首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The secondary structure of rRNA internal transcribed spacer 2 is important in the process of ribosomal biogenesis. Trematode ITS sequences are poorly conserved and difficult to align for phylogenetic comparisons above a family level. If a conserved secondary structure can be identified, it can be used to guide primary sequence alignments. ITS2 sequences from 39 species were compared. These species span four orders of trematodes (Echinostomiformes, Plagiorchiformes, Strigeiformes, and Paramphistomiformes) and one monogenean (Gyrodactyliformes). The sequences vary in length from 251 to 431 bases, with an average GC content of 48%. The monogenean sequence could not be aligned with confidence to the trematodes. Above the family level trematode sequences were alignable from the 5′ end for 139 bases. Secondary structure foldings predicted a four-domain model. Three folding patterns were required for the apex of domain B. The folding pattern of domains C and D varies for each family. The structures display a high GC content within stems. Bases A and U are favored in unpaired regions and variable sites cluster. This produces a mosaic of conserved and variable regions with a structural conformation resistant to change. Two conserved strings were identified, one in domain B and the other in domain C. The first site can be aligned to a processing site identified in yeast and rat. The second site has been found in plants, and structural location appears to be important. A phylogenetic tree of the trematode sequences, aligned with the aid of secondary structures, distinguishes the four recognized orders. Received: 21 November 1997 / Accepted: 9 February 1998  相似文献   

2.
Satellite RNA of bamboo mosaic potexvirus (satBaMV) is a linear RNA molecule which encodes a 20-kDa nonstructural protein. Sequences of seven different satBaMV isolates from bamboo hosts in three genera showed 0.7% to 7.5% base variation which spanned the whole RNA molecule. However, the putative 20-kDa open reading frame was all preserved in these isolates. The phylogenetic relationship based on the nucleotide sequence did not show particular grouping of satBaMV from the host in one genus; neither was the grouping of satBaMV evident by location of sampling. Putative secondary structures of the 3′ untranslated regions showed a basic pattern with conserved hexanucleotides (ACCUAA) and polyadenylation signal (AAUAAA) located in the loop regions. Although the satBaMV-encoded 20-kDa protein is a nonstructural protein, its predicted secondary structure contains eight-stranded β-sheets which may form ``jelly-roll' structure similar to that found in capsid protein encoded by satellite virus of panicum mosaic virus. Received: 26 June 1996 / Accepted: 9 September 1996  相似文献   

3.
The complete nucleotide sequence of the SSU rRNA gene from the soil bug, Armadillidium vulgare (Crustacea, Isopoda), was determined. It is 3214 bp long, with a GC content of 56.3%. It is not only the longest SSU rRNA gene among Crustacea but also longer than any other SSU rRNA gene except that of the strepsipteran insect, Xenos vesparum (3316 bp). The unusually long sequence of this species is explained by the long sequences of variable regions V4 and V7, which make up more than half of the total length. RT-PCR analysis of these two regions showed that the long sequences also exist in the mature rRNA and sequence simplicity analysis revealed the presence of slippage motifs in these two regions. The putative secondary structure of the rRNA is typical for eukaryotes except for the length and shape variations of the V2, V4, V7, and V9 regions. Each of the V2, V4, and V7 regions was elongated, while the V9 region was shortened. In V2, two bulges, located between helix 8 and helix 9 and between helix 9 and helix 10, were elongated. In V4, stem E23-3 was dramatically expanded, with several small branched stems. In V7, stem 43 was branched and expanded. Comparisons with the unusually long SSU rRNAs of other organisms imply that the increase in total length of SSU rRNA is due mainly to expansion in the V4 and V7 regions. Received: 2 March 1999 / Accepted: 22 July 1999  相似文献   

4.
The origin and diversification of RNA secondary structure were traced using cladistic methods. Structural components were coded as polarized and ordered multi-state characters, following a model of character state transformation outlined by considerations in statistical mechanics. Several classes of functional RNA were analyzed, including ribosomal RNA (rRNA). Considerable phylogenetic signal was present in their secondary structure. The intrinsically rooted phylogenies reconstructed from evolved RNA structure depicted those derived from nucleic acid sequence at all taxonomical levels, and grouped organisms in concordance with traditional classification, especially in the archaeal and eukaryal domains. Natural selection appears therefore to operate early in the information flow that originates in sequence and ends in an adapted phenotype. When examining the hierarchical classification of the living world, phylogenetic analysis of secondary structure of the small and large rRNA subunits reconstructed a universal tree of life that branched in three monophyletic groups corresponding to Eucarya, Archaea, and Bacteria, and was rooted in the eukaryotic branch. Ribosomal characters involved in the translational cycle could be easily traced and showed that transfer RNA (tRNA) binding domains in the large rRNA subunit evolved concurrently with the rest of the rRNA molecule. Results suggest it is equally parsimonious to consider that ancestral unicellular eukaryotes or prokaryotes gave rise to all extant life forms and provide a rare insight into the early evolution of nucleic acid and protein biosynthesis. Received: 13 September 2000 / Accepted: 27 August 2001  相似文献   

