首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rhizobium leguminosarum bv. viciae Exo- mutant strains RBL5523,exo7::Tn5,RBL5523,exo8::Tn5 and RBL5523,exo52::Tn5 are affected in nodulation and in the syntheses of lipopolysaccharide, capsular polysaccharide, and exocellular polysaccharide. These mutants were complemented for nodulation and for the syntheses of these polysaccharides by plasmid pMP2603. The gene in which these mutants are defective is functionally homologous to the exoB gene of Rhizobium meliloti. The repeating unit of the residual amounts of EPS still made by the exoB mutants of R. leguminosarum bv. viciae lacks galactose and the substituents attached to it. The R. leguminosarum bv. viciae and R. meliloti exoB mutants fail to synthesize active UDP-glucose 4'-epimerase.  相似文献   

2.
The extracellular polysaccharides (EPS) of six strains of cowpea rhizobia were examined. The strains (MI50A, M6-7B, IRC253) produced polysaccharides containing glucose, galactose and mannose in a molar ratio of 2:1.1:1, 1:1.3:3.1 and 1:1.3:3.5 respectively. Two strains (513-B and Ez-Aesch) produced polysaccharides containing galactose and mannose in a molar ratio of 2:3. Mannose was the only sugar detected in the EPS of strain IRC291. Pyruvate, acetate, glucuronic acid and galacturonic acid were not detected in any strain.Abbreviations EPS Extracellular polysaccharide - YEMA yeast-extract mannitol agar - YEMB yeast extract mannitol broth  相似文献   

3.
The cell surface polysaccharides of wild-type Bradyrhizobium japonicum USDA 110 and a nonnodulating mutant, strain HS123, were analyzed. The capsular polysaccharide (CPS) and exopolysaccharide (EPS) of the wild type and the mutant strain do not differ in their sugar composition. CPS and EPS are composed of mannose, 4-O-methylgalactose/galactose, glucose, and galacturonic acid in a ratio of 1:1:2:1, respectively. H nuclear magnetic resonance spectra of the EPS and CPS of the wild type and mutant strain are very similar, but not identical, suggesting minor structural variation in these polysaccharides. The lipopolysaccharides (LPS) of the above two strains were purified, and their compositions were determined. Gross differences in the chemical compositions of the two LPS were observed. Chemical and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analyses indicated that strain HS123 is a rough-type mutant lacking a complete LPS. The LPS of mutant strain HS123 is composed of mannose, glucose, glucosamine, 2-keto-3-deoxyoctulosonic acid, and lipid A. The wild-type LPS is composed of fucose, xylose, arabinose, mannose, glucose, fucosamine, quinovosamine, glucosamine, uronic acid, 2-keto-3-deoxyoctulosonic acid, and lipid A. Preliminary sugar analysis of lipid A from B. japonicum identified mannose, while traces of glucosamine were detected. 3-Hydroxydodecanoic and 3-hydroxytetradecanoic acids formed a major portion of the fatty acids in lipid A. Lesser quantities of nonhydroxylated 16:0, 18:0, 22:0, and 24:0 acids also were detected.  相似文献   

4.
The influence of growth rate and medium composition on exopolymer production byRhizobium leguminosarum was studied. When grown in medium containing 10g/l mannitol and 1g/l glutamic acid,Rhizobium leguminosarum biovartrifolii TA-1 synthesized up to 2.0g/l of extracellular polysaccharide (EPS), and up to 1.6g/l of capsular polysaccharide (CPS). Under non-growing cell conditions in medium without glutamic acid, CPS synthesis by strain TA-1 could proceed to 2.1g/l, while EPS-production remained relatively low (0.8g/l). Maximal CPS-yield was 2.9g CPS/l medium in a medium containing 20g/l mannitol and 2g/l glutamic acid. TheEPS-deficient strain R. leguminosarum RBL5515,exo4::Tn5 was able to produce CPS to similar levels as strain TA-1, but CPS-recovery was easier because of the low viscosity of the medium and growth of the cells in pellets. With strain TA-1 in nitrogen-limited continuous cultures with a constant biomass of 500mg cell protein/l, EPS was the most abundant polysaccharide present at every dilution rate D (between 0.12 and 0.02 h–1). The production rates were 50–100mg/g protein/h for EPS and 15–20mg/g protein/h for CPS. Only low amounts of cyclic -(1,2)-glucans were excreted (10–30 mg/l) over the entire range of growth rates.Abbreviations bv biovar - CPS capsular polysaccharide - EPS extracellular polysaccharide - HMr high molecular mass - LMr low molecular mass - YEMCR Yeast Extract-Mannitol-Congo Red agar  相似文献   

