首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In designing a posterior-stabilized total knee arthroplasty (TKA) it is preferable that when the cam engages the tibial spine the contact point of the cam move down the tibial spine. This provides greater stability in flexion by creating a greater jump distance and reduces the stress on the tibial spine. In order to eliminate edge loading of the femoral component on the posterior tibial articular surface, the posterior femoral condyles need to be extended. This provides an ideal femoral contact with the tibial articular surface during high flexion angles. To reduce extensor mechanism impingement in deep flexion, the anterior margin of the tibial articular component should be recessed. This provides clearance for the patella and patella tendon. An in vivo kinematic analysis that determined three dimensional motions of the femorotibial joint was performed during a deep knee bend using fluoroscopy for 20 subjects having a TKA designed for deep flexion. The average weight-bearing range-of-motion was 125 degrees . On average, TKA subjects experienced 4.9 degrees of normal axial rotation and all subjects experienced at least -4.4 mm of posterior femoral rollback. It is assumed that femorotibial kinematics can play a major role in patellofemoral kinematics. In this study, subjects implanted with a high-flexion TKA design experienced kinematic patterns that were similar to the normal knee. It can be hypothesized that forces acting on the patella were not substantially increased for TKA subjects compared with the normal subjects.  相似文献   

2.
A three-dimensional model of the knee is used to study ligament function during anterior-posterior (a-p) draw, axial rotation, and isometric contractions of the extensor and flexor muscles. The geometry of the model bones is based on cadaver data. The contacting surfaces of the femur and tibia are modeled as deformable; those of the femur and patella are assumed to be rigid. Twelve elastic elements are used to describe the geometry and mechanical properties of the cruciate ligaments, the collateral ligaments, and the posterior capsule. The model is actuated by thirteen musculotendinous units, each unit represented as a three-element muscle in series with tendon. The calculations show that the forces applied during a-p draw are substantially different from those applied by the muscles during activity. Principles of knee-ligament function based on the results of in vitro experiments may therefore be overstated. Knee-ligament forces during straight a-p draw are determined solely by the changing geometry of the ligaments relative to the bones: ACL force decreases with increasing flexion during anterior draw because the angle between the ACL and the tibial plateau decreases as knee flexion increases; PCL force increases with increasing flexion during posterior draw because the angle between the PCL and the tibial plateau increases. The pattern of ligament loading during activity is governed by the geometry of the muscles spanning the knee: the resultant force in the ACL during isometric knee extension is determined mainly by the changing orientation of the patellar tendon relative to the tibia in the sagittal plane; the resultant force in the PCL during isometric knee flexion is dominated by the angle at which the hamstrings meet the tibia in the sagittal plane.  相似文献   

3.
Combining musculoskeletal simulations with anatomical joint models capable of predicting cartilage contact mechanics would provide a valuable tool for studying the relationships between muscle force and cartilage loading. As a step towards producing multibody musculoskeletal models that include representation of cartilage tissue mechanics, this research developed a subject-specific multibody knee model that represented the tibia plateau cartilage as discrete rigid bodies that interacted with the femur through deformable contacts. Parameters for the compliant contact law were derived using three methods: (1) simplified Hertzian contact theory, (2) simplified elastic foundation contact theory and (3) parameter optimisation from a finite element (FE) solution. The contact parameters and contact friction were evaluated during a simulated walk in a virtual dynamic knee simulator, and the resulting kinematics were compared with measured in vitro kinematics. The effects on predicted contact pressures and cartilage–bone interface shear forces during the simulated walk were also evaluated. The compliant contact stiffness parameters had a statistically significant effect on predicted contact pressures as well as all tibio-femoral motions except flexion–extension. The contact friction was not statistically significant to contact pressures, but was statistically significant to medial–lateral translation and all rotations except flexion–extension. The magnitude of kinematic differences between model formulations was relatively small, but contact pressure predictions were sensitive to model formulation. The developed multibody knee model was computationally efficient and had a computation time 283 times faster than a FE simulation using the same geometries and boundary conditions.  相似文献   

