首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background

Reconstructing the evolutionary history of a species is challenging. It often depends not only on the past biogeographic and climatic events but also the contemporary and ecological factors, such as current connectivity and habitat heterogeneity. In fact, these factors might interact with each other and shape the current species distribution. However, to what extent the current population genetic structure reflects the past and the contemporary factors is largely unknown. Here we investigated spatio-temporal genetic structures of Nile tilapia (Oreochromis niloticus) populations, across their natural distribution in Africa. While its large biogeographic distribution can cause genetic differentiation at the paleo-biogeographic scales, its restricted dispersal capacity might induce a strong genetic structure at micro-geographic scales.

Results

Using nine microsatellite loci and 350 samples from ten natural populations, we found the highest genetic differentiation among the three ichthyofaunal provinces and regions (Ethiopian, Nilotic and Sudano-Sahelian) (R ST = 0.38 - 0.69). This result suggests the predominant effect of paleo-geographic events at macro-geographic scale. In addition, intermediate divergences were found between rivers and lakes within the regions, presumably reflecting relatively recent interruptions of gene flow between hydrographic basins (R ST = 0.24 - 0.32). The lowest differentiations were observed among connected populations within a basin (R ST = 0.015 in the Volta basin). Comparison of temporal sample series revealed subtle changes in the gene pools in a few generations (F = 0 - 0.053). The estimated effective population sizes were 23 - 143 and the estimated migration rate was moderate (m ~ 0.094 - 0.097) in the Volta populations.

Conclusions

This study revealed clear hierarchical patterns of the population genetic structuring of O. niloticus in Africa. The effects of paleo-geographic and climatic events were predominant at macro-geographic scale, and the significant effect of geographic connectivity was detected at micro-geographic scale. The estimated effective population size, the moderate level of dispersal and the rapid temporal change in genetic composition might reflect a potential effect of life history strategy on population dynamics. This hypothesis deserves further investigation. The dynamic pattern revealed at micro-geographic and temporal scales appears important from a genetic resource management as well as from a biodiversity conservation point of view.  相似文献   

2.

Background

Tetraena mongolica (Zygophyllaceae), an endangered endemic species in western Inner Mongolia, China. For endemic species with a limited geographical range and declining populations, historical patterns of demography and hierarchical genetic structure are important for determining population structure, and also provide information for developing effective and sustainable management plans. In this study, we assess genetic variation, population structure, and phylogeography of T. mongolica from eight populations. Furthermore, we evaluate the conservation and management units to provide the information for conservation.

Results

Sequence variation and spatial apportionment of the atp B- rbc L noncoding spacer region of the chloroplast DNA were used to reconstruct the phylogeography of T. mongolica. A total of 880 bp was sequenced from eight extant populations throughout the whole range of its distribution. At the cpDNA locus, high levels of genetic differentiation among populations and low levels of genetic variation within populations were detected, indicating that most seed dispersal was restricted within populations.

Conclusions

Demographic fluctuations, which led to random losses of genetic polymorphisms from populations, due to frequent flooding of the Yellow River and human disturbance were indicated by the analysis of BEAST skyline plot. Nested clade analysis revealed that restricted gene flow with isolation by distance plus occasional long distance dispersal is the main evolutionary factor affecting the phylogeography and population structure of T. mongolica. For setting a conservation management plan, each population of T. mongolica should be recognized as a conservation unit.  相似文献   

3.

Background

African animal trypanosomosis is a major obstacle to the development of more efficient and sustainable livestock production systems in West Africa. Riverine tsetse species such as Glossina palpalis gambiensis Vanderplank and Glossina tachinoides Westwood are the major vectors. A wide variety of control tactics is available to manage these vectors, but their removal will in most cases only be sustainable if the control effort is targeting an entire tsetse population within a circumscribed area.

