首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Based on batch cultivation data for the production of L-glutamic acid from glucose, a comparative evaluation was made for repeated batch cultivations using one and more fermentors. The problem was formulated as maximizing the productivity of metabolic product with the specified conversion with respect to the cell age and the volume fraction used as seed for the subsequent repeated batch cultivation. Simulations were carried out with the assumption of no lag in product formation for the cases where the total operation time was specified as 200 h with reproducible batch cultivation cycles. The product production was assumed to be solely a function of product concentration. The computation results show the advantage of using more than one fermentor from the viewpoints of productivity and conversion, which will apply in general to non-growth-associated product production with delay time. In particular, three fermentors are recommended for the production of L-glutamic acid chosen as an example in this article.  相似文献   

2.
Summary The acetic acid concentration in a batch culture of Acetobacter aceti M23 increased up to 90 g/l by adding ethanol intermittently. Although the bacterial cells ceased growth at about 60 g acetic acid/l, non-viable cells still preserved ethanol oxidation activity. Cell recycling by filtration in a repeated fed-batch culture increased the overall acetic acid production rate 2.84-fold compared to that without cell recycling for the purpose of obtaining an acetic acid concentration of 80.8 g/l. Repeated fed-batch cultivation with cell recycle was effective for increasing the production rate of acetic acid and obtaining high amounts close to a lethal concentration (90 g/l).Offprint requests to: Kiyoshi Toda  相似文献   

3.
Production of 2,3-butanediol in a membrane bioreactor with cell recycle   总被引:11,自引:0,他引:11  
Summary The production of 2,3-butanediol by Enterobacter aerogenes DSM 30053 was studied in a cell recycle system with a microfiltration module. Emphasis was put on the influence of oxygen supply, cell residence time, dilution rate, and pH. Under optimal conditions a productivity as high as 14.6 g butanediol + acetoin/l per hour was achieved with a product concentration of 54 g/l and a product yield of 88%. This productivity is three times higher than that of an ordinary continuous culture. The achievable final product concentration of a cell recycle system was limited by the accumulation of the inhibiting by-product acetic acid, which increased very rapidly at low dilution rate. To maximize product concentration a fed-batch fermentation was carried out with stepwise pH adaption at high cell density. A final product concentration of 110 g/l was obtained with a productivity of 5.4 g/l per hour and a yield of 97%.  相似文献   

4.
In this study, we utilized a unique strategy for fed-batch fermentation using ethanol-tolerant Saccharomyces cerevisiae to achieve a high-level of ethanol production that could be practically applied on an industrial scale. During this study, the aeration rate was controlled at 0.0, 0.13, 0.33, and 0.8 vvm to determine the optimal aeration conditions for the production of ethanol. Additionally, non-sterile glucose powder was fed during fed-batch ethanol fermentation and corn-steep liquor (CSL) in the medium was used as an organic N-source. When aeration was conducted, the ethanol production and productivity were superior to that when aeration was not conducted. Specifically, the maximum ethanol production reached approximately 160 g/L, when the fermentor was aerated at 0.13 vvm. These findings indicate that the use of a much less expensive C-source may enable the fermentation process to be directed towards the improvement of overall ethanol production and productivity in fermentors that are aerated at 0.13 vvm. Furthermore, if a repeated fed-batch process in which the withdrawal and fill is conducted prior to 36 h can be employed, aeration at a rate of 0.33 and/or 0.8 vvm may improve the overall ethanol productivity  相似文献   