5.
Members of the transketolase group of thiamine-diphosphate-dependent enzymes from 17 different organisms including mammals, yeast, bacteria, and plants have been used for phylogenetic reconstruction. Alignment of the amino acid and DNA sequences for 21 transketolase enzymes and one putative transketolase reveals a number of highly conserved regions and invariant residues that are of predicted importance for enzyme activity, based on the crystal structure of yeast transketolase. One particular sequence of 36 residues has some similarities to the nucleotide-binding motif and we designate it as the transketolase motif. We report further evidence that the recP protein from Streptococcus pneumoniae might be a transketolase and we list a number of invariant residues which might be involved in substrate binding. Phylogenies derived from the nucleotide and the amino acid sequences by various methods show a conventional clustering for mammalian, plant, and gram-negative bacterial transketolases. The branching order of the gram-positive bacteria could not be inferred reliably. The formaldehyde transketolase (sometimes known as dihydroxyacetone synthase) of the yeast Hansenula polymorpha appears to be orthologous to the mammalian enzymes but paralogous to the other yeast transketolases. The occurrence of more than one transketolase gene in some organisms is consistent with several gene duplications. The high degree of similarity in functionally important residues and the fact that the same kinetic mechanism is applicable to all characterized transketolase enzymes is consistent with the proposition that they are all derived from one common ancestral gene. Transketolase appears to be an ancient enzyme that has evolved slowly and might serve as a model for a molecular clock, at least within the mammalian clade. Received: 13 September 1995 / Accepted: 14 November 1996  相似文献   

6.
7.
A phylogenetic tree for major lineages of iguanian lizards is estimated from 1,488 aligned base positions (858 informative) of newly reported mitochondrial DNA sequences representing coding regions for eight tRNAs, ND2, and portions of ND1 and COI. Two well-supported groups are defined, the Acrodonta and the Iguanidae (sensu lato). This phylogenetic hypothesis is used to investigate evolutionary shifts in mitochondrial gene order, origin for light-strand replication, and secondary structure of tRNACys. These three characters shift together on the branch leading to acrodont lizards. Plate tectonics and the fossil record indicate that these characters changed in the Jurassic. We propose that changes to the secondary structure of tRNACys may destroy function of the origin for light-strand replication which, in turn, may facilitate shifts in gene order. Received: 28 May 1996 / Accepted: 27 December 1996  相似文献   

8.
9.
The determination of the secondary structure of the internal transcribed spacer (ITS) regions separating nuclear ribosomal RNA genes of Chlorophytes has improved the fidelity of alignment of nuclear ribosomal ITS sequences from related organisms. Application of this information to sequences from green algae and plants suggested that a subset of the ITS-2 positions is relatively conserved. Organisms that can mate are identical at all of these 116 positions, or differ by at most, one nucleotide change. Here we sequenced and compared the ITS-1 and ITS-2 of 40 green flagellates in search of the nearest relative to Chlamydomonas reinhardtii. The analysis clearly revealed one unique candidate, C. incerta. Several ancillary benefits of the analysis included the identification of mislabelled cultures, the resolution of confusion concerning C. smithii, the discovery of misidentified sequences in GenBank derived from a green algal contaminant, and an overview of evolutionary relationships among the Volvocales, which is congruent with that derived from rDNA gene sequence comparisons but improves upon its resolution. The study further delineates the taxonomic level at which ITS sequences, in comparison to ribosomal gene sequences, are most useful in systematic and other studies. Received: 14 February 1997 / Accepted: 28 March 1997  相似文献   

