首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theoretical studies on the coordination stabilities, spectra and DNA-binding trend for the series of metal-varied complexes, M(IDB)Cl2 (M = Mn, Fe, Co, Ni, Cu and Zn; IDB = N, N -bis(2-benzimidazolylmethyl) amine), have been carried out by using the DFT/B3LYP method and PCM model. The calculated coordination stabilities (S) for these complexes present a trend of S(Ni) > S(Co) > S(Fe) > S(Cu) > S(Zn) > S(Mn). It has been estimated from the molecular orbital energies of the complexes that the DNA-binding affinities (A) of the complexes are in the order of A(Zn) < A(Mn) < A(Fe) ≈ A(Co) < A(Ni) < A(Cu). The studied results indicate that the Cu, Ni and Co complexes with large coordination stabilities present the low virtual orbitals, consequently yielding to the favorable DNA-binding affinities. The spectral properties of excitation energies and oscillator strengths for M(IDB)Cl2 in the ultraviolet region were calculated by TD-DFT/B3LYP method.  相似文献   

2.
A novel emissive tetra-naphthylmethylene pendant-armed macrocyclic ligand and a series of complexes with monovalent and divalent metal ions have been synthesized. Solid compounds have been isolated as mononuclear (Co(II), Cu(II) and Zn(II)) or dinuclear (Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Ag(I)), complexes, depending on the counterions used. The chemical and photophysical properties of the free ligand, the protonation behavior and its metal complexes have been investigated in solution. UV-Vis spectroscopy has revealed a 1:1 binding stoichiometry for Cu(II), Zn(II), Cd(II), Ni(II) and Co(II), and 2:1 molar ratio for Ag(I). In chloroform, the free ligand presents two emission bands related to the monomer naphthalene emission and a red-shifted band attibutable to an exciplex due to a charge transfer from the nitrogen lone electron pair to the excited chromophore. Upon protonation of the free amines or due to metal complexation, the exciplex band disappears. The crystal structure of [Ag2L(NO3)2] is also reported. The structure reveals that both metal ions are into the macrocyclic cavity in a distorted square plane {AgN3O} environment. Each Ag(I) atom interacts with two neighbouring amine nitrogen atoms, one pyridine nitrogen and one oxygen atom from a monodentate nitrate ion.  相似文献   

3.
Complexes of Co(II), Ni(lI), Cu(II), Zn(II) and Pt(II) with 1-formylisoquinoline thiosemicarbazone (1-iqtsc-H) were prepared and characterized by elemental analyses, conductance measurement and spectral studies. On the basis of these studies a distorted octahedral structure for [Co(1-iqtsc)2]·2H2O, a distorted trigonal-bipyramidal structure for [Ni- (1-iqtsc-H)Cl2], [Cu(1-iqtsc-H)Cl2] and [Zn(1-iqtsc- H)(OAc)2]·H2O and a square-planar structure for [Pt(1-iqtsc)Cl] are suggested. All these metal(II) complexes were screened for their antitumour activity in the P388 lymphocytic leukaemia test system in mice. Except for Pt(Il), the complexes were found to possess significant activity; the Ni(II) complex showed a T/C value of 161 at the optimum dosage.  相似文献   

4.
The metal(II) complexes [M(4-Me-5-NH2-1-iqtsc- H)Cl2] (M = Co(II), Ni(II) or Cu(II) and 4-Me-5- NH2-1-iqtsc-H = 4-methyl-5-amino-1-formylisoquinoline thiosemicarbazone), [Zn(4-Me-5-NH2-1-iqtsc-H)- (OAc)2]· H2O and [Pt(4-Me-5-NH2-1-iqtsc)Cl)] were isolated and characterized by elemental analysis, conductance measurement, magnetic moments (300- 78 K)and spectral studies. On the basis of these studies distorted trigonal-bipyramidal structures for the Co(II), Ni(II), Cu(II) and Zn(II) complexes and a square-planar structure for the Pt(II) complex are proposed. All these complexes were screened for their antitumour activity in the P388 lymphocytic leukaemia test system in mice. With the exception of the Pt(II) and Zn(II) complexes, the complexes showed no significant activity; the Zn(II) and Pt(II) complexes showed T/C (%) values of 150 and 144 at a much lesser extent [2].  相似文献   