5.
Various processes which producel-lactic acid using ammonia-tolerant mutant strain,Rhizopus sp. MK-96-1196, in a 3 L airlift bioreactor were evaluated. When the fed-batch culture was carried out by keeping the glucose concentration at 30 g/l, more than 140 g/l ofl-lactic acid was produced with a product yield of 83%. In the case of the batch culture with 200 g/l of initial glucose concentration, 121 g/L ofl-lactic acid was obtained but the low product yield based on the amount of glucose consumed. In the case of a continuous culture, 1.5 g/l/h of the volumetric productivity with a product yield of 71% was achieved at dilution rate of 0.024 h−1. Basis on these results three processes were evaluated by simple variable cost estimation including carbon source, steam, and waste treatment costs. The total variable costs of the fed-batch and continuous cultures were 88% and 140%, respectively, compared to that of batch culture. The fed-batch culture with highl-lactic acid concentration and high product yield decreased variable costs, and was the best-suited for the industrial production ofl-lactic acid.  相似文献   

6.
Lactic acid production by repeated fed-batch fermentation using free and immobilized cells of Lactobacillus lactis-11 in a packed bed-stirred fermentor (PBSF) system filled with different support materials including ceramic beads, macro-activated carbon cylinders and glass fiber balls was investigated. The results showed that the optimal support materials were the ceramic beads with diameters of 1–2 mm. Compared with the free cell fermentation system, lactic acid production and volumetric productivity in the PBSF system increased by 16.6 and 12.5%, respectively. Though the concentration of free cells decreased sharply, lactic acid production remained stable in five consecutive fed-batch runs using the PBSF system. pH gradients, immobilized cell concentration and mass diffusion in the packed bed were all affected by the recirculation rate of the culture broth. Maximum lactic acid production, productivity and yield occurred at a recirculation rate of 50 mL min−1.  相似文献   

7.
In fed-batch culture of Klebsiella pneumoniae, 1,3-propanediol production was growth associated, while the by-products, including lactic acid and ethanol, increased sharply as the cells grew slowly. When the fed-batch culture was supplied with a mixture of organic acids including citrate, fumarate and succinate, cell growth and 1,3-propanediol production increased significantly, whereas the by-products, especially lactic acid and ethanol, decreased sharply. High concentrations of PDO and acetate inhibited cell growth and PDO production. To improve the PDO production, repeated fed-batch culture with addition of the organic acid mixture was performed in a 5-l reactor. The fed-batch culture was repeated five times, and the 1,3-propanediol yield and concentration reached above 0.61 mol mol−1 and 66 g l−1, respectively, in 20 h for each cycle. Furthermore, the PDO productivity reached above 3.30 g l−1 h−1 in each cycle, which was much higher than that of the original fed-batch culture.  相似文献   

8.
Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB/V)], by fed-batch culture of recombinantEscherichia coli harboring a plasmid containing theAlcaligenes latus polyhydroxyalkanoate (PHA) biosynthesis genes, was examined in two pilot-scale fermentors with air supply only. In a 30 L fermentor having aK La value of 0.11 s−1, the final P(3HB/V) concentration and the P(3HB/V) content obtained were 29.6 g/L and 70.1 wt%, respectively, giving a productivity of 1.37 g P(3HB/V)/L-h. In a 300 L fermentor having aK La of 0.03 s−1, the P(3HB/V) concentration and the P(3HB/V) content were 20.4 g/L and 69 wt%, respectively, giving a productivity of 1.06 g P(3HB/V)/L-h. These results suggest that economical production of P(3HB/V) is possible by fed-batch culture of recombinantE. coli in a large-scale fermentor having lowK La value.  相似文献   

9.
Volatile fatty acids (VFAs), acetic acid, acetates, and ethanol were used as carbon sources for the production of microbial lipids using Cryptococcus albidus in batch cultures. C. albidus utilized organic acids less than glucose in the production of lipids, resulting in a lipid yield coefficient on VFAs of 0.125 g/g. In a two-stage batch culture, the lipid content increased to 43.8% (w/w) when VFAs were used as the sole carbon source in the second stage, which was two times higher than that of the batch culture. Furthermore, a 192 h, two-stage fed-batch cultivation of C. albidus produced a dry cell weight, lipid concentration, and lipid content of 26.4 g/L, 14.5 g/L, and 55.1% (w/w), respectively. The fed-batch culture model used in this study featured pure VFA solutions, with intermittent feeding, under oxygen-enriched air supply conditions. This study investigated several alternative carbon sources to reduce the cost of microbial lipids production and proved the feasibility of using VFAs as the carbon source for the provision of a high lipid content and productivity.  相似文献   

