed a half-maximal rate of activation at 580 microM Ca2+, whereas half-maximal rates of activation of liposome-reconstituted thrombomodulin were obtained between 500 microM Ca2+ and 2 mM Ca2+, depending on the composition (protein:phospholipid) of the liposomes. The Ca2+ dependence of protein C activation fits a simple hyperbola for the soluble activator, while the Ca2+ dependence of the membrane-associated complex is distinctly sigmoidal with a Hill coefficient greater than 2.4. In contrast, the Ca2+ dependence of gamma-carboxyglutamic acid (Gla) domainless protein C activation is unchanged by membrane reconstitution (1/2 max = 53 +/- 10 microM) and fits a simple rectangular hyperbola. Incorporation of thrombomodulin into pure phosphatidylcholine vesicles reduces the Km for protein C from 7.6 +/- 2 to 0.7 +/- 0.2 microM. Increasing phosphatidylserine to 20% decreased the Km for protein C further to 0.1 +/- 0.02 microM. Membrane incorporation has no influence on the activation of protein C from which the Gla residues are removed proteolytically (Km = 6.4 +/- 0.5 microM). The Km for protein C observed on endothelial cells is more similar to the Km observed when thrombomodulin (TM) is incorporated into pure phosphatidylcholine vesicles than into negatively charged vesicles, suggesting that the protein C-binding site on endothelial cells does not involve negatively charged phospholipids. In support of this concept, we observed that prothrombin and fragment 1, which bind to negatively charged phospholipids, do not inhibit protein C activation on endothelial cells or TM incorporated into phosphatidylcholine vesicles, but do inhibit when TM is incorporated into phosphatidylcholine:phosphatidylserine vesicles. These studies suggest that neutral phospholipids lead to exposure of a site, probably on thrombomodulin, capable of recognizing the Gla domain of protein C.  相似文献   

13.
P I Lelkes  P Lazarovici 《FEBS letters》1988,230(1-2):131-136
The effects on membranes of pardaxin, an amphipathic polypeptide, purified from the gland secretion of the Red Sea Moses sole flatfish Pardachirus marmoratus are dose-dependent and range from formation of voltage-gated, cation-selective pores to lysis. We have now investigated the interactions of pardaxin with small unilamellar liposomes. Light scattering showed that pardaxin (10−7–10−9M) mediated the aggregation of liposomes composed of phosphatidylserine but not of phosphatidylcholine. Aggregation of phosphatidylserine vesicles was impaired by vesicle depolarization. Furthermore, pardaxin-mediated aggregation between fluorescent-labeled PS vesicles was accompanied by leakage of the vesicle contents, and not by fusogenic process within the aggregates. We suggest that pardaxin is a unique polypeptide, that induces vesicle aggregation and membrane destabilization, but not membrane fusion; the mechanism of the aggregation activity of pardaxin is related to its amphipathic properties.  相似文献   

14.
It has been proposed that N-terminal myristoylation of calcineurin B is necessary for the membrane association of calcineurin. We tested the effects of Ca(2+) and myristoylation on the binding of calcineurin B alone or heterodimeric calcineurin to phosphatidylserine or phosphatidylcholine vesicles. In the presence of excess phosphatidylserine, 50-60% of total calcineurin associated with phosphatidylserine in a Ca(2+)-sensitive manner. Calcineurin did not associate with phosphatidylcholine. Calcineurin containing both the alpha and beta catalytic subunit isoforms bound to phosphatidylserine. Calmodulin interfered with the association of calcineurin with phosphatidylserine. In the presence of Ca(2+), myristoylated calcineurin B alone did not bind to phosphatidylcholine but did bind to phosphatidylserine, although to a lesser extent than the calcineurin heterodimer. Non-myristoylated calcineurin B alone, or calcineurin containing non-myristoylated calcineurin B did not associate with phosphatidylserine in the presence of Ca(2+). These results indicate: (i) Both isoforms of calcineurin bind to phosphatidylserine. (ii) A phospholipid binding site is located on the calcineurin B subunit. (iii) Calcineurin B myristoylation is required for the Ca(2+)-sensitive binding of calcineurin to phosphatidylserine vesicles in vitro.  相似文献   