5.
In this study, we characterized four Tn5 mutants derived from Rhizobium leguminosarum RBL5515 with respect to synthesis and secretion of cellulose fibrils, extracellular polysaccharides (EPS), capsular polysaccharides, and cyclic beta-(1,2)-glucans. One mutant, strain RBL5515 exo-344::Tn5, synthesizes residual amounts of EPS, the repeating unit of which lacks the terminal galactose molecule and the substituents attached to it. On basis of the polysaccharide production pattern of strain RBL5515 exo-344::Tn5, the structural features of the polysaccharides synthesized, and the results of an analysis of the enzyme activities involved, we hypothesize that this strain is affected in a galactose transferase involved in the synthesis of EPS only. All four mutants failed to nodulate plants belonging to the pea cross-inoculation group; on Vicia sativa they induced root hair deformation and rare abortive infection threads. All of the mutants appeared to be pleiotropic, since in addition to defects in the synthesis of EPS, lipopolysaccharide, and/or capsular polysaccharides significant increases in the synthesis and secretion of cyclic beta-(1,2)-glucans were observed. We concluded that it is impossible to correlate a defect in the synthesis of a particular polysaccharide with nodulation characteristics.  相似文献   

6.
The surface polysaccharides of Rhizobium leguminosarum 128C53 smrrifr (parent) and its exo−1 mutant were isolated and characterized. The parent carries out normal symbiosis with its host, pea, while the exo−1 mutant does not nodulate the pea. The following observations were made. (a) The parent produces lipopolysaccharide (LPS), typical acidic extracellular polysaccharide (EPS), and three additional polysaccharides, PS1, PS2, and PS3. The PS1 and PS2 fractions are likely to be the capsular polysaccharide (CPS) and are identical in composition to the EPS. The PS3 fraction is a small-molecular-weight glucan. (b) The exo−1 mutant produces LPS, EPS, and a PS3 fraction, but does not produce significant amounts of either PS1 or PS2. The LPS from the exo−1 mutant appears to be identical to the parental LPS. Analysis of the EPS from exo−1 shows that it consists of two polysaccharides. One polysaccharide is identical to the LPS and comprises 70% of the exo−1 EPS. The second polysaccharide is identical to the exo−1 PS3 and comprises 30% of the exo−1 EPS. This result shows that the exo−1 mutant does not produce any of the typical acidic parental EPS and that the major polysaccharide released into the media by the exo−1 mutant is intact LPS. The exo−1 mutant PS3 fraction was found to contain two polysaccharides, PS3-1 and PS3-2. The PS3-2 polysaccharide is identical to the parental PS3 described above. The PS3-1 polysaccharide has a composition similar to the polysaccharide portion of the LPS. This result suggests that the exo−1 mutant produces LPS polysaccharide fragments. These LPS polysaccharide fragments are not produced by the parent strain.  相似文献   