4.
The effects of changes in cruciate ligament material and prestrain on knee joint biomechanics following ligament reconstruction surgery by a tendon are not adequately known. A 3D nonlinear finite element model of the entire knee joint was used to investigate the joint response at different flexion angles under a quadriceps force while varying ACL and PCL initial strains or material properties. The ACL and PCL forces as well as tibiofemoral contact forces/areas substantially increased with greater ACL or PCL initial strains or stiffness. The patellofemoral contact force slightly increased whereas the tibial extensor moment slightly decreased with tenser or stiffer ACL. Reverse trends were predicted with slacker ACL. Results confirm the hypotheses that changes in the prestrain of one cruciate ligament substantially influence the force in the other cruciate ligament and the entire joint and that the use of the patellar tendon (PT) as a replacement for cruciate ligaments markedly alters the joint biomechanics with trends similar to those predicted when increasing prestrains. Forces in both ACL and PCL ligaments increased as one of them became tenser or stiffer and diminished as it became slacker. These results have important consequences in joint biomechanics following ligament injuries or replacement and tend to recommend the use of grafts with smaller prestrains (i.e. slacker than intact) when using the PT as the replacement material with stiffness greater than that of replaced ligament itself.  相似文献   

5.
The effects of changes in cruciate ligament material and prestrain on knee joint biomechanics following ligament reconstruction surgery by a tendon are not adequately known. A 3D nonlinear finite element model of the entire knee joint was used to investigate the joint response at different flexion angles under a quadriceps force while varying ACL and PCL initial strains or material properties. The ACL and PCL forces as well as tibiofemoral contact forces/areas substantially increased with greater ACL or PCL initial strains or stiffness. The patellofemoral contact force slightly increased whereas the tibial extensor moment slightly decreased with tenser or stiffer ACL. Reverse trends were predicted with slacker ACL. Results confirm the hypotheses that changes in the prestrain of one cruciate ligament substantially influence the force in the other cruciate ligament and the entire joint and that the use of the patellar tendon (PT) as a replacement for cruciate ligaments markedly alters the joint biomechanics with trends similar to those predicted when increasing prestrains. Forces in both ACL and PCL ligaments increased as one of them became tenser or stiffer and diminished as it became slacker. These results have important consequences in joint biomechanics following ligament injuries or replacement and tend to recommend the use of grafts with smaller prestrains (i.e. slacker than intact) when using the PT as the replacement material with stiffness greater than that of replaced ligament itself.  相似文献   

6.
This study was performed to evaluate a dynamic multibody model developed to characterize the influence of tibial tuberosity realignment procedures on patellofemoral motion and loading. Computational models were created to represent four knees previously tested at 40°, 60°, and 80° of flexion with the tibial tuberosity in a lateral, medial and anteromedial positions. The experimentally loaded muscles, major ligaments of the knee, and patellar tendon were represented. A repeated measures ANOVA with post-hoc testing was performed at each flexion angle to compare data between the three positions of the tibial tuberosity. Significant experimental trends for decreased patella flexion due to tuberosity anteriorization and a decrease in the lateral contact force due to tuberosity medialization were reproduced computationally. The dynamic multibody modeling technique will allow simulation of function for symptomatic knees to identify optimal surgical treatment methods based on parameters related to knee pathology and pre-operative kinematics.  相似文献   

7.
A three-dimensional model of the knee is used to study ligament function during anterior-posterior (a-p) draw, axial rotation, and isometric contractions of the extensor and flexor muscles. The geometry of the model bones is based on cadaver data. The contacting surfaces of the femur and tibia are modeled as deformable; those of the femur and patella are assumed to be rigid. Twelve elastic elements are used to describe the geometry and mechanical properties of the cruciate ligaments, the collateral ligaments, and the posterior capsule. The model is actuated by thirteen musculotendinous units, each unit represented as a three-element muscle in series with tendon. The calculations show that the forces applied during a-p draw are substantially different from those applied by the muscles during activity. Principles of knee-ligament function based on the results of in vitro experiments may therefore be overstated. Knee-ligament forces during straight a-p draw are determined solely by the changing geometry of the ligaments relative to the bones: ACL force decreases with increasing flexion during anterior draw because the angle between the ACL and the tibial plateau decreases as knee flexion increases; PCL force increases with increasing flexion during posterior draw because the angle between the PCL and the tibial plateau increases. The pattern of ligament loading during activity is governed by the geometry of the muscles spanning the knee: the resultant force in the ACL during isometric knee extension is determined mainly by the changing orientation of the patellar tendon relative to the tibia in the sagittal plane; the resultant force in the PCL during isometric knee flexion is dominated by the angle at which the hamstrings meet the tibia in the sagittal plane.  相似文献   