15.
The ability of oligo- and polymers of the basic amino acids L-lysine, L-arginine, L-histidine and L-ornithine to induce lipid intermixing and membrane fusion among vesicles containing various anionic phospholipids has been investigated. Among vesicle consisting of either phosphatidylinositol or mixtures of phosphatidic acid and phosphatidylethanolamine rapid and extensive lipid intermixing, but not complete fusion, was induced at neutral pH by poly-L-ornithine or L-lysine peptides of five or more residues. When phosphatidylcholine was included in the vesicles, the lipid intermixing was severely inhibited. Such lipid intermixing was also much less pronounced among phosphatidylserine vesicles. Poly-L-arginine provoked considerable leakage from the various anionic vesicles and caused significantly less lipid intermixing than L-lysine peptides at neutral pH. When the addition of basic amino acid polymer was followed by acidification to pH 5-6, vesicle fusion was induced. Fusion was more pronounced among vesicles containing phosphatidylserine or phosphatidic acid than among those containing phosphatidylinositol, and occurred also with vesicles whose composition resembles that of cellular membranes (i.e., phosphatidylcholine/phosphatidylethanolamine/phosphatidylserine, 50:30:20, by mol). Liposomes with this composition are resistant to fusion by Ca2+ or by acidification after lectin-mediated contact. The tight interaction among vesicles at neutral pH, resulting in lipid intermixing, does not seem to be necessary for the fusion occurring after acidification, but the basic peptides nevertheless appear to play a more active role in the fusion process than simply bringing the vesicles in contact. However, protonation of the polymer side chains and transformation of the polymer into a polycation does not explain the need for acidification, since the pH-dependence was quite similar for poly(L-histidine)- and poly(L-lysine)-mediated fusion.  相似文献   

16.
17.
The role of methionine residues in the interaction of the phosphatidylcholine transfer protein from bovine liver with phospholipid vesicles was investigated by specific modification of these residues with iodoacetamide. The modified protein was digested with cyanogen bromide in order to determine which methionine residues had become resistant to this cleavage. Automated Edman degradation on the digest indicated that after 72 h of reaction, Met-1 was modified for 80%, Met-73 for 50%, Met-109 for 20%, whilst Met-173 and Met-203 were found to be unmodified. This distinct modification did not result in any loss of phosphatidylcholine transfer activity. The interaction of the phosphatidylcholine transfer protein with phospholipid vesicles was investigated by making use of electron spin resonance spectroscopy. The interaction of unmodified protein with vesicles composed of phosphatidylcholine/phosphatidic acid/spin-labeled phosphatidylethanolamine (79:16:5, mol%) or composed of phosphatidylserine/spin-labeled phosphatidylethanolamine (95:5, mol%), gave an increase of about 50% in the rotation correlation time. A similar increase was observed with the modified protein. This interaction was further investigated by labeling Met-1 and Met-73 in the transfer protein with iodoacetamidoproxyl spin-label. Spin-labeling did not inactivate the transfer protein. In addition, the electron spin resonance spectra of the spin-labeled protein were not affected upon addition of vesicles composed of phosphatidylcholine/phosphatidic acid (80:20, mol%). These experiments strongly suggest that Met-1 and Met-73 are not part of the site that interacts with the membrane.  相似文献   

18.
Effects of dolichol on membrane permeability   总被引:1,自引:0,他引:1  
Small vesicles containing the tetra-anionic fluorescent probe calcein were prepared by sonication of mixtures of plant phosphatidylethanolamine, plant phosphatidylcholine, and dolichol. Following chromatography, the isolated vesicles were found to retain entrapped calcein over the temperature range of 15 to 40 degrees C. Utilizing an assay measuring the fluorescence quenching of entrapped calcein by cobalt ions, the presence of dolichol in the membranes was found to promote the permeability of the phospholipid bilayers to the divalent cation. The permeability was shown to be dependent on temperature with an increase in rate of 17-fold between 15 and 35 degrees C although the plant phospholipids used in these experiments have no known phase transition within this temperature range. The incorporated dolichol was distributed uniformly throughout the vesicle population. Similar vesicles prepared from phosphatidylethanolamine and phosphatidylcholine without added dolichol, from phosphatidylcholine alone, or with phosphatidylcholine and dolichol were far less permeable to the divalent cation under the same assay conditions. These results demonstrate that dolichols have significant effects on the permeability properties of phospholipid bilayers that contain phosphatidylethanolamine.  相似文献   