7.
Rhizobium rhizogenes strain K84 is a commercial biocontrol agent used worldwide to control crown gall disease. The organism binds tightly to polypropylene substrate and efficiently colonizes root surfaces as complex, multilayered biofilms. A genetic screen identified two mutants in which these surface interactions were affected. One of these mutants failed to attach and form biofilms on the abiotic surface although, interestingly, it exhibited normal biofilm formation on the biological root tip surface. This mutant is disrupted in a wcbD ortholog gene, which is part of a large locus predicted to encode functions for the biosynthesis and export of a group II capsular polysaccharide (CPS). Expression of a functional copy of wcbD in the mutant background restored the ability of the bacteria to attach and form normal biofilms on the abiotic surface. The second identified mutant attached and formed visibly denser biofilms on both abiotic and root tip surfaces. This mutant is disrupted in the rkpK gene, which is predicted to encode a UDP-glucose 6-dehydrogenase required for O-antigen lipopolysaccharide (LPS) and K-antigen capsular polysaccharide (KPS) biosynthesis in rhizobia. The rkpK mutant from strain K84 was deficient in O-antigen synthesis and exclusively produced rough LPS. We also show that strain K84 does not synthesize the KPS typical of some other rhizobia strains. In addition, we identified a putative type II CPS, distinct from KPS, that mediates cell-surface interactions, and we show that O antigen of strain K84 is necessary for normal cell-cell interactions in the biofilms.  相似文献   

8.
Karr DB  Liang RT  Reuhs BL  Emerich DW 《Planta》2000,211(2):218-226
 The exact mechanism(s) of infection and symbiotic development between rhizobia and legumes is not yet known, but changes in rhizobial exopolysaccharides (EPSs) affect both infection and nodule development of the legume host. Early events in the symbiotic process between Bradyrhizobium japonicum and soybean (Glycinemax [L.] Merr.) were studied using two mutants, defective in soybean lectin (SBL) binding, which had been generated from B. japonicum 2143 (USDA 3I-1b-143 derivative) by Tn5 mutagenesis. In addition to their SBL-binding deficiency, these mutants produced less EPS than the parental strain. The composition of EPS varied with the genotype and with the carbon source used for growth. When grown on arabinose, gluconate, or mannitol, the wild-type parental strain, B. japonicum 2143, produced EPS typical of DNA homology group I Bradyrhizobium, designated EPS I. When grown on malate, strain 2143 produced a different EPS composed only of galactose and its acetylated derivative and designated EPS II. Mutant 1252 produced EPS II when grown on arabinose or malate, but when grown on gluconate or mannitol, mutant 1252 produced a different EPS comprised of glucose, galactose, xylose and glucuronic acid (1:5:1:1) and designated EPS III. Mutant 1251, grown on any of these carbon sources, produced EPS III. The EPS of strain 2143 and mutant 1252 contained SBL-binding polysaccharide. The amount of the SBL-binding polysaccharide produced by mutant 1252 varied with the carbon source used for growth. The capsular polysaccharide (CPS) produced by strain 2143 during growth on arabinose, gluconate or mannitol, showed a high level of SBL binding, whereas CPS produced during growth of strain 2143 on malate showed a low level of SBL binding. However, the change in EPS composition and SBL binding of strain 2143 grown on malate did not affect the wild-type nodulation and nitrogen fixation phenotype of 2143. Mutant 1251, which produced EPS III, nodulated 2 d later than parental strain 2143, but formed effective, nitrogen-fixing tap root nodules. Mutant 1252, which produced either EPS II or III, however nodulated 5–6 d later and formed few and ineffective tap root nodules. Restoration of EPS I production in mutant 1252 correlated with restored SBL binding, but not with wild-type nodulation and nitrogen fixation. Received: 6 October 1999 / Accepted: 18 November 1999  相似文献   

9.
10.
Here we report that the structure of the Sinorhizobium fredii HH103 exopolysaccharide (EPS) is composed of glucose, galactose, glucuronic acid, pyruvic acid, in the ratios 5∶2∶2∶1 and is partially acetylated. A S. fredii HH103 exoA mutant (SVQ530), unable to produce EPS, not only forms nitrogen fixing nodules with soybean but also shows increased competitive capacity for nodule occupancy. Mutant SVQ530 is, however, less competitive to nodulate Vigna unguiculata. Biofilm formation was reduced in mutant SVQ530 but increased in an EPS overproducing mutant. Mutant SVQ530 was impaired in surface motility and showed higher osmosensitivity compared to its wild type strain in media containing 50 mM NaCl or 5% (w/v) sucrose. Neither S. fredii HH103 nor 41 other S. fredii strains were recognized by soybean lectin (SBL). S. fredii HH103 mutants affected in exopolysaccharides (EPS), lipopolysaccharides (LPS), cyclic glucans (CG) or capsular polysaccharides (KPS) were not significantly impaired in their soybean-root attachment capacity, suggesting that these surface polysaccharides might not be relevant in early attachment to soybean roots. These results also indicate that the molecular mechanisms involved in S. fredii attachment to soybean roots might be different to those operating in Bradyrhizobium japonicum.  相似文献   