10.
Although molecular phylogenetic studies of cyanobacteria on the basis of the 16S rRNA gene sequence have been reported, the topologies were unstable, especially in the inner branchings. Our analysis of 16S rRNA gene phylogeny by the maximum-likelihood and neighbor-joining methods combined with rate homogeneous and heterogeneous models revealed seven major evolutionary lineages of the cyanobacteria, including prochlorophycean organisms. These seven lineages are always stable on any combination of these methods and models, fundamentally corresponding to phylogenetic relationships based on other genes, e.g., psbA, rbcL, rnpB, rpoC, and tufA. Moreover, although known genotypic and phenotypic characters sometimes appear paralleled in independent lineages, many characters are not contradictory within each group. Therefore we propose seven evolutionary groups as a working hypothesis for successive taxonomic reconstruction. New 16S rRNA sequences of five unicellular cyanobacterial strains, PCC 7001, PCC 7003, PCC 73109, PCC 7117, and PCC 7335 of Synechococcus sp., were determined in this study. Although all these strains have been assigned to ``marine clusters B and C,' they were separated into three lineages. This suggests that the organisms classified in the genus Synechococcus evolved diversely and should be reclassified in several independent taxonomic units. Moreover, Synechococcus strains and filamentous cyanobacteria make a monophyletic group supported by a comparatively high statistical confidence value (80 to 100%) in each of the two independent lineages; therefore, these monophylies probably reflect the convergent evolution of a multicellular organization. Received: 3 September 1998 / Accepted: 30 November 1998  相似文献   

11.
Comparison of complete genome sequences for different variants of hepatitis C virus (HCV) reveals several different constraints on sequence change. Synonymous changes are suppressed in coding regions at both 5′ and 3′ ends of the genome. No evidence was found for the existence of alternative reading frames or for a lower mutation frequency in these regions. Instead, suppression may be due to constraints imposed by RNA secondary structures identified within the core and NS5b genes. Nonsynonymous substitutions are less frequent than synonymous ones except in the hypervariable region of E2 and, to a lesser extent, in E1, NS2, and NS5b. Transitions are more frequent than transversions, particularly at the third position of codons where the bias is 16:1. In addition, nucleotide substitutions may not occur symmetrically since there is a bias toward G or C at the third position of codons, while T ↔ C transitions were twice as frequent as A ↔ G transitions. These different biases do not affect the phylogenetic analysis of HCV variants but need to be taken into account in interpreting sequence change in longitudinal studies. Received: 9 September 1996 / Accepted: 20 April 1997  相似文献   

12.
13.
The structure of a Salmonella enterica serovar typhi gene located within the fim gene cluster and encoding a putative periplasmic chaperone-like protein involved in the assembly of type 1 pili was determined. This gene, named fimC, has the ability to encode a 26-kDa polypeptide which is similar, at the sequence level, to the PapD periplasmic chaperonin mediating the assembly of P pili of Escherichia coli, as well as to other periplasmic chaperone-like proteins involved in the biogenesis of pili or capsule-like structures of various Gram-negative bacteria. A comprehensive search through the literature and sequence databases identified 31 (putative) bacterial proteins that can be included in this protein family on the basis of sequence similarity. Results of a multiple sequence comparison analysis showed that several residues, including most of those known to be critical in maintaining the three-dimensional structure of PapD, are either conserved or conservatively substituted in all these proteins, suggesting an overall similar folding for all of them. It was also evident that members of this family are clustered into different subfamilies according to structural and phyletic data. Received: 15 February 1996 / Accepted: 3 October 1996  相似文献   

14.
Telomeres of most insects are composed of simple (TTAGG) n repeats that are synthesized by telomerase. However, in some dipteran insects such as Drosophila melanogaster, (TTAGG) n repeats or telomerase activity has not been detected. Although telomere structure is well documented in Diptera and Lepidoptera, very limited information is available on lower insect groups. To understand general aspects of telomere function and evolution in insects, we endeavored to characterize structures of the telomeric and subtelomeric regions in a lower insect, the Taiwan cricket, Teleogryllus taiwanemma. FISH analysis of this insect's chromosomes demonstrated (TTAGG) n repeat elements in all distal ends. Just proximal to the telomeric repeats, the highly conserved 9-kb long terminal unit (LTU) sequences are tandemly repeated. These were observed in four of six chromosomes, three autosomal ends, and one X-chromosomal end. LTU sequences represent about 0.2% of the T. taiwanemma genome. Each LTU contains a core (TTAGG)8-like sequence (TRLS) and five types of conserved sequences—ST (short telomere associated), J (joint), X, SR (satellite sequence rich), and Y—which vary in length from about 150 bp to 2.7 kb. The LTU sequence is defined as ST–J–TRLS–SR–X–Y–X–Y–X. Most LTU regions may be derived from the ancestral common sequence, which is observed in ST regions six times and at many other LTU sites. We could not find the LTU-like sequence in three other crickets including the closest species, T. emma, suggesting that the LTU in T. taiwanemma has been rapidly amplified in subtelomeric regions through recent evolutional events. It is also suggested that the highly conserved structure of the LTU is maintained by recombination and may contribute to telomere elongation, as seen in dipteran insects. Received: 6 August 2001/Accepted: 10 October 2001  相似文献   