Methodology/Principal Findings

In the present study, genetic variation at microsatellite DNA loci was used to examine the population structure of G. p. gambiensis and G. tachinoides inhabiting four adjacent river basins in Burkina Faso, i.e. the Mouhoun, the Comoé, the Niger and the Sissili River Basins. Isolation by distance was significant for both species across river basins, and dispersal of G. tachinoides was ∼3 times higher than that of G. p. gambiensis. Thus, the data presented indicate that no strong barriers to gene flow exists between riverine tsetse populations in adjacent river basins, especially so for G. tachinoides.

Conclusions/Significance

Therefore, potential re-invasion of flies from adjacent river basins will have to be prevented by establishing buffer zones between the Mouhoun and the other river basin(s), in the framework of the PATTEC (Pan African Tsetse and Trypanosomosis Eradication Campaign) eradication project that is presently targeting the northern part of the Mouhoun River Basin. We argue that these genetic analyses should always be part of the baseline data collection before any tsetse control project is initiated.  相似文献   

4.

Background

The marginal seas of northwestern Pacific are characterized by unique topography and intricate hydrology. Two hypotheses have been proposed to explain genetic patterns of marine species inhabiting the region: the historical glaciations hypothesis suggests population genetic divergence between sea basins, whereas the Changjiang River outflow hypothesis suggests genetic break in line with the Changjiang Estuary. Here the phylogeography of bivalve Cyclina sinensis was investigated to test the validity of these two hypotheses for intertidal species in three marginal seas—the East China Sea (ECS), the South China Sea (SCS), and the Japan Sea (JPS).

Methodology/Principal Findings

Fragments of two markers (mitochondrial COI and nuclear ITS-1) were sequenced for 335 individuals collected from 21 populations. Significant pairwise ΦST were observed between different marginal sea populations. Network analyses illustrated restricted distribution of haplogroups/sub-haplogroups to sea basins, with a narrow secondary contact zone between the ECS and SCS. Demographic expansion was inferred for ECS and SCS lineages using mismatch distributions, neutral tests, and extended Bayesian Skyline Plots. Based on a molecular clock method, the divergence times among COI lineages were estimated dating from the Pleistocene.

Conclusions

The phylogeographical break revealed for C. sinensis populations is congruent with the historical isolation of sea basins rather than the putative Changjiang River outflow barrier. The large land bridges extending between seas during glaciation allowed accumulation of mutations and subsequently gave rise to deep divergent lineages. The low-dispersal capacity of the clam and coastal oceanography may facilitate the maintenance of the historical patterns as barriers shift. Our study supports the historical glaciations hypothesis for interpreting present-day phylogeographical patterns of C. sinensis, and highlights the importance of historical glaciations for generating genetic structure of marine coastal species especially those with low-dispersal abilities in northwestern Pacific.  相似文献   

5.
The genetic relationships of native or introduced Plagioscion squamosissimus in five Brazilian Neotropical basins were evaluated using the mitochondrial atpase6/8 genes. Results revealed that the population of the Tocantins River basin is more basal than the native populations of the Amazon and Parnaíba River basins. Moreover, the populations of P. squamosissimus that were introduced in the São Francisco and upper Paraná River basins originated from the population of the Parnaíba River.  相似文献   

6.
A genetic survey of Barbus cyri populations from two biogeographical endorheic basins (Caspian Sea and Urmia Lake) was carried out using a mitochondrial marker (partial D-loop) in order to ascertain intra- and inter-population genetic diversity, population demography and to address their genetic structure which is the key to conservation action planning. Analyses were conducted on sequences obtained from 68 individuals collected from 10 sampling sites, from two basins. By means of morphological characteristics all specimens collected from the Caspian Sea basin were ascribed to Barbus cyri. Genetic diversity values (h and π) of sampling groups were all different from 0 (in Babolrud River population) to 0.857 (in Kalibar River population). Population connectivity and colonization patterns of the studied area were inferred from an analysis of molecular variance distribution and evolutionary relationships among haplotypes. The results point to different levels of isolation among sampling groups due to ecological and anthropogenic factors and the effect of an artificial barrier on genetic variability and conservation status of the population. Finally, this study confirms the uncertainty associated with systematic classification of Barbus spp. based on morphological characters due to the phenotypic plasticity of the species.  相似文献   

7.