11.
Bacteroides thetaiotaomicron, an obligate anaerobe found in high numbers in human colons, can utilize a variety of polysaccharides. To determine which type of polysaccharide contributes most to the nutrition of B. thetaiotaomicron in vivo, we isolated and characterized transposon-generated mutants deficient in the ability to use different polysaccharides. Some mutants were deficient in polysaccharide utilization because of the inability to utilize a component monosaccharide. These mutants included a mutant that was unable to utilize L-fucose (a component of goblet cell mucin), a mutant that was unable to utilize D-galactose (a component of raffinose, stachyose, arabinogalactan, and goblet cell mucin), and a mutant that was unable to utilize either glucuronic acid (a component of mucopolysaccharides) or galacturonic acid (a component of polygalacturonic acid or pectin). Other mutants were unable to use the polysaccharide but could use the component sugars. These included four mutants that were unable to utilize starch and one mutant that was unable to utilize polygalacturonic acid. The mutants were tested for the ability to compete with the wild type for colonization of the intestinal tracts of germfree mice. The only mutants against which the wild type competed successfully in the intestinal tracts of germfree mice were a galactose-negative mutant and a uronic acid-negative mutant. These mutations differed from the others tested in that they affected utilization of more than one type of polysaccharide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Abstract The pattern of polysaccharide production amongst strains of Rhizobium phaseoli appear very varied: some strains produce anionic exopolysaccharides (EPS) as major polysaccharides (EPS) as major polymer without any other product, but most strains exhibit greater polysaccharide diversity. Apart from EPS they excrete capsular polysaccharides (CPS) and accumulate poly-β-hydroxybutyric acid (PHB) and/or glycogen in their cells. The latter can then be used as C-sources for further synthesis of EPS and CPS. Some strains are only very poor producers or do not produce at all. Nine strains of R. phaseoli have been analysed and shown to possess the K-36 type of polysaccharide (EPS), as do strains of R. leguminosarum (6 strains) and R. trifolli (9 strains). Three strains of R. phaseoli have been found to possess the K-87 type of polysaccharide and types K-38 and K-44 polysaccharides have only been found in their own type strains.  相似文献   

13.
Bacteroides thetaiotaomicron, an obligate anaerobe found in high numbers in human colons, can utilize a variety of polysaccharides. To determine which type of polysaccharide contributes most to the nutrition of B. thetaiotaomicron in vivo, we isolated and characterized transposon-generated mutants deficient in the ability to use different polysaccharides. Some mutants were deficient in polysaccharide utilization because of the inability to utilize a component monosaccharide. These mutants included a mutant that was unable to utilize L-fucose (a component of goblet cell mucin), a mutant that was unable to utilize D-galactose (a component of raffinose, stachyose, arabinogalactan, and goblet cell mucin), and a mutant that was unable to utilize either glucuronic acid (a component of mucopolysaccharides) or galacturonic acid (a component of polygalacturonic acid or pectin). Other mutants were unable to use the polysaccharide but could use the component sugars. These included four mutants that were unable to utilize starch and one mutant that was unable to utilize polygalacturonic acid. The mutants were tested for the ability to compete with the wild type for colonization of the intestinal tracts of germfree mice. The only mutants against which the wild type competed successfully in the intestinal tracts of germfree mice were a galactose-negative mutant and a uronic acid-negative mutant. These mutations differed from the others tested in that they affected utilization of more than one type of polysaccharide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The filamentous desmid Spondylosium panduriforme (Heimerl) Teiling var. panduriforme f. limneticum (West & West) Teiling (Desmidiaceae), strain 072CH-UFCAR, is surrounded by a well-defined, mucilaginous capsule consisting of a capsular polysaccharide (CPS). This microalga also produces an extracellular polysaccharide (EPS), which can be isolated from the culture medium. Analysis of the carbohydrate composition of the two polymers by gas chromatography showed that they were different. Both were composed, of galactose, fucose, xylose, arabinose, rhamnose, and glucose but in different amounts. For example, glucuronic acid accounts for 24% of the EPS material but only traces were found in the CPS. Significant differences were also found during methylation analysis. Fucose appeared to have a higher degree of branching in the EPS than in the CPS. These branches were located on C-3 and could be the position for the attachment of the glucuronic acid units in the EPS. The glucuronic acid was present as 1→4-linked and terminal units. A possible explanation for the formation of the EPS is suggested.  相似文献   

