首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 343 毫秒
1.
厌氧产氢微生物研究进展   总被引:4,自引:0,他引:4  
微生物是生物制氢的核心。本文论述了通过厌氧代谢途径产氢的微生物种类及高效产氢微生物选育和应用的研究趋势, 其中重点论述了中温和嗜热厌氧产氢微生物的产氢能力、底物利用范围及代谢特性, 简述了嗜热一氧化碳营养型产氢菌的种类及代谢特点。  相似文献   

2.
汤桂兰  孙振钧 《生物技术》2007,17(1):93-97,F0004
氢是一种理想的清洁能源,生物制氢是在新能源的研究利用中占有日趋重要的位置。该文综述了国内外光合产氢和发酵产氢的机理、研究现状及存在的问题,并对其进一步发展进行了分析和展望。  相似文献   

3.
厌氧发酵法生物制氢在国内外受到了普遍关注, 对产氢起核心作用的微生物又成为了研究的重点课题。论述了厌氧发酵产氢微生物的研究进展, 分别对厌氧产氢细菌的发酵类型、产氢能力、菌种选育、基因改良等进行了介绍, 结合国内外研究现状, 对厌氧发酵产氢微生物研究目前存在的问题进行了总结和展望。  相似文献   

4.
厌氧发酵产氢微生物的研究进展   总被引:1,自引:0,他引:1  
厌氧发酵法生物制氢在国内外受到了普遍关注, 对产氢起核心作用的微生物又成为了研究的重点课题。论述了厌氧发酵产氢微生物的研究进展, 分别对厌氧产氢细菌的发酵类型、产氢能力、菌种选育、基因改良等进行了介绍, 结合国内外研究现状, 对厌氧发酵产氢微生物研究目前存在的问题进行了总结和展望。  相似文献   

5.
随着能源紧缺的日益加剧,以及化石燃料燃烧引起的环境问题逐渐突显,氢能作为一种清洁可再生能源越来越受到青睐。生物制氢与热化学及电化学制氢相比其反应条件温和、低耗、绿色,是一项非常有应用前景的技术。生物制氢从广义上可以分为暗发酵和光发酵产氢两种,其中暗发酵微生物可以利用有机废弃物产生氢气以及有机酸等副产物,光合细菌在光照和固氮酶的作用下可以将暗发酵产生的有机酸继续用于产氢,因此两种发酵产氢方式相结合可以提高有机废物的资源化效率。将近年来暗发酵-光发酵两阶段生物制氢技术进行整理分析,从其产氢机理、主要影响因素、暗发酵-光发酵产氢结合方式(两步法、混合培养产氢)几个方面进行阐述,最后指出该技术面临的挑战。  相似文献   

6.
蓝细菌具有很低的营养需求,能够利用太阳能直接光解水产生氢能,利用蓝细菌产氢是理想的生物制氢方式之一。目前,蓝细菌氢的产率尚未达到实际应用的要求。蓝细菌产氢依赖于菌株的遗传背景和产氢的环境条件。对蓝细菌产氢生理、产氢速率、产氢的环境条件、菌株筛选和突变株构建以及在光生物反应器中产氢的特征作了综述,以期有利于蓝细菌产氢水平的提高。  相似文献   

7.
光合细菌(PSB)生物产氢技术能够将光能利用、氢能制备和废水中有机物的去除有效地结合在一起,是一种极具发展潜力的氢能生产技术。分析了PSB利用废水生物产氢的机制与具有产氢活性的代表性PSB,总结了PSB生物产氢主要影响因素与技术,指出目前该项研究存在的问题,并对其应用前景进行了评述。  相似文献   

8.
厌氧细菌Acetanaerobacterium elongatum从葡萄糖的产氢特性研究   总被引:7,自引:0,他引:7  
为了了解影响厌氧发酵产氢细菌Acetanaerobacterium elongatumZ7产氢效率的因素,采用生理学方法对其进行了研究。结果表明:乙醇型发酵菌A.elongatumZ7的最适产氢温度为37℃,最适产氢的起始pH为8.0。该菌发酵葡萄糖和阿拉伯糖产氢的能力较强,氢气产率分别为1.55mol H2/mol葡萄糖和1.50mol H2/mol阿拉伯糖。酵母粉是菌株Z7生长和产氢所必须的生长因子;pH影响菌株的生长和葡萄糖利用率;氢压则影响电子流的分配,从而改变代谢产物乙酸和乙醇的比例;当产氢菌与甲烷菌共培养以维持发酵体系低的氢压时,可使氢的理论产量提高约4倍;培养基中乙酸钠浓度>60mmol/L明显抑制产氢。另外,一个只利用蛋白类物质的细菌能够促进菌株Z7对葡萄糖的利用,进而提供氢产量,为生物制氢的工业化生产提供理论参考。  相似文献   