8.
An anatomical dynamic model consisting of three body segments, femur, tibia and patella, has been developed in order to determine the three-dimensional dynamic response of the human knee. Deformable contact was allowed at all articular surfaces, which were mathematically represented using Coons' bicubic surface patches. Nonlinear elastic springs were used to model all ligamentous structures. Two joint coordinate systems were employed to describe the six-degrees-of-freedom tibio-femoral (TF) and patello-femoral (PF) joint motions using twelve kinematic parameters. Two versions of the model were developed to account for wrapping and nonwrapping of the quadriceps tendon around the femur. Model equations consist of twelve nonlinear second-order ordinary differential equations coupled with nonlinear algebraic constraint equations resulting in a Differential-Algebraic Equations (DAE) system that was solved using the Differential/Algebraic System Solver (DASSL) developed at Lawrence Livermore National Laboratory. Model calculations were performed to simulate the knee extension exercise by applying non-linear forcing functions to the quadriceps tendon. Under the conditions tested, both "screw home mechanism" and patellar flexion lagging were predicted. Throughout the entire range of motion, the medial component of the TF contact force was found to be larger than the lateral one while the lateral component of the PF contact force was found to be larger than the medial one. The anterior and posterior fibers of both anterior and posterior cruciate ligaments, ACL and PCL, respectively, had opposite force patterns: the posterior fibers were most taut at full extension while the anterior fibers were most taut near 90 degrees of flexion. The ACL was found to carry a larger total force than the PCL at full extension, while the PCL carried a larger total force than the ACL in the range of 75 degrees to 90 degrees of flexion.  相似文献   

9.
In vivo patellofemoral forces in high flexion total knee arthroplasty   总被引:1,自引:0,他引:1  
This study compares the in vivo patellofemoral contact forces generated in high flexion fixed bearing posterior cruciate retaining Nexgen CR-Flex (PCR) and high flexion posterior stabilized Nexgen LPS-Flex (LPS) TKAs with that of normal knees from full knee extension to maximum weight bearing flexion. Ten patients with the PCR total knee arthroplasty (TKA), ten with the LPS TKA and seven patients having normal knees were fluoroscoped while performing a deep knee bend activity. In vivo femorotibial kinematics, obtained from 3D-to-2D registration technique, and patellar kinematics obtained by direct measurements from the fluoroscopic images were entered into a 3D inverse dynamics mathematical model to determine the in vivo contact forces at the knee. The variation in the patellofemoral and quadriceps forces with flexion were found to be similar across the three groups-increasing from full extension to 90 degrees of flexion, reaching a maximum between 90 degrees and 120 degrees of flexion and then decreasing until maximum flexion. At maximum knee flexion, these forces were found to be significantly lower in the normal knees than in the TKAs. The patellar ligament to quadriceps force ratio decreased with the increase in knee flexion while the patellofemoral to quadriceps force ratio increased. A strong correlation was found to exist between the patellofemoral forces, the femorotibial contact forces and the forces in the extensor mechanism. The PCR TKA in this study exhibited greater resemblance to the normal patients with respect to the patellofemoral forces than the LPS TKA though significant differences in the two implant types were not observed.  相似文献   