15.
Xanthomonas oryzae pv. oryzae, the bacterial blight pathogen of rice, is known to produce phytotoxic polysaccharides. The extracellular polysaccharide (EPS) was isolated from virulent (BXO1) and virulence-deficient gum G mutant (BXO1002) strains of X. oryzae pv. oryzae and characterized using fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR). Data from the FT-IR suggested that the aldehyde (R-CHO) group and C=O of acid anhydride are present in BXO1 but absent in BXO1002. The (1)H-NMR spectra showed the presence of an acetyl amine of hexose or pentose, free amines of glucose, an beta-anomeric carbon of hexose and pentose, hydrogen next to hydroxyl group, an acetyl amine of hexose and pentose in the polysaccharides of both BXO1 and BXO1002, and the absence of alpha-anomeric carbon of hexose or pentose and the glucuronic acid in the polysaccharides produced by BXO1002. The test for glucuronic acid also confirmed the absence of glucuronic acid in the polysaccharides of BXO1002 and the presence glucuronic acid (32 microg/mg) in the polysaccharides produced by BXO1.  相似文献   

16.
The extracellular polysaccharides of seven strains of Rhizobium japonicum were investigated by using a gas-chromatographic scheme developed for determination of the various sugars present. These polysaccharides were more heterogeneous in their composition than those of any other species of Rhizobium yet examined. Five strains (1809, 110, 123, 127, and 709) produced polysaccharides containing the same constituents, although in varying relative amounts: glucose (36–44%), galactose (7–25%), mannose (18–20%), 4-O-methylgalactose (5–13%), galacturonic acid (12–16%), and acetyl groups (4–8%). The sugars of the polysaccharide of strain 1809 were all of the d series. These are the first bacterial polysaccharides reported to contain 4-O-methylgalactose and the first Rhizobium polysaccharides in which galacturonic acid has been found. In contrast to this, the polysaccharide of strain 129 consisted of glucose (7%), galactose (51%), mannose (5%), xylose (5%), glucuronic acid (5%), and pyruvic acid (2%). The polysaccharide of strain 711 contained glucose (34%), galactose (13%), mannose (27%), and pyruvic acid (6%).  相似文献   

17.
The Hindak strain of a Cryptomonas species (Cryptophyceae) produces extracellular polysaccharides. Because there is no information on the structure of these compounds in the Cryptophyceae we conducted structural studies. Gas–liquid chromatographic analyses showed that the polysaccharide is composed of fucose, rhamnose, xylose, mannose, glucose, galactose, galacturonic acid, glucuronic acid, and traces of 3-O-methyl galactose. The polysaccharide was separated into two subtractions by ion-exchange chromatography. Fraction A consisted mainly of 1,3-linked galactose units and 1,4-linked galacturonic acid. Unlike fraction B, fraction A did not have xylose, 3-O-methyl galactose, or glucuronic acid. Also, its degree of branching was low compared to that of fraction B. Only traces of sulfate were present infraction A, but fraction B was 10–15% sulfated. Protein was approximately 1% in both fractions. These polysaccharides appear to be a novel type of polymer in algae.  相似文献   