5.
New tetradentate ligands 2-(2-mercaptoethylthio)-N-(pyridin-2-ylmethyl)acetamide H2L1 and 2-chloro-2-(2-mercaptoethylthio)-N-(pyridin-2-ylmethyl)acetamide H2L2 were synthesised from the reaction of 2-aminomethanepyridine with 1,4-dithian-2-one and 3-chloro-1,4-dithian-2-one, respectively. Monomeric complexes of these ligands, of general formulae K[CrIII(Ln)Cl2], K2[MnII(Ln)Cl2] and [M(Ln)] (M = Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) or Hg(II); n = 1, 2) are reported. The mode of bonding and overall geometry of the complexes were determined through IR, UV-Vis, NMR and mass spectral studies, magnetic moment measurements, elemental analysis, metal content and conductance. These studies revealed octahedral geometries for the Cr(III), Mn(II) complexes, square planar for Ni(II) and Cu(II) complexes and tetrahedral for the Fe(II), Co(II), Zn(II), Cd(II) and Hg(II) complexes. The study of complex formation via molar ratio in DMF solution has been investigated and results were consistent to those found in the solid complexes with a ratio of (M:L) as (1:1).  相似文献   

6.
A new class of polydentate Mannich bases featuring an N2S2 donor system, bis((2-mercapto-N-phenylacetamido)methyl)phosphinic acid H3L1 and bis((2-mercapto-N-propylacetamido)methyl)phosphinic acid H3L2, has been synthesised from condensation of phosphinic acid and paraformaldehyde with 2-mercaptophenylacetamide W1 and 2-mercaptopropylacetamide W2, respectively. Monomeric complexes of these ligands, of general formula K2[CrIII(Ln)Cl2], K3[M′II(Ln)Cl2] and K[M(Ln)] (M′ = Mn(II) or Fe(II); M = Co(II), Ni(II), Cu(II), Zn(II), Cd(II) or Hg(II); n = 1, 2) are reported. The structures of new ligands, mode of bonding and overall geometry of the complexes were determined through IR, UV–Vis, NMR, and mass spectral studies, magnetic moment measurements, elemental analysis, metal content, and conductance. These studies revealed octahedral geometries for the Cr(III), Mn(II) and Fe(II) complexes, square planar for Ni(II) and Cu(II) complexes and tetrahedral for the Co(II), Zn(II), Cd(II) and Hg(II) complexes. Complex formation studies via molar ratio in DMF solution were consistent to those found in the solid complexes with a ratio of (M:L) as (1:1).  相似文献   

7.
The novel Cu(II), Ni(II), Zn(II), Co(II) coordination compounds with Schiff base ligand - N,N-bis(2-tosylaminobenzylidene)-1,3-diaminopropanol have been synthesized and studied. The structures of bis-azomethine as well as Co(II) and Zn(II) mononuclear metallochelates have been determined by X-ray analysis. The magnetic properties of all complexes were studied and interpreted in terms of HDVV theory. It was shown that exchange interaction in binuclear copper(II) complexes was affected by tosyl groups.  相似文献   

8.
A novel flexible tripodal ligand derived from 3-methylindole, (“InTREN” L), and its mononuclear Zn(II), Cu(II), Ni(II), Hg(II) and Pd(II) complexes are described. All compounds gave analytically pure solid samples. Characterisation of the compounds was accomplished by 1H NMR, IR and absorption spectroscopies, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and elemental analysis and their geometry optimized using density functional theory (DFT).Time-dependent-density functional theory (TD-DFT) calculations have been used to assign the lowest energy absorption bands of the free ligand and the Zn(II) complex. The system is a very good candidate for in situ recognition/coordination effects by MALDI-TOF-MS spectrometry and absorption spectroscopy. The presence of three indole groups in InTREN opens up the possibility to synthesize new three-dimensional self-assembly supramolecular structures.  相似文献   

9.
The acid-base and coordination properties towards Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) of four polyamino-phenol macrocycles 15-hydroxy-3,6,9-triazabicyclo[9.3.1]pentadeca-11,13,115-triene L1, 18-hydroxy-3,6,9,12-tetraazabicyclo[12.3.1]octadeca-14,16,118-triene L2, 21-hydroxy-3,6,9,12,15-pentaazabicyclo[15.3.1]enaicosa-17,19,121-triene L3 and 24-hydroxy-3,6,9,12,15,18-hexaazabicyclo[18.3.1]tetraicosa-20,22,124-triene L4 are reported. The protonation and stability constants were determined by means of potentiometric measurements in 0.15 mol dm−3 NMe4Cl aqueous solution at 298.1 K. L1 forms highly unsaturated Co(II), Cu(II), Zn(II) and Cd(II) mononuclear complexes that are prone to give dimeric dinuclear species with [(MH−1L1)2]2+ stoichiometry, in solution. L2 forms stable Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) mononuclear complexes that can coordinate external species as OH anion, giving hydroxylated complexes at alkaline pH. L3 forms stable Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) mononuclear complexes and Co(II), Ni(II), Cu(II) and Zn(II) dinuclear [M2H−1L3]3+ species. L4 forms stable mono- and dinuclear Co(II), Cu(II), Zn(II) and Cd(II) complexes, but only mononuclear species with Pb(II). The effect of macrocyclic size is considered in the discussion of results.  相似文献   

10.
An anthracene-based novel ligand (L), 9,10-bis((4,6-dimethylpyrimidin-2-ylthio)methyl)anthracene, was synthesised and fully characterised. Interactions of the ligand with selected metal ions, Hg(II), Cu(II), Ag(I), Pb(II), Zn(II), Ni(II), Co(II), and Cr(III), were spectroscopically investigated. Of the examined metal ions, both Hg(II) and Cu(II) showed responses in both UV-Vis and fluorescent spectroscopy towards the ligand in acetonitrile solution. Spectroscopic titration indicated that the ligand forms complexes with the two metal ions in 1:1 and 1:2 ratios, respectively. DFT calculations revealed that Hg(II) binds possibly with two pairs of donor-set {SN} of the ligand to form a mononuclear complex in a distorted planar geometry whereas Cu(II) forms likely a binuclear complex in a tetrahedral geometry in which each Cu(II) is further coordinated with possibly two acetonitrile molecules.  相似文献   

11.
Herein we present the synthesis, structural and spectroscopic characterization of coordination compounds of cobalt(II), copper(II) and zinc(II) with 2-methylbenzimidazole (2mbz), 2-phenylbenzimidazole (2phbz), 2-chlorobenzimidazole (2cbz), 2-benzimidazolecarbamate (2cmbz) and 2-guanidinobenzimidazole (2gbz). Their cytotoxic activity was evaluated using human cancer cell lines, PC3 (prostate), MCF-7 (breast), HCT-15 (colon), HeLa (cervic-uterine), SKLU-1 (lung) and U373 (glioblastoma), showing that the zinc(II) and copper(II) compounds [Zn(2mbz)2Cl2]·0.5H2O, [Zn(2cmbz)2Cl2]·EtOH, [Cu(2cmbz)Br2]·0.7H2O and [Cu(2gbz)Br2] had significant cytotoxic activity. The isostructural cobalt(II) complexes showed not significant activity. The cytotoxic activity is related to the presence of halides in the coordination sphere of the metal ion. Recuperation experiments with HeLa cells, showed that the cells recuperated after removing the copper(II) compounds and, on the contrary, the cells treated with the zinc(II) compounds did not. These results indicate that the mode of action of the coordination compounds is different.  相似文献   

12.
Keflin (kefl) interacts with Co(II), Cu(II), Ni(II) and Zn(II) metal ions leading to complexes of the type M(kefl)2Cl2 and M(kefl)Cl2, which have been characterized by physicochemical and spectroscopic methods. Magnetic moment, IR, electronic spectral and elemental analyses data suggest that keflin behaves tridentately forming octahedral or trigonal bipyramidal complexes with the metal ions mentioned above. The new compounds have been screened in-vitro for antibacterial and cytotoxic activity against Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhi, Shigella dysentriae, Bacillus cereus, Corynebacterium diphtheriae, Staphylococcus aureus and Streptococcus pyogenes bacterial strains. Compounds, 4 and 8 showed promising activity (90%) against seven, compound 6 showed significant activity (52%) against four and, compounds 1 and 5 showed activity (40%) against three test bacterial strains at concentration of 10 μM.  相似文献   

13.
The variations in the coordination environment of Co(II), Cu(II) and Zn(II) complexes with the neutral, tridentate ligand bis[1-(cyclohexylimino)ethyl]pyridine (BCIP) are reported. Analogous syntheses were carried out utilizing either the M(BF4)2 · xH2O or MCl2 · xH2O metal salts (where M = Co(II), Cu(II) or Zn(II)) with one equivalent of BCIP. When the hydrated metal starting material was used, cationic, octahedral complexes of the type [M(BCIP)2]2+ were isolated as the tetrafluoroborate salt (4, 5). Conversely, when the hydrated chloride metal salt was used as the starting material, only neutral, pentacoordinate [M(BCIP)Cl2] complexes (1-3) formed. All complexes were characterized by X-ray diffraction studies. The three complexes that are five coordinate have distortions due mainly to the pyridine di-imine bite angle. The [Cu(BCIP)Cl2] (2) also exhibits deviations in the Cu(II)-Cl bond distances with values of 2.4242(9) and 2.2505(9) Å, which are not seen in the analogous Zn(II) and Co(II) structures. Similarly, the two six coordinate complexes (5, 6) are also altered by the ligand frame bite angle giving rise to distorted octahedral geometries in each complex. The [Cu(BCIP)2](BF4)2 (6) also exhibits Cu(II)-Nimine bond lengths that are on average 0.14 Å longer than those found in the analogous 5 coordinate complex, [Cu(BCIP)Cl2]. In addition to X-ray analysis, all complexes were also characterized by UV/Vis and IR spectroscopy with 1H NMR spectroscopy being used for the analysis of the Zn(II) analogue (3).  相似文献   