15.
Mitochondrial small-subunit (19S) rDNA sequences were obtained from 10 angiosperms to further characterize sequence divergence levels and structural variation in this molecule. These sequences were derived from seven holoparasitic (nonphotosynthetic) angiosperms as well as three photosynthetic plants. 19S rRNA is composed of a conservative core region (ca. 1450 nucleotides) as well as two variable regions (V1 and V7). In pairwise comparisons of photosynthetic angiosperms to Glycine, the core 19S rDNA sequences differed by less than 1.4%, thus supporting the observation that variation in mitochondrial rDNA is 3–4 times lower than seen in protein coding and rDNA genes of other subcellular organelles. Sequences representing four distinct lineages of nonasterid holoparasites showed significantly increased numbers of substitutions in their core 19S rDNA sequences (2.3–7.6%), thus paralleling previous findings that showed accelerated rates in nuclear (18S) and plastid (16S) rDNA from the same plants. Relative rate tests confirmed the accelerated nucleotide substitution rates in the holoparasites whereas rates in nonparasitic plants were not significantly increased. Among comparisons of both parasitic and nonparasitic plants, transversions outnumbered transitions, in many cases more than two to one. The core 19S rRNA is conserved in sequence and structure among all nonparasitic angiosperms whereas 19S rRNA from members of holoparasitic Balanophoraceae have unique extensions to the V5 and V6 variable domains. Substitution and insertion/deletion mutations characterized the V1 and V7 regions of the nonasterid holoparasites. The V7 sequence of one holoparasite (Scybalium) contained repeat motifs. The cause of substitution rate increases in the holoparasites does not appear to be a result of RNA editing, hence the underlying molecular mechanism remains to be fully documented. Received: 18 May 1997 / Accepted: 11 July 1997  相似文献   

16.
Complete chloroplast 23S rRNA and psbA genes from five peridinin-containing dinoflagellates (Heterocapsa pygmaea, Heterocapsa niei, Heterocapsa rotun-data, Amphidinium carterae, and Protoceratium reticulatum) were amplified by PCR and sequenced; partial sequences were obtained from Thoracosphaera heimii and Scrippsiella trochoidea. Comparison with chloroplast 23S rRNA and psbA genes of other organisms shows that dinoflagellate chloroplast genes are the most divergent and rapidly evolving of all. Quartet puzzling, maximum likelihood, maximum parsimony, neighbor joining, and LogDet trees were constructed. Intersite rate variation and invariant sites were allowed for with quartet puzzling and neighbor joining. All psbA and 23S rRNA trees showed peridinin-containing dinoflagellate chloroplasts as monophyletic. In psbA trees they are related to those of chromists and red algae. In 23S rRNA trees, dinoflagellates are always the sisters of Sporozoa (apicomplexans); maximum likelihood analysis of Heterocapsa triquetra 16S rRNA also groups the dinoflagellate and sporozoan sequences, but the other methods were inconsistent. Thus, dinoflagellate chloroplasts may actually be related to sporozoan plastids, but the possibility of reproducible long-branch artifacts cannot be strongly ruled out. The results for all three genes fit the idea that dinoflagellate chloroplasts originated from red algae by a secondary endosymbiosis, possibly the same one as for chromists and Sporozoa. The marked disagreement between 16S rRNA trees using different phylogenetic algorithms indicates that this is a rather poor molecule for elucidating overall chloroplast phylogeny. We discuss possible reasons why both plastid and mitochondrial genomes of alveolates (Dinozoa, Sporozoa and Ciliophora) have ultra-rapid substitution rates and a proneness to unique genomic rearrangements. Received: 27 December 1999 / Accepted: 24 March 2000  相似文献   