18.
Production of extracellular polysaccharides is a complex process engaging proteins localized in different subcellular compartments, yet communicating with each other or even directly interacting in multicomponent complexes. Proteins involved in polymerization and transport of exopolysaccharide (EPS) in Rhizobium leguminosarum are encoded within the chromosomal Pss-I cluster. However, genes implicated in polysaccharide synthesis are common in rhizobia, with several homologues of pss genes identified in other regions of the R. leguminosarum genome. One such region is chromosomally located Pss-II encoding proteins homologous to known components of the Wzx/Wzy-dependent polysaccharide synthesis and transport systems. The pssP2 gene encodes a protein similar to polysaccharide co-polymerases involved in determination of the length of polysaccharide chains in capsule and O-antigen biosynthesis. In this work, a mutant with a disrupted pssP2 gene was constructed and its capabilities to produce EPS and enter into a symbiotic relationship with clover were studied. The pssP2 mutant, while not altered in lipopolysaccharide (LPS), displayed changes in molecular mass distribution profile of EPS. Lack of the full-length PssP2 protein resulted in a reduction of high molecular weight EPS, yet polymerized to a longer length than in the RtTA1 wild type. The mutant strain was also more efficient in symbiotic performance. The functional interrelation between PssP2 and proteins encoded within the Pss-I region was further supported by data from bacterial two-hybrid assays providing evidence for PssP2 interactions with PssT polymerase, as well as glycosyltransferase PssC. A possible role for PssP2 in a complex involved in EPS chain-length determination is discussed.  相似文献   

19.
Chemical composition of lipopolysaccharide (LPS) isolated from an effective (97) and ineffective (87) strains of R. l. viciae has been determined. LPS preparations from the two strains contained: glucose, galactose, mannose, fucose, arabinose, heptose, glucosamine, galactosamine, quinovosamine, and 3-N-methyl-3,6-dideoxyhexose, as well as glucuronic, galacturonic and 3-deoxyoctulosonic acid. The following fatty acids were identified: 3-OH 14:0, 3-OH 15:0, 3-OH 16:0, 3-OH 18:0 and 27-OH 28:0. The ratio of 3-OH 14:0 to other major fatty acids in LPS 87 was higher that in LPS 97. SDS/PAGE profiles of LPS indicated that, in lipopolysaccharides, relative content of S form LPS I to that of lower molecular mass (LPS II) was much higher in the effective strain 97 than in 87. All types of polysaccharides exo-, capsular-, lipo, (EPS, CPS, LPS, respectively) examined possessed the ability to bind faba bean lectin. The degree of affinity of the host lectin to LPS 87 was half that to LPS 97. Fatty acids (FA) composition from bacteroids and peribacteroid membrane (PBM) was determined. Palmitic, stearic and hexadecenoic acids were common components found in both strains. There was a high content of unsaturated fatty acids in bacteroids as well as in PBM lipids. The unsaturation index in the PBM formed by strain 87 was lower than in the case of strain 97. Higher ratio of 16:0 to 18:1 fatty acids was characteristic for PMB of the ineffective strain.  相似文献   

20.
Extracellular polysaccharides play an important role in aggregation and surface colonization of plant-associated bacteria. In this work, we report the time course production and monomer composition of the exopolysaccharide (EPS) produced by wild type strain and several mutants of the plant growth promoting rhizobacterium (PGPR) Azospirillum brasilense. In a fructose synthetic medium, wild type strain Sp7 produced a glucose-rich EPS during exponential phase growth and an arabinose-rich EPS during stationary and death phase growth. D-glucose or L-arabinose did not support cell growth as sole carbon sources. However, glucose and arabinose-rich EPSs, when used as carbon source, supported bacterial growth. Cell aggregation of Sp7 correlated with the synthesis of arabinose-rich EPS. exoB (UDP-glucose 4'-epimerase), exoC (phosphomannomutase) and phbC (poly-beta-hydroxyburyrate synthase) mutant strains, under tested conditions, produced arabinose-rich EPS and exhibited highly cell aggregation capability. A mutant defective in LPS production (dTDP 4-rhamnose reductase; rmlD) produced glucose-rich EPS and did not aggregate. These results support that arabinose content of EPS plays an important role in cell aggregation. Cell aggregation appears to be a time course phenomenon that takes place during reduced metabolic cell activity. Thus, aggregation could constitute a protected model of growth that allows survival in a hostile environment. The occurrence of exoC and rmlD was detected in several species of Azospirillum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号