Key message

We conducted molecular characterization of Nicaraguan Pinus tecunumanii populations using microsatellite markers. Populations possess considerable genetic variation but there are risks associated with inbreeding and population fragmentation.

Abstract

We carried out a molecular characterization of three natural populations of Pinus tecunumanii using nine microsatellite markers. All studied populations occur in Nicaragua, where the species has declined primarily due to human-influenced factors. The results showed that there is a high amount of genetic variation in populations (expected heterozygosities 0.775–0.841), populations do not show significant differentiation (mean F ST 0.0073), apparently due to frequent gene flow or a more continuous distribution and homogenous genetic composition in the past, and inbreeding is common in all populations (F IS 0.705–0.780). The Structure analysis revealed that there is no evident clustering pattern among P. tecunumanii individuals. Although all studied populations possess a considerable amount of genetic variation, risks associated with inbreeding and population fragmentation should be acknowledged and a conservation strategy developed to safeguard the genetic resources of P. tecunumanii.  相似文献   

8.
The Cow Head Tui Chub, Siphateles thalassinus vaccaceps, is restricted to the small Cow Head basin in far northeastern California and northwestern Nevada. Using microsatellite DNA loci, we found extensive genetic variation among tui chub populations in the Cow Head and surrounding basins of the northwestern Great Basin. Our data support the systematic conclusions of earlier authors, while showing distinct intraspecific differences between populations in most subbasins within the pluvial basins examined. The Cow Head Tui Chub forms a distinctive population within S. thalassinus with greatest affinity to the tui chub in the Warner Valley into which the Cow Head Lake drains. Tui chubs from the Goose Lake and Pit River basins are genetically very similar. Warner, Abert, Summer Lake, Catlow and Guano basin tui chubs appear distinct, both from each other and from tui chubs in the other basins. However, genetic proximity and some overlap between populations in presumably isolated hydrologic basins (i.e. Summer–Goose–Warner) suggest the possibility of unrecognized hydrologic connections or anthropogenic transport across barriers. Current genetic diversity in the Cow Head Tui Chub population is similar to that of stream-associated populations. We suggest that the Cow Head Tui Chub should remain a species of conservation concern due to its highly restricted distribution in an arid environment. Successful conservation of this unique fish will depend on stewardship of its limited habitat and maintenance of connectivity between subpopulations in a manner that ensures its long-term viability.  相似文献   

9.

Key message

This report describes an integrative analysis of seed-oil-content quantitative trait loci (QTL) in Brassica napus , using a high-density genetic map to align QTL among different populations.

Abstract

Rapeseed (Brassica napus) is an important source of edible oil and sustainable energy. Given the challenge involved in using only a few genes to substantially increase the oil content of rapeseed without affecting the fatty acid composition, exploitation of a greater number of genetic loci that regulate the oil content variation among rapeseed germplasm is of fundamental importance. In this study, we investigated variation in the seed-oil content among two related genetic populations of Brassica napus, the TN double-haploid population and its derivative reconstructed-F2 population. Each population was grown in multiple experiments under different environmental conditions. Mapping of quantitative trait loci (QTL) identified 41 QTL in the TN populations. Furthermore, of the 20 pairs of epistatic interaction loci detected, approximately one-third were located within the QTL intervals. The use of common markers on different genetic maps and the TN genetic map as a reference enabled us to project QTL from an additional three genetic populations onto the TN genetic map. In summary, we used the TN genetic map of the B. napus genome to identify 46 distinct QTL regions that control seed-oil content on 16 of the 19 linkage groups of B. napus. Of these, 18 were each detected in multiple populations. The present results are of value for ongoing efforts to breed rapeseed with high oil content, and alignment of the QTL makes an important contribution to the development of an integrative system for genetic studies of rapeseed.  相似文献   

10.
B Wang  J Jiang  F Xie  C Li 《PloS one》2012,7(7):e41579

Background

The influence of Pleistocene climatic fluctuations on intraspecific diversification in the Qinling–Daba Mountains of East Asia remains poorly investigated. We tested hypotheses concerning refugia during the last glacial maximum (LGM) in this region by examining the phylogeography of the swelled vent frog (Feirana quadranus; Dicroglossidae, Anura, Amphibia).