9.
为了了解影响厌氧发酵产氢细菌Acetanaerobacterium elongatum Z7产氢效率的因素,采用生理学方法对其进行了研究。结果表明:乙醇型发酵菌A. elongatum Z7的最适产氢温度为37℃, 最适产氢的起始pH为8.0。该菌发酵葡萄糖和阿拉伯糖产氢的能力较强,氢气产率分别为1.55mol H2/mol葡萄糖和1.50mol H2/mol阿拉伯糖。酵母粉是菌株Z7生长和产氢所必须的生长因子;pH影响菌株的生长和葡萄糖利用率;氢压则影响电子流的分配,从而改变代谢产物乙酸和乙醇的比例;当产氢菌与甲烷菌共培养以维持发酵体系低的氢压时,可使氢的理论产量提高约4倍;培养基中乙酸钠浓度> 60mmol/L明显抑制产氢。另外,一个只利用蛋白类物质的细菌能够促进菌株Z7对葡萄糖的利用,进而提供氢产量,为生物制氢的工业化生产提供理论参考。  相似文献   

10.
发酵生物制氢研究进展   总被引:16,自引:0,他引:16  
综述了近年来发酵生物制氢领域的研究进展?在菌种方面,除了对现有产氢菌种的深入研究外,还采用生物学,分子生物学及生物信息学手段建立产氢菌种库;在氢酶的研究方面,已逐步从基因确定、功能研究拓展到基因工程构建高效产氢菌研究:而在与废弃生物质处理相结合的反应过程方面,研究主要集中在利用不同种类的废弃物的产氢和高效产氢反应器上。此外,还初步总结了目前对发酵制氢可行性和经济性的评价,并对其发展方向提出了新的看法。  相似文献   

11.
Hydrogen is the fuel for the future, mainly due to its recyclability and nonpolluting nature. Biological hydrogen production processes are operated at ambient temperature and atmospheric pressures, thus are less energy intensive and more environmentally friendly as compared to thermochemical and electrochemical processes. Biohydrogen processes can be broadly classified as: photofermentation and dark fermentation. Two enzymes namely, nitrogenase and hydrogenase play an important role in biohydrogen production. Photofermentation by Purple Non-Sulfur bacteria (PNS) is a major field of research through which the overall yield for biological hydrogen production can be improved significantly by optimization of growth conditions and immobilization of active cells. The purpose of this paper is to review various processes of biohydrogen production using PNS bacteria along with several current developments. However, suitable process parameters such as carbon and nitrogen ratio, illumination intensity, bioreactor configuration and inoculum age may lead to higher yields of hydrogen generation using PNS bacteria.  相似文献   

12.
With its high energy content and clean combustion, hydrogen is recognized as a renewable clean energy source with enormous potential. Biological hydrogen production is a promising alternative with significant advantages over conventional petroleum‐derived chemical processes. Sustainable hydrogen production from renewable resources such as cassava, wastewater, and other agricultural waste is economically feasible for industrial applications. So far, the major bottlenecks in large‐scale biological hydrogen production are the low production rate and yield. This review discusses the various factors that affect the metabolic pathways of dark hydrogen production, and highlights the state‐of‐the‐art development of mixed culture technology. The aim of this review is to provide suggestions for the future directions of mixed culture technology, as well as by‐product valorization in dark fermentation.  相似文献   

13.
The decreasing availability of energy resources has brought about a renewed interest in the enzyme hydrogenase. Hydrogen gas can be produced by organisms and represents a potential renewable energy source, or it can be utilized by certain organisms as a sole energy source during processes that result in the net fixation of carbon, a biosynthetic capability that might be exploited for the production of specific compounds. Both the production and utilization of hydrogen in biological systems are dependent on hydrogenase. The manipulation of the expression of hydrogenase in attempts to optimize hydrogen production or utilization will to a certain extent be dependent on existing knowledge concerning the regulation of hydrogenase and its interactions with other aspects of cellular metabolism. Information pertaining to the genetics of hydrogenases should play an important role in the construction of organisms affected in their hydrogen metabolism. The genetics of hydrogenase in enteric bacteria, in hydrogen bacteria, and in root nodule bacteria are reviewed, and the implications concerning the manipulation of hydrogenase genes are discussed.  相似文献   

14.
生物质制氢技术研究进展   总被引:3,自引:2,他引:1  
氢能以其清洁,来源广泛及用途广等优点成为最有希望的替代能源之一,用可再生能源制氢是氢能发展的必然趋势。由于生物质制氢具有一系列独特的优点,它已成为发展氢经济颇具前景的研究领域之一。生物质制氢技术可以分为两类,一类是以生物质为原料利用热物理化学方法制取氢气,如生物质气化制氢,超临界转化制氢,高温分解制氢等热化学发制氢,以及基于生物质的甲烷、甲醇、乙醇的化学重整转化制氢等;另一类是利用生物转化途径转换制氢,包括直接生物光解,间接生物光解,光发酵,光合异养细菌水气转移反应合成氢气,暗发酵和微生物燃料电池等技术。本文综述了目前主要的生物质制氢技术及其发展概况,并分析了各技术的发展趋势。  相似文献   

15.
Although hydrogen is considered to be one of the most promising future energy sources and the technical aspects involved in using it have advanced considerably, the future supply of hydrogen from renewable sources is still unsolved. This review focuses on the production of hydrogen from water using biological catalysts that have been optimized by nature: the process of water-splitting photosynthesis on the one hand and hydrogen production via the catalyst hydrogenase on the other. Using water as a source of electrons and sunlight as a source of energy, both engineered natural systems and biomimetic (bio-inspired) model systems can be designed as first steps towards water-splitting-based hydrogen production (biophotolytic hydrogen production).  相似文献   

16.
In discussions about alternatives to our current fossil energy sources, basic and applied research leading to biological production of molecular hydrogen utilizing cyanobacteria deserves serious attention. In these oxygenic phototrophic bacteria, hydrogen can be produced by the activity of either nitrogenases or reversible/bidirectional hydrogenases. Knowledge of the physiological and molecular basis of some of the processes involved in hydrogen metabolism in these peculiar microorganisms has increased during the last decade. However, further efforts are required in basic as well as applied research in order to obtain a clear impression of these processes and their regulation. This information might then constitute the basis for optimizing the efficiency of hydrogen evolution by cyanobacteria. Progress might be achieved by screening more cyanobacterial strains for their ability to produce and evolve hydrogen, by genetically manipulating specific strains as well as by improving the conditions for cultivation in bioreactors. Received: 17 February 1998 / Received revision: 24 April 1998 / Accepted: 27 April 1998  相似文献   

17.
As an energy carrier, hydrogen gas is a promising substitute to carbonaceous fuels owing to its superb conversion efficiency, non-polluting nature, and high energy content. At present, hydrogen is predominately synthesized via chemical reformation of fossil fuels. While various biological methods have been extensively explored, none of them is justified as economically feasible. A sustainable platform for biological production of hydrogen will certainly impact the biofuel market. Among a selection of biological systems, algae and cyanobacteria have garnered major interests as potential cell factories for hydrogen production. In conjunction with photosynthesis, these organisms utilize inexpensive inorganic substrates and solar energy for simultaneous biosynthesis and hydrogen evolution. However, the hydrogen yield associated with these organisms remains far too low to compete with the existing chemical systems. This article reviews recent advances of biochemical, bioprocess, and genetic engineering strategies in circumventing technological limitations to hopefully improve the applicative potential of these photosynthetic hydrogen production systems.  相似文献   

18.
Fermentative biohydrogen production systems integration   总被引:2,自引:0,他引:2  
Acidogenic fermentation can be used to produce hydrogen from a range of biomass sources. The effluent from this process can be utilised in a number of biological processes enabling further recovery of energy from the biomass. In this review a number of candidate technologies are assessed including conventional methanogenic anaerobic digestion, dark fermentative hydrogen production, photo-fermentation, and bioelectrochemical systems. The principles, benefits and challenges associated with integrating these technologies are discussed, with particular emphasis on integration with fermentative hydrogen production, and the current state of integrative development is presented. The various system configurations for potential integrations presented here may simultaneously permit an increase in the conversion efficiency of biomass to energy, improved adaptability to varying operating conditions, and improved stability. Such integration, while increasing system complexity, may mean that these bioprocesses could be deployed in a wider range of scenarios and be used with a greater range of substrates.  相似文献   

19.
Utilisation of biomass for the supply of energy carriers   总被引:21,自引:3,他引:18  
Because biomass is a widely available, renewable resource, its utilisation for the production of energy has great potential for reducing CO2 emissions and thereby preventing global warming. In this mini-review the `state of the art' of several fermentation processes is discussed, starting with the most advanced process of ethanol production. This is followed by methane production, an established process for waste water purification which is gaining more attention because of the inherent energy production. Subsequently ABE fermentation is discussed and finally the biological production of hydrogen. The last section proposes a new way to assess and compare the different processes by relating their merit to `work content' values and `lost work' instead of the combustion values of their products. It is argued that, especially when dealing with energy from biomass, the application of this methodology will provide a uniform valuation for different processes and products. The described fermentation processes enable the supply of pure energy carriers, either gaseous or liquid, from biomass, yet the introduction of these processes is hampered by two major problems. The first is related to technological shortcomings in the mobilisation of fermentable components from the biomass. The second, having a much greater impact, is linked with socio-economics: until full externality costs are attributed to fossil fuels, accounting for their role in pollution and global warming, the competitiveness of the processes described here will hardly stand a chance. Received: 17 May 1999 / Accepted: 1 August 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号