17.
The genomic organization of the hsp83 gene of Drosophila auraria, a far-eastern endemic species belonging to the montium subgroup of the melanogaster species group, is presented here. Based on in situ hybridization on polytene chromosomes, cDNA and genomic clone mapping, nucleotide sequencing, and genomic Southern analysis, hsp83 is shown to be present as a single-copy gene at locus 64B on the 3L chromosome arm in D. auraria. This gene is organized into two exons separated by a 929-bp intron. The first exon represents the mRNA leader sequence and is not translated, while the coding region, having a length of 2,151 bp, is solely included in the second exon. Nucleotide sequence comparisons of D. auraria hsp83 with homologous sequences from other organisms show high conservation of the coding region (88–92% identity) in the genus Drosophila, in addition to the conserved genomic organization of two-exons–one-intron, of comparable size and arrangement. A phylogenetic tree based on the protein sequences of homologous genes from representative organisms is in accord with the accredited phylogenetic position of D. auraria. In the hsp83 gene region, a second case of long antiparallel coupled open reading frames (LAC ORFs) for this species was found. The antiparallel to the hsp83 gene ORF is 1,554 bases long, while the two ORFs overlap has a size of 1,548 bp. The anti-hsp83 ORF does not show significant homology to any known gene sequences. In addition, no similar LAC ORF structures were found in homologous gene regions of other organisms. Received: 18 April 1997 / Accepted: 1 August 1997  相似文献   

18.
Summary An 890-bp sequence from the central region ofDrosophila melanogaster 26S ribosomal DNA (rDNA) has been determined and used in an extensive comparative analysis of the central domain of the large subunit ribosomal RNA (lrRNA) from prokaryotes, organelles, and eukaryotes. An alignment of these different sequences has allowed us to precisely map the regions of the central domain that have highly diverged during evolution. Using this sequence comparison, we have derived a secondary structure model of the central domain ofDrosophila 26S ribosomal RNA (rRNA). We show that a large part of this model can be applied to the central domain of lrRNA from prokaryotes, eukaryotes, and organelles, therefore defining a universal common structural core. Likewise, a comparative study of the secondary structure of the divergent regions has been performed in several organisms. The results show that, despite a nearly complete divergence in their length and sequence, a common structural core is also present in divergent regions. In some organisms, one or two of the divergent regions of the central domain are removed by processing events. The sequence and structure of these regions (fragmentation spacers) have been compared to those of the corresponding divergent regions that remain part of the mature rRNA in other species.  相似文献   

19.
The primary and secondary structure of the small-subunit ribosomal RNA (ssrRNA) gene from the naked, marine amoeba, Vannella anglica (subclass Gymnamoebia), was determined. The ssrRNA is 1962 nucleotides in length, with a low G+C content of 37.1%. The ssrRNA is composed of several uncommon secondary structure features including helix E8-1, which may be a useful target for rRNA probes for the direct identification of isolates in mixed culture. Phylogenetic analysis of sequence data showed that V. anglica branched prior to the rapid diversification of the eukaryotes. It did not associate with the other naked, lobose amoebae represented by Acanthamoeba and Hartmannella, indicating that Vannella represents a separate amoeboid lineage and the subclass Gymnamoebia is polyphyletic. Received: 9 July 1998 / Accepted: 16 November 1998  相似文献   

20.
The morphologically uniform species Gonium pectorale is a colonial green flagellate of worldwide distribution. The affinities of 25 isolates from 18 sites on five continents were assessed by both DNA sequence comparisons and sexual compatibility. Complete sequences were obtained (i) for the internal transcribed spacer ITS-1 and ITS-2 regions of ribosomal DNA and (ii) for each of three single-copy spliceosomal introns, two in a small G protein and one in the actin gene. ITS sequences appeared to homogenize sufficiently rapidly to behave as a single copy gene. Intron sequence differences between isolates in this species reached nucleotide substitution saturation, while ITS sequences did not. Parsimony and evolutionary distance analysis of the two types of DNA data gave essentially the same tree conformation. By all these criteria, the group of G. pectorale isolates fell into two main clades, A and B. Clade A, with isolates from four continents, was comprised of four subclades of quite closely related isolates, plus one strain of ambiguous affinity. Clade B was comprised of two subclades represented by South African and South American isolates, respectively; thus, only subclades of clade B showed geographical localization. With respect to mating, all isolates except one homothallic strain and one apparently sterile strain fell into either one or the other of two mating types. Pairings in all possible combinations revealed that isolates from the same site formed abundant zygotes, which germinated to produce new, sexually active organisms. Zygotes were also formed in many pairings of other combinations, including crosses of clade A with clade B organisms, but none of the latter produced viable germlings. The ability to mate and produce viable progeny that were themselves capable of sexual reproduction was restricted to members of subclades established on the basis of DNA sequence similarities. Thus, the grades of difference in both nuclear intron sequences and rDNA ITS sequences paralleled those observed in the sexual analysis. Received: 9 March 1998 / Accepted: 1 June 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号