Methodology/Principal Findings

We obtained complete mitochondrial ND2 gene sequences of 224 individuals from 34 populations of Feirana quadranus for phylogeographic analyses. Additionally, we obtained nuclear tyrosinase gene sequences of 68 F. quadranus, one F. kangxianensis and three F. taihangnica samples to test for mitochondrial introgression among them. Phylogenetic analyses based on all genes revealed no introgression among them. Phylogenetic analyses based on ND2 datasets revealed that F. quadranus was comprised of six lineages which were separated by deep valleys; the sole exception is that the Main Qinling and Micang–Western Qinling lineages overlap in distribution. Analyses of population structure indicated restricted gene flow among lineages. Coalescent simulations and divergence dating indicated that the basal diversification within F. quadranus may be associated with the dramatic uplifts of the Tibetan Plateau during the Pliocene. Coalescent simulations indicated that Wuling, Daba, and Western Qinling–Micang–Longmen Mountains were refugia for F. quadranus during the LGM. Demographic analyses indicated that the Daba lineage experienced population size increase prior to the LGM but the Main Qinling and the Micang–Western Qinling lineages expanded in population size and range after the LGM, and the other lineages almost have stable population size or slight slow population size decline.

Conclusions/Significance

The Qinling–Daba Mountains hosted three refugia for F. quadranus during the LGM. Populations that originated in the Daba Mountains colonized the Main Qinling Mountains after the LGM. Recent sharp expansion of the Micang–Western Qinling and Main Qinling lineages probably contribute to their present-day secondary contact.  相似文献   

11.

Background and Aims

Few phylogeographic studies have been undertaken of species confined to narrow, linear coastal systems where past sea level and geomorphological changes may have had a profound effect on species population sizes and distributions. In this study, a phylogeographic analysis was conducted of Eucalyptus gomphocephala (tuart), a tree species restricted to a 400 × 10 km band of coastal sand-plain in south west Australia. Here, there is little known about the response of coastal vegetation to glacial/interglacial climate change, and a test was made as to whether this species was likely to have persisted widely through the Last Glacial Maximum (LGM), or conforms to a post-LGM dispersal model of recovery from few refugia.

Methods

The genetic structure over the entire range of tuart was assessed using seven nuclear (21 populations; n = 595) and four chloroplast (24 populations; n = 238) microsatellite markers designed for eucalypt species. Correlative palaeodistribution modelling was also conducted based on five climatic variables, within two LGM models.

Key Results

The chloroplast markers generated six haplotypes, which were strongly geographically structured (GST = 0·86 and RST = 0·75). Nuclear microsatellite diversity was high (overall mean HE 0·75) and uniformly distributed (FST = 0·05), with a strong pattern of isolation by distance (r2 = 0·362, P = 0·001). Distribution models of E. gomphocephala during the LGM showed a wide distribution that extended at least 30 km westward from the current distribution to the palaeo-coastline.

Conclusions

The chloroplast and nuclear data suggest wide persistence of E. gomphocephala during the LGM. Palaeodistribution modelling supports the conclusions drawn from genetic data and indicates a widespread westward shift of E. gomphocephala onto the exposed continental shelf during the LGM. This study highlights the importance of the inclusion of complementary, non-genetic data (information on geomorphology and palaeoclimate) to interpret phylogeographic patterns.  相似文献   

12.

Background and aims

Pseudometallophytes are model organisms for adaptation and population differentiation because they persist in contrasting edaphic conditions of metalliferous and non-metalliferous habitats. We examine patterns of genetic divergence and local adaptation of Biscutella laevigata to assess historical and evolutionary processes shaping its genetic structure.

Methods

We sampled all known populations of B. laevigata in Poland and analyzed respective soil metal concentrations. For genotyping we used nine nuclear microsatellite loci. Population genetic pools were identified (Bayesian clustering) and we estimated genetic parameters and demographic divergence between metallicolous and non-metallicolous populations (ABC-approach).

Results

Populations clustered into two groups which corresponded to their edaphic origin and diverged 1,200 generations ago. We detected a significant decrease in genetic diversity and evidence for a recent bottleneck in metallicolous populations. Genetic structure was unrelated to site distribution but is rather influenced by environmental conditions (i.e. soil metal concentration).

Conclusions

The intriguing disjunctive distribution of B. laevigata in Poland results from a fragmentation of the species range during the Holocene, rather than recent long-distance-dispersal events. The genetic structure of populations, however, continues to be modified by microevolutionary processes at anthropogenic sites. These clear divergence patterns promote B. laevigata as a model species for plant adaptation to polluted environments.  相似文献   

13.
The shell morphologies of the freshwater mussel species Pleurobema clava (federally endangered) and Pleurobema oviforme (species of concern) are similar, causing considerable taxonomic confusion between the two species over the last 100 years. While P. clava was historically widespread throughout the Ohio River basin and tributaries to the lower Laurentian Great Lakes, P. oviforme was confined to the Tennessee and the upper Cumberland River basins. We used two mitochondrial DNA (mtDNA) genes, 13 novel nuclear DNA microsatellite markers, and shell morphometrics to help resolve this taxonomic confusion. Evidence for a single species was apparent in phylogenetic analyses of each mtDNA gene, revealing monophyletic relationships with minimal differentiation and shared haplotypes. Analyses of microsatellites showed significant genetic structuring, with four main genetic clusters detected, respectively, in the upper Ohio River basin, the lower Ohio River and Great Lakes, and upper Tennessee River basin, and a fourth genetic cluster, which included geographically intermediate populations in the Ohio and Tennessee river basins. While principal components analysis (PCA) of morphometric variables (i.e., length, height, width, and weight) showed significant differences in shell shape, only 3% of the variance in shell shape was explained by nominal species. Using Linear Discriminant and Random Forest (RF) analyses, correct classification rates for the two species'' shell forms were 65.5% and 83.2%, respectively. Random Forest classification rates for some populations were higher; for example, for North Fork Holston (HOLS), it was >90%. While nuclear DNA and shell morphology indicate that the HOLS population is strongly differentiated, perhaps indicative of cryptic biodiversity, we consider the presence of a single widespread species the most likely biological scenario for many of the investigated populations based on our mtDNA dataset. However, additional sampling of P. oviforme populations at nuclear loci is needed to corroborate this finding.  相似文献   

14.

Background

Species in the varied geographic topology of Taiwan underwent obvious demographic changes during glacial periods. Cinnamomum kanehirae has been exploited for timber and to obtain medicinal fungi for the past 100 years. Understanding anthropogenic factors influencing the demography of this species after the last glacial maximum (LGM) is critically important for the conservation of this species.

Results

Populations of C. kanehirae were classified into four geographic regions: northwestern (NW), west-central (WC), southwestern (SW), and southeastern (SE). In total, 113 individuals from 19 localities were sampled, and variations in the chalcone synthase gene (Chs) intron and leafy (Lfy) intron-2 sequences of nuclear DNA were examined in order to assess phylogeographic patterns, the timescales of demographic and evolutionary events, and recent anthropogenic effects. In total, 210 Chs and 170 Lfy sequences, which respectively constituted 36 and 35 haplotypes, were used for the analyses. Estimates of the migration rate (M) through time revealed a pattern of frequent gene flow during previous and the present interglacials. The isolation-by-distance test showed that there generally was no significant correlation between genetic and geographic distances. The level of among-region genetic differentiation was significant when comparing eastern to western populations. However, no significant among-region genetic differentiation was found in comparisons among the four geographic regions. Moreover, essentially no genetic structuring was found for the three regions west of the CMR. A fit of spatial range expansion was found for pooled and regional samples according to the non-significant values of the sum of squared deviations. Using the Bayesian skyline plot (BSP) method, a recent bottleneck after the LGM expansion was detected in both regional and pooled samples.

Conclusions

Common haplotype distributions among geographic regions and the relatively shallow genetic structuring displayed are the result of historical gene flows. Southward dispersals in an earlier time frame from the NW region and in a later time frame from the SE region were inferred. The BSP analysis suggested a postglacial expansion event. Recent trends, however, refer to a bottleneck due to human interventions observed for both pooled and regional C. kanehirae samples.  相似文献   

15.

Background

Population extinction risk in a fragmented landscape is related to the differential ability of the species to spread its genes across the landscape. The impact of landscape fragmentation on plant population dynamics will therefore vary across different spatial scales. We quantified successful seed-mediated dispersal of the dioecious shrub Juniperus communis in a fragmented landscape across northwestern Europe by using amplified fragment length polymorphism (AFLP) markers. Furthermore we investigated the genetic diversity and structure on two spatial scales: across northwestern Europe and across Flanders (northern Belgium). We also studied whether seed viability and populations size were correlated with genetic diversity.

Results

Unexpectedly, estimated seed-mediated dispersal rates were quite high and ranged between 3% and 14%. No population differentiation and no spatial genetic structure were detected on the local, Flemish scale. A significant low to moderate genetic differentiation between populations was detected at the regional, northwest European scale (PhiPT = 0.10). In general, geographically nearby populations were also genetically related. High levels of within-population genetic diversity were detected but no correlation was found between any genetic diversity parameter and population size or seed viability.

Conclusions

In northwestern Europe, landscape fragmentation has lead to a weak isolation-by-distance pattern but not to genetic impoverishment of common juniper. Substantial rates of successful migration by seed-mediated gene flow indicate a high dispersal ability which could enable Juniperus communis to naturally colonize suitable habitats. However, it is not clear whether the observed levels of migration will suffice to counterbalance the effects of genetic drift in small populations on the long run.  相似文献   

16.
Invasive Cichla populations in the São João River basin were genetically analysed and compared with Cichla populations from other neotropical hydrographic basins. Polymorphic sequences within the mitochondrial DNA D-loop region confirmed the introduction of different populations to the regions under analysis. Cichla kelberi was introduced to the Juturnaíba reservoir and a downstream area of the São João River, with Cichla monoculus restricted to downstream river areas. Results from this study will be useful for monitoring invasive Cichla populations in the coastal basin since it elucidated the taxonomic units in the reservoir and an areas downstream.  相似文献   

17.

Background

The evolution of the Yunnan Plateau’s drainages network during the Pleistocene was dominated by the intense uplifts of the Qinghai-Tibetan Plateau. In the present study, we investigated the association between the evolutionary histories of three main drainage systems and the geographic patterns of genetic differentiation of Poropuntius huangchuchieni.

Methodology/Principal Findings

We sequenced the complete sequences of mitochondrial control region for 304 specimens and the sequences of Cytochrome b gene for 15 specimens of the species P. huangchuchieni and 5 specimens of Poropuntius opisthoptera. Phylogenetic analysis identified five major lineages, of which lineages MK-A and MK-B constrained to the Mekong River System, lineages RL and LX to the Red River System, and lineage SW to the Salween River System. The genetic distance and network analysis detected significant divergences among these lineages. Mismatch distribution analysis implied that the population of P. huangchuchieni underwent demographic stability and the lineage MK-B, sublineages MK-A1 and LX-1 underwent a recent population expansion. The divergence of the 5 major lineages was dated back to 0.73–1.57 MYA.

Conclusions/Significance

Our results suggest that P. opisthoptera was a paraphyletic group of P. huangchuchieni. The phylogenetic pattern of P. huangchuchieni was mostly associated with the drainage’s structures and the geomorphological history of the Southwest Yunnan Plateau. Also the differentiation of the major lineages among the three drainages systems coincides with the Kunlun-Yellow River Movement (1.10–0.60 MYA). The genetic differentiation within river basins and recent demographical expansions that occurred in some lineages and sublineages are consistent with the palaeoclimatic oscillations during the Pleistocene. Additionally, our results also suggest that the populations of P. huangchuchieni had keep long term large effective population sizes and demographic stability in the recent evolutionary history, which may be responsible for the high genetic diversity and incomplete lineages sorting of Poropuntius huangchuchieni.  相似文献   

18.

Background

Organisms need to adapt to keep pace with a changing environment. Examining recent range expansion aids our understanding of how organisms evolve to overcome environmental constraints. However, how organisms adapt to climate changes is a crucial biological question that is still largely unanswered. The plant Arabidopsis thaliana is an excellent system to study this fundamental question. Its origin is in the Iberian Peninsula and North Africa, but it has spread to the Far East, including the most south-eastern edge of its native habitats, the Yangtze River basin, where the climate is very different.

Results

We sequenced 118 A. thaliana strains from the region surrounding the Yangtze River basin. We found that the Yangtze River basin population is a unique population and diverged about 61,409 years ago, with gene flows occurring at two different time points, followed by a population dispersion into the Yangtze River basin in the last few thousands of years. Positive selection analyses revealed that biological regulation processes, such as flowering time, immune and defense response processes could be correlated with the adaptation event. In particular, we found that the flowering time gene SVP has contributed to A. thaliana adaptation to the Yangtze River basin based on genetic mapping.

Conclusions

A. thaliana adapted to the Yangtze River basin habitat by promoting the onset of flowering, a finding that sheds light on how a species can adapt to locales with very different climates.
  相似文献   

19.

Key message

The rice local population was clearly differentiated into six groups over the 100-year history of rice breeding programs in the northern limit of rice cultivation over the world.

Abstract

Genetic improvements in plant breeding programs in local regions have led to the development of new cultivars with specific agronomic traits under environmental conditions and generated the unique genetic structures of local populations. Understanding historical changes in genome structures and phenotypic characteristics within local populations may be useful for identifying profitable genes and/or genetic resources and the creation of new gene combinations in plant breeding programs. In the present study, historical changes were elucidated in genome structures and phenotypic characteristics during 100-year rice breeding programs in Hokkaido, the northern limit of rice cultivation in the world. We selected 63 rice cultivars to represent the historical diversity of this local population from landraces to the current breeding lines. The results of the phylogenetic analysis demonstrated that these cultivars clearly differentiated into six groups over the history of rice breeding programs. Significant differences among these groups were detected in five of the seven traits, indicating that the differentiation of the Hokkaido rice population into these groups was correlated with these phenotypic changes. These results demonstrated that breeding practices in Hokkaido have created new genetic structures for adaptability to specific environmental conditions and breeding objectives. They also provide a new strategy for rice breeding programs in which such unique genes in local populations in the world can explore the genetic potentials of the local populations.  相似文献   

20.
Kim  Bumjin  Yu  Hee-Ju  Park  Sin-Gi  Shin  Ja Young  Oh  Mijin  Kim  Namshin  Mun  Jeong-Hwan 《BMC plant biology》2012,12(1):1-14

Background

Cowpea is a highly inbred crop. It is part of a crop-weed complex, whose origin and dynamics is unknown, which is distributed across the African continent. This study examined outcrossing rates and genetic structures in 35 wild cowpea (Vigna unguiculata ssp. unguiculata var. spontanea) populations from West Africa, using 21 isozyme loci, 9 of them showing polymorphism.

Results

Outcrossing rates ranged from 1% to 9.5% (mean 3.4%), which classifies the wild cowpea breeding system as primarily selfing, though rare outcrossing events were detected in each population studied. Furthermore, the analyses of both the genetic structure of populations and the relationships between the wild and domesticated groups suggest possibilities of gene flow that are corroborated by field observations.

Conclusions

As expected in a predominantly inbred breeding system, wild cowpea shows high levels of genetic differentiation and low levels of genetic diversity within populations. Gene flow from domesticated to wild cowpea does occur, although the lack of strong genetic swamping and modified seed morphology in the wild populations suggest that these introgressions should be rare.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号