10.
An integrated bioprocess for the production of glycolic acid from ethylene glycol with Gluconobacter oxydans DSM 2003 and in situ product removal were investigated. A slight substrate inhibition was observed as substrate concentration was above 20 g/l and the product inhibition was much stronger. Bioconversion of glycolic acid is an end-product-inhibited reaction. In order to increase the productivity of glycolic acid and reduce the end-product inhibition of bioconversion, an adsorptive bioconversion for glycolic acid production from ethylene glycol catalyzed by resting cells of G. oxydans DSM 2003, was developed by using anion exchange resin D315 as the adsorbent for selective removal of glycolic acid from the reaction mixture. This approach allowed the yield of glycolic acid to be increased to 93.2 g/l, compared to 74.5 g/l obtained from a conventional fed-batch mode.  相似文献   

11.
A low-cost nutrient medium based on corn steep liquor (CSL) was developed for the production of acetates byClostridium thermoaceticum. Pre-treatment of CSL with dolime and vitamin supplementation increased the rate of acetate production. Adding excess nutrients in a fed-batch mode minimized by-product formation and increased final acetate concentration from 19 g L–1 to 40 g L–1 acetic acid. High yields of acetic acid (0.95 g g–1 glucose in fed-batch mode) was probably due to the conversion of the lactic acid in CSL into acetic acid by the organism.  相似文献   

12.
 The DNA sequence encoding Thermus protease aqualysin I was inserted downstream from a bacteriophage T7 promoter in an expression vector. In the T7 expression system, using a strain lacking an F′ episome, aqualysin I was produced in soluble form without chemical induction. The deletions of part (30 amino acid residues) or all (105 residues) of the C-terminal pro-sequence from the C terminus significantly affected both cellular growth and the production of the enzyme. Complete deletion adversely affected both. In contrast, the 30-residue deletion markedly improved productivity by approximately four times compared to non-deletion, and shortened the time needed for the activation of a precursor to active enzyme. The concentration of inducer isopropyl β-D-thiogalactopyrano-side (IPTG) was varied to examine its effects, and it was found that a low concentration of IPTG improved aqualysin I production. To avoid the inhibitory effects of acetic acid accumulation in the culture medium, the use of other carbon sources besides glucose was examined. When cells were cultivated with glycerol, the acetic acid level remained relatively low, and both good cellular growth and a high level of production were attained. The aqualysin I productivity for a fed-batch culture using two carbon sources, glucose and glycerol, reached more than 150 kU/ml enzymatically active aqualysin I. Received: 19 May 1995/Received revision: 28 July 1995/Accepted: 22 August 1995  相似文献   

13.
《Process Biochemistry》2010,45(4):613-616
Corncob acid hydrolysate, detoxed by sequently boiling, overliming and activated charcoal adsorption, was used for 2,3-butanediol production by Klebsiella oxytoca ACCC 10370. The effects of acetate in hydrolysate and pH on 2,3-butanediol production were investigated. It was found that acetic acid in hydrolysate inhibited the growth of K. oxytoca while benefited the 2,3-butanediol yield. With the increase in acetic acid concentration in medium from 0 to 4 g/l, the lag phase was prolonged and the specific growth rate decreased. The acetic acid inhibition on cell growth can be alleviated by adjusting pH to 6.3 prior to fermentation and a substrate fed-batch strategy with a low initial acetic acid concentration. Under the optimum condition, a maximal 2,3-butanediol concentration of 35.7 g/l was obtained after 60 h of fed-batch fermentation, giving a yield of 0.5 g/g reducing sugar and a productivity of 0.59 g/h l.  相似文献   

14.
Acid anhydrides were used as highly reactive and non-water-producing acyl donors for hydrolase-catalyzed enantioselective esterification. Efficient kinetic resolution of dl-menthol has been achieved via lipase-catalyzed enantioselective esterification in cyclohexane when propionic anhydride as an acyl donor was continuously fed into a reactor containing dl-menthol and Candida cylindracea lipase OF 360, while a high concentration of the acid anhydride in a batch reaction system with a dehydrated organic solvent did not facilitate the reaction, because water necessary for the enzyme function was consumed by the competing hydrolysis of the anhydride catalyzed by the same enzyme. The efficiency of this fed-batch reaction system using acid anhydride was higher and the enzyme stability in repeated use was much better than those of conventional batch and fed-batch reaction systems using propionic acid as an acyl donor. The optical purity (more than 98% e.e.) of the l-menthyl ester produced in the fed-batch system using the anhydride was comparable to that in the system using the corresponding acid. *** DIRECT SUPPORT *** AG903062 00002  相似文献   

15.
The most common strategy to produce recombinant proteins using Escherichia coli as expression vector is fed-batch culture, since high cell density cultures strategies have successfully been applied. Several methodologies to limit the specific growth rate in order to control E. coli metabolism have been defined, demonstrating that cultures can be grown under glucose limitation up to high cell densities without accumulation of acetic acid. However, under induction conditions it has been observed that E. coli metabolism is reorganized again and leads to acetic acid accumulation, causing inhibition of cell growth and decreasing protein expression efficiency.We propose a double limitation strategy (glucose and IPTG) for E. coli fed-batch cultures to avoid the deregulation of the metabolism in the induction phase. Reducing the concentration of IPTG while keeping glucose growth limitation, the accumulation of acetic acid decreased. At an IPTG concentration of 0.03 mmol/g DCW no accumulation of acetic acid was observed during the induction phase, in contraposition to what has normally been observed.Although a slight reduction of protein expression rate was observed when applying this double limitation strategy, the bioprocess volumetric productivity was enhanced due to the capability to prolong the induction phase, reaching higher levels of protein production. Another advantage of this strategy is the reduction of media cost due to the lower level of IPTG used.  相似文献   

16.
Summary A comparison of volumetric production rates of acetic acid inAcetobacter aceti M23 was conducted for repeated batch (RB), cell-recycling repeated batch (CRB) and continuous (C) cultures. Best result was obtained with CRB culture. The magnification of productivity was 1.7 (to RB culture) and 3.3 (to C culture) for aiming final acetic acid concentration of 60 g/l and 42 g/l, respectively.  相似文献   

17.
The fermentation process of 2-keto-L-gulonic acid (2KGA) from L-sorbose was developed using a two-stage continuous fermentation system. The mixed culture of Ketogulonicigenium vulgare DSM 4025 and Bacillus megaterium DSM 4026 produced 90 g/L of 2KGA from 120 g/L of L-sorbose at the dilution rate of 0.01 h−1 in a single-stage continuous fermentation process. But after the production period was beyond 150 h, the significant decrease of 2KGA productivity was observed. When the non-spore forming bacteria Xanthomonas maltophilia IFO 12692 was used instead of B. megaterium DSM 4026 as a partner strain for K. vulgare DSM 4025, the 2KGA productivity was significantly improved in a two-stage continuous culture mode, in which two fermentors of the same size and volume were connected in series. In this mode, with two sets of 3-L jar fermentors, the steady state could be continued to over 1,331.5 h at least, when the dilution rates were 0.0382 h−1 and 0.0380 hour−1, respectively, for the first and second fermentors. The overall productivity was calculated to be 2.15 g/L/h at 113.1 g/L and a molar conversion yield of 90.1%. In the up-scaling fermentation to 30-L jar fermentors, 118.5 g/L of 2KGA was produced when dilution rates in both stages were 0.0430 hour−1, and the overall productivity was calculated to be 2.55 g/L/h.  相似文献   

18.
A set of mutations in the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) was used to create Escherichia coli strains with a reduced uptake rate of glucose. This allows a growth restriction, which is controlled on cellular rather than reactor level, which is typical of the fed-batch cultivation concept. Batch growth of the engineered strains resulted in cell accumulation profiles corresponding to a growth rate of 0.78, 0.38 and 0.25 h−1, respectively. The performance of the mutants in batch cultivation was compared to fed-batch cultivation of the wild type cell using restricted glucose feed to arrive at the corresponding growth profiles. Results show that the acetate production, oxygen consumption and product formation were similar, when a recombinant product was induced from the lacUV5 promoter. Ten times more cells could be produced in batch cultivation using the mutants without the growth detrimental production of acetic acid. This allows high cell density production without the establishment of elaborate fed-batch control equipment. The technique is suggested as a versatile tool in high throughput multiparallel protein production but also for increasing the number of experiments performed during process development while keeping conditions similar to the large-scale fed-batch performance.  相似文献   

19.
The very high concentrations required for industrial production of free acetic acid create toxicity and low pH values, which usually conflict with the host cell growth, leading to a poor productivity. Achieving a balance between cell fitness and product synthesis is the key challenge to improving acetic acid production efficiency in metabolic engineering. Here, we show that the synergistic regulation of alcohol/aldehyde dehydrogenase expression and cofactor PQQ level could not only efficiently relieve conflict between increased acetic acid production and compromised cell fitness, but also greatly enhance acetic acid tolerance of Acetobacter pasteurianus to a high initial concentration (3% v/v) of acetic acid. Combinatorial expression of adhA and pqqABCDE greatly shortens the duration of starting-up process from 116 to 99 h, leading to a yield of 69 g l-1 acetic acid in semi-continuous fermentation. As a final result, average acetic acid productivity has been raised to 0.99 g l-1 h-1, which was 32% higher than the parental A. pasteurianus. This study is of great significance for decreasing cost of semi-continuous fermentation for producing high-strength acetic acid industrially. We envisioned that this strategy will be useful for production of many other desired organic acids, especially those involving cofactor reactions.  相似文献   

20.
We carried out the first simulation on multi-stage continuous high cell density culture (MSC-HCDC) to show that the MSC-HCDC can achieve batch/fed-batch product titer with much higher productivity to the fed-batch productivity using published fermentation kinetics of lactic acid, penicillin and ethanol. The system under consideration consists of n-serially connected continuous stirred-tank reactors (CSTRs) with either hollow fiber cell recycling or cell immobilization for high cell-density culture. In each CSTR substrate supply and product removal are possible. Penicillin production is severely limited by glucose metabolite repression that requires multi-CSTR glucose feeding. An 8-stage C-HCDC lactic acid fermentation resulted in 212.9 g/L of titer and 10.6 g/L/h of productivity, corresponding to 101 and 429% of the comparable lactic acid fed-batch, respectively. The penicillin production model predicted 149% (0.085 g/L/h) of productivity in 8-stage C-HCDC with 40 g/L of cell density and 289% of productivity (0.165 g/L/h) in 7-stage C-HCDC with 60 g/L of cell density compared with referring batch cultivations. A 2-stage C-HCDC ethanol experimental run showed 107% titer and 257% productivity of the batch system having 88.8 g/L of titer and 3.7 g/L/h of productivity. MSC-HCDC can give much higher productivity than batch/fed-batch system, and yield a several percentage higher titer as well. The productivity ratio of MSC-HCDC over batch/fed-batch system is given as a multiplication of system dilution rate of MSC-HCDC and cycle time of batch/fed-batch system. We suggest MSC-HCDC as a new production platform for various fermentation products including monoclonal antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号