14.
Protein binding, DNA binding/cleavage and in vitro cytotoxicity studies of 2-((3-(dimethylamino)propyl)amino)naphthalene-1,4-dione (L) and its four coordinated M(II) complexes [M(II) = Co(II), Cu(II), Ni(II) and Zn(II)] have been investigated using various spectral techniques. The structure of the ligand was confirmed by spectral and single crystal XRD studies. The geometry of the complexes has been established using analytical and spectral investigations. These complexes show good binding tendency to bovine serum albumin (BSA) exhibiting high binding constant values (105 M?1) when compared to free ligand. Fluorescence titration studies reveal that these compounds bind strongly with CT-DNA through intercalative mode (Kapp 105 M?1) and follow the order: Cu(II) > Zn(II) > Ni(II) > Co(II) > L. Molecular docking study substantiate the strength and mode of binding of these compounds with DNA. All the complexes efficiently cleaved pUC18-DNA via hydroxyl radical mechanism and the Cu(II) complex degraded the DNA completely by converting supercoiled form to linear form. The complexes demonstrate a comparable in vitro cytotoxic activity against two human cancer cell lines (MCF-7 and A-549), which is comparable with that of cisplatin. AO/EB and DAPI staining studies suggest apoptotic mode of cell death, in these cancer cells, with the compounds under investigation.  相似文献   

15.
A new series of compounds derived from thiophene-2-carboxamide were synthesized and characterized by IR, 1H-NMR and 13C-NMR, mass spectrometry and elemental analysis. These compounds were further used to prepare their Co(II), Ni(II), Cu(II) and Zn(II) metal complexes. All metal(II) complexes were air and moisture stable. Physical, spectral and analytical data have shown the Ni(II) and Cu(II) complexes to exhibit distorted square-planar and Co(II) and Zn(II) complexes tetrahedral geometries. The ligand (L1) and its Cu(II) complex were characterized by the single-crystal X-ray diffraction method. All the ligands and their metal(II) complexes were screened for their in-vitro antimicrobial activity. The antibacterial and antifungal bioactivity data showed that the metal(II) complexes were found to be more potent than the parent ligands against one or more bacterial and fungal strains.  相似文献   

16.
Potentiometric, visible, and infrared studies of the complexation of N-(2-acetamido)-2-aminoethanesulfonic acid (ACESH) by Ca(II), Mg(II), Mn(II), Co(II), Zn(II), Ni(II), and Cu(II) are reported. Ca(II), Mg(II), and Mn(II) were found not to complex with ACES?, while Co(II), Zn(II), Ni(II), and Cu(II) were found to form 2:1, ACES? to M2+, complexes, and [Cu(ACES)2] was found to undergo stepwise deprotonation of the amide groups to form [Cu(H?1ACES)22?]. Formation (affinity) constants for the various metal complexes are reported, and the probable structures of the various metal chelates in solution are discussed.  相似文献   

17.
The synthesis, spectroscopic (IR, 1H and 13C NMR, UV-Vis-NIR, EPR), magnetic measurements and biological studies of a number of complexes of Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Au(III) and Hg(II) of the Schiff base derived from the 1:2 condensation of 2,6-diformyl-4-methylphenol and 5-aminouracil, ((5-[[(3-[[(2,4-dioxopyrimidin-5(1H,3H)-yl)imino]methyl]-2-hydroxy-5-methylphenyl)methylene]amino]pyrimidine-2,4(1H,3H)-dione, hereafter denoted as BDF5AU) are reported. In all cases, the complexes appear to be monomeric. The deprotonated ligand in the phenolic oxygen atom shows a tridentate coordination mode through the two azomethine nitrogen atoms and the phenolic oxygen atom. The coordination of the neutral ligand takes place through the phenolic oxygen atom and one azomethine nitrogen atom and the carbonylic oxygen atom in fourth position of one uracil ring. The biological properties of some perchlorate complexes on the activity of some neutral, acid, basic and omega aminopeptidases (AP) are assayed, demonstrating a general inhibitory effect. Neutral and basic AP are mainly inhibited by Cu(II), Ni(II) and Cd(II) complexes, although tyrosyl-AP is activated by Zn(II) complex. Glutamyl-AP but not aspartyl-AP is inhibited by all the complexes assayed excepting Zn(II) complex. Finally, omega AP is inhibited by Ni(II) and Cd(II) complexes.  相似文献   

18.
The 4-hydroxysalicylidenechitosan Schiff-base (2CS-Hdhba) was prepared by the condensation of 2,4-dihydroxybenzaldehyde with chitosan, and its metal complexes, [M(2CS-dhba)Cl2(H2O)2] (M(III) = Fe, Ru, Rh), [M′(2CS-dhba)(AcO)(H2O)2] (M′(II) = Co, Ni, Cu, Zn), [Pd(2CS-dhba)Cl(H2O)] and [Au(2CS-dhba)Cl2], are reported. These complexes were characterized by elemental analysis, by spectral data (FTIR, solid-phase 13C NMR, UV–vis and ESR spectroscopy), by morphological observations (SEM and XRD), and by magnetic and thermal measurements. The Schiff base (2CS-Hdhba) behaves as a bidentate chelate with a single negative charge. The azomethine nitrogen and the deprotonated 2-hydroxy centres with the pendant glucosamine hydroxy functionality play no role in coordination. The dissociation constants of 2CS-Hdhba and the stability constants of some of its metal complexes have been determined pH-metrically.  相似文献   

19.
The synthesis of four guanidine-pyridine hybridligands and their spectroscopic features in MeCN are described. In order to demonstrate their coordinating properties, the corresponding cobalt(II)chloride complexes have been prepared and completely characterised by means of X-ray structure analysis, UV/Vis spectroscopy and mass spectrometry. The neutral complexes {1,1,3,3-tetramethyl-2-(quinolin-8-yl)guanidine}cobalt(II)-dichloride [Co(TMGqu)Cl2] and {N-(1,3-dimethylimidazolidin-2-yliden)pyridin-8-amine}cobalt(II)-dichloride [Co(DMEGpy)Cl2] exhibit a tetrahedral coordination of the cobalt atom, whereas in bis[chlorobis{N-(1,3-dimethylimidazolidin-2-yliden)quinolin-8-amine}cobalt(II)]tetrachlorocobaltate [Co(DMEGqu)2Cl]2[CoCl4] and chlorobis{1,1,3,3-tetramethyl-2-((pyridin-2-yl)methyl)guanidine}cobalt(II)chloride [Co(TMGpy)2Cl]Cl, the cobalt atom is coordinated in a trigonal pyramidal environment. These trigonal pyramidal complex cations represent the first bis(chelated) guanidine cobalt complexes in which the pyridine donor resides on the apical position and the guanidine donor forms with the chlorine atom the base of the pyramid. Besides the structural characterisation, the quenching effect of the cobalt(II) ion (d7) on the ligand fluorescence has been studied.  相似文献   

20.
The DNA-binding and photonuclease activity of newly synthesized tetra-azamacrocyclic ligand L (C32H32N8O4) and its complexes of type [MLCl2] and [ML]Cl2 (where M = Co(II), Fe(II) and Cu(II); L = N,N′-[3-(4-{5-[(2-amino-ethylamino)-methyl]-isoxazol-3yl}-phenyl)-isoxazol-5-yl methyl-ethane-1,2-diamine] are specified. An octahedral geometry has been proposed for Fe(II) and Co(II) complexes, while the Cu(II) complex has a square planar environment. The absorption spectral results indicate that the complexes bind with the base pairs of DNA, with an intrinsic binding constant Kb of Fe(II), Co(II), and Cu(II) complexes found to be 3.2 × 104 M?1, 5.3 × 104 M?1, and 4.2 × 104 M?1, respectively, in 5 mM Tris-HCl/50 mM NaCl buffer at pH 7.2. The large enhancement in the relative viscosity of DNA on binding to the complexes supports the proposed DNA binding modes. The viscosity and thermal denaturation studies sustain the effective intercalation with DNA. The DNA photocleavage studies demonstrated that compounds exhibit significant photonuclease activity by a concentration dependent on singlet oxygen mediated mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号