10.
Achilles tendon material properties and geometry are altered in Achilles tendinopathy. The purpose of this study was to determine the relative contributions of altered material properties and geometry to free Achilles tendon stress distribution during a sub-maximal contraction in tendinopathic relative to healthy tendons. Tendinopathic (n = 8) and healthy tendons (n = 8) were imaged at rest and during a sub-maximal voluntary isometric contraction using three-dimensional freehand ultrasound. Images were manually segmented and used to create subject-specific finite element models. The resting cross-sectional area of the free tendon was on average 31% greater for the tendinopathic compared to healthy tendons. Material properties for each tendon were determined using a numerical parameter optimisation approach that minimised the difference in experimentally measured longitudinal strain and the strain predicted by the finite element model under submaximal loading conditions for each tendon. The mean Young’s modulus for tendinopathic tendons was 53% lower than the corresponding control value. Finite element analyses revealed that tendinopathic tendons experience 24% less stress under the same submaximal external loading conditions compared to healthy tendons. The lower tendon stress in tendinopathy was due to a greater influence of tendon cross-sectional area, which alone reduced tendon stress by 30%, compared to a lower Young’s modulus, which alone increased tendon stress by 8%. These findings suggest that the greater tendon cross-sectional area observed in tendinopathy compensates for the substantially lower Young’s modulus, thereby protecting pathological tendon against excessive stress.  相似文献   

11.
Musculoskeletal models are widely used to investigate joint kinematics and predict muscle force during gait. However, the knee is usually simplified as a one degree of freedom joint and knee ligaments are neglected. The aim of this study was to develop an OpenSim gait model with enhanced knee structures. The knee joint in this study included three rotations and three translations. The three knee rotations and mediolateral translation were independent, with proximodistal and anteroposterior translations occurring as a function of knee flexion/extension. Ten elastic elements described the geometrical and mechanical properties of the anterior and posterior cruciate ligaments (ACL and PCL), and the medial and lateral collateral ligaments (MCL and LCL). The three independent knee rotations were evaluated using OpenSim to observe ligament function. The results showed that the anterior and posterior bundles of ACL and PCL (aACL, pACL and aPCL, pPCL) intersected during knee flexion. The aACL and pACL mainly provided force during knee flexion and adduction, respectively. The aPCL was slack throughout the range of three knee rotations; however, the pPCL was utilised for knee abduction and internal rotation. The LCL was employed for knee adduction and rotation, but was slack beyond 20° of knee flexion. The MCL bundles were mainly used during knee adduction and external rotation. All these results suggest that the functions of knee ligaments in this model approximated the behaviour of the physical knee and the enhanced knee structures can improve the ability to investigate knee joint biomechanics during various gait activities.  相似文献   

12.
Total knee arthroplasty (TKA) is a very successful procedure, but pain or difficulties during activities still persist in patients. Patient outcomes in TKA surgery can be affected by implant design, alignment or patient-related anatomical factors. This paper presents a numerical sensitivity analysis of several TKA types: a fixed bearing, posterior stabilized prosthesis, a high flexion fixed bearing guided motion prosthesis, a mobile bearing prosthesis and a hinge prosthesis. Each prosthesis was virtually implanted on the same cadaver leg model and it underwent a loaded squat, in 10s, between 0° and 120°, similar to several previous experimental tests performed on knee kinematics simulators. The aim of this examination was to investigate the sensitivity of the patello-femoral (PF) and tibio-femoral (TF) contact forces to patient-related anatomical factors, and component position in the different implant types. The following parameters were used for the sensitivity study: the proximo-distal patellar position, the patellar component tilting, the tibial component position and orientation, the locations of the medial and lateral collateral ligaments with respect to femur and tibia and the patellar tendon length. The sensitivity analysis showed that PF contact forces are mostly affected by patella height (increases up to 67% for one TKA type in patella-alta configuration), by an anterior tibial component translation (increases up to 30%), and by patellar component tilting (increases up to 29%); TF contact forces are mostly affected by the anterior displacement of the insertion points of the medial collateral ligament with respect to the reference position (increases up to 48%).  相似文献   

13.
One possible cause of patellofemoral pain syndrome is excessive lateral force acting on the patella. Although several treatment methods focus on decreasing the lateral force acting on the patella, the relationship between the lateral force and the patellofemoral contact pressure distribution is unclear. A computational model has been developed to determine how loading variations alter the patellofemoral force and pressure distributions for individual knees. The model allows variation in the quadriceps and patella tendon forces, and calculates the predicted contact pressure distribution using the discrete element analysis technique. To characterize the accuracy of the model, four cadaver knees were flexed on a knee simulator with three initial Q-angles, while recording the force and pressure distributions with a pressure sensor. A model of each knee was created from CT data. Using the external force applied to the knee, the geometry of the knee, and the quadriceps origin as input, the pressure distribution was calculated during flexion. Similar trends were noted for the computational and experimental results. The percentage of the total force applied to the lateral cartilage increased with the Q-angle. The maximum contact pressure increased during flexion. The maximum lateral contact pressure increased with the Q-angle for three knees. For the other knee, increasing the Q-angle decreased the maximum lateral pressure. The maximum medial contact pressure decreased as the Q-angle increased. By characterizing the influence of patellofemoral loading on the force and pressure distributions, the computational model could be used to evaluate treatment methods prescribed for patellofemoral pain.  相似文献   