19.
D Rapaport  R Peled  S Nir    Y Shai 《Biophysical journal》1996,70(6):2502-2512
The mechanism of leakage induced by surface active peptides is not yet fully understood. To gain insight into the molecular events underlying this process, the leakage induced by the peptide pardaxin from phosphatidylcholine/ phosphatidylserine/cholesterol large unilamellar vesicles was studied by monitoring the rate and extent of dye release and by theoretical modeling. The leakage occurred by an all-or-none mechanism: vesicles either leaked or retained all of their contents. We further developed a mathematical model that includes the assumption that certain peptides become incorporated into the vesicle bilayer and aggregate to form a pore. The current experimental results can be explained by the model only if the surface aggregation of the peptide is reversible. Considering this reversibility, the model can explain the final extents of calcein leakage for lipid/peptide ratios of > 2000:1 to 25:1 by assuming that only a fraction of the bound peptide forms pores consisting of M = 6 +/- 3 peptides. Interestingly, less leakage occurred at 43 degrees C, than at 30 degrees C, although peptide partitioning into the bilayer was enhanced upon elevation of the temperature. We deduced that the increased leakage at 30 degrees C was due to an increase in the extent of reversible surface aggregation at the lower temperature. Experiments employing fluorescein-labeled pardaxin demonstrated reversible aggregation of the peptide in suspension and within the membrane, and exchange of the peptide between liposomes. In summary, our experimental and theoretical results support reversible surface aggregation as the mechanism of pore formation by pardaxin.  相似文献   

20.
In an attempt to gain insight into the physiological role of phosphatidylinositol turnover enhanced by extracellular stimuli, the physical properties of artificial membranes (egg yolk phosphatidylcholine/bovine brain phosphatidylserine) containing phosphatidylinositol or diacylglycerol were studied by ESR using spin probes and freeze-fracture electron microscopy. Diacylglycerol lost both the ability to form lipid bilayer structures and its susceptibility to calcium ions. Yeast phosphatidylinositol included in dipalmitoylphosphatidylcholine liposomes lowered the phase transition temperature of dipalmitoylphosphatidylcholine and expanded the temperature range of phase transition. However, diacylglycerol at the same concentration did not undergo the effects caused by phosphatidylinositol but the phase transition temperature was slightly raised. Phase separation of phosphatidylserine induced by calcium ions was enhanced when the phosphatidylinositol was replaced by diacylglycerol in phosphatidylcholine/phosphatidylserine/phosphatidylinositol (3:5:2, by molar ratio) mixtures. The mobility of phosphatidylcholine spin probe was decreased in phosphatidylcholine/phosphatidylserine/diacylglycerol (3:5:2, by molar ratio) liposomes compared with phosphatidylcholine/phosphatidylserine/phosphatidylinositol (3:5:2, by molar ratio) liposomes. An additional component from protonated stearic acid spin probes was observed in phosphatidylcholine/phosphatidylinositol (8:2, by molar ratio) liposomes at 40 degrees C, whereas the component was not seen in phosphatidylcholine/diacylglycerol (8:2, by molar ratio) liposomes. This may indicate the alteration of surface charge induced by the replacement of phosphatidylinositol by diacylglycerol. Indeed, in the presence of 1 mM Ca2+, the additional component was removed by an electrostatic interaction between Ca2+ and phosphatidylinositol molecules in phosphatidylcholine/phosphatidylinositol liposomes at 40 degrees C. These results support the hypothesis that the enhanced turnover of phosphatidylinositol may play a triggering role for various cellular responses to exogenous stimuli by altering membrane physical states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号