14.
Osteochondrosis dissecans (OD) is a process of subchondral bone necrosis occurring predominantly in young individuals at specific sites. The aetiology of this disease remains controversial with mechanical processes due to trauma and/or ischaemic factors being proposed. This study aims at explaining the aetiology of OD in the knee joint as a result of the particular deformation of the condyles. A finite element analysis of the distal third of the femur was performed. A three-dimensional model was developed based on computed tomography scans of a normal femur, consisting of cortical bone, cancellous bone and articular cartilage. This model was subjected to physiological loads at 0, 30, 60 and 90 degrees of knee flexion. A complex deformation was found within each condyle as well as between the two condyles. Both medial and lateral condyles are deformed in the medio-lateral direction and at the same time compressed between the patella and the tibia in the antero-posterior direction. This effect is highest at 60 degrees of knee flexion. In both planes, the medial condyle is distorted more than the lateral one. Strain concentration in the subchondral bone facing the patella varies with flexion, especially for angles exceeding 60 degrees. The deformation of the femur in the predominant locus of OD in the medial condyle exceeds that of the lateral condyle considerably. The analysis shows that repeated vigorous exercise including extreme knee flexion may produce rapidly changing strains which in turn could ultimately be responsible for local subchondral bone collapse.  相似文献   

15.
Surgical reconstruction is generally recommended for posterior cruciate ligament (PCL) injuries; however, the use of grafts is still a controversial problem. In this study, a three-dimensional finite element model of the human tibiofemoral joint with articular cartilage layers, menisci, and four main ligaments was constructed to investigate the effects of graft strengths on knee kinematics and in-situ forces of PCL grafts. Nine different graft strengths with stiffness ranging from 0% (PCL rupture) to 200%, in increments of 25%, of an intact PCL’s strength were used to simulate the PCL reconstruction. A 100 N posterior tibial drawer load was applied to the knee joint at full extension. Results revealed that the maximum posterior translation of the PCL rupture model (0% stiffness) was 6.77 mm in the medial compartment, which resulted in tibial internal rotation of about 3.01°. After PCL reconstruction with any graft strength, the laxity of the medial tibial compartment was noticeably improved. Tibial translation and rotation were similar to the intact knee after PCL reconstruction with graft strengths ranging from 75% to 125% of an intact PCL. When the graft’s strength surpassed 150%, the medial tibia moved forward and external tibial rotation greatly increased. The in-situ forces generated in the PCL grafts ranged from 13.15 N to 75.82 N, depending on the stiffness. In conclusion, the strength of PCL grafts have has a noticeable effect on anterior-posterior translation of the medial tibial compartment and its in-situ force. Similar kinematic response may happen in the models when the PCL graft’s strength lies between 75% and 125% of an intact PCL.  相似文献   

16.
Verified and efficient representations of knee ligamentous constraints are essential to forward-dynamic models for prediction of knee mechanics. The objectives of this study were to develop an efficient probabilistic representation of knee ligamentous constraint using the advanced mean value (AMV) probabilistic approach, and to compare the AMV representation with the gold standard Monte Carlo (MC) approach. Specifically, the effects of inherent uncertainty in ligament stiffness, reference strain and attachment site locations on joint constraint were assessed. An explicit finite element model of the knee was evaluated under a series of anterior–posterior (AP) and internal–external (IE) loading at full extension and 90° flexion. Distributions of AP and IE laxity were predicted using experimentally-based levels of ligament parameter variability. Importance factors identified the critical properties affecting the predicted bounds, and agreed with reported ligament recruitment. The AMV method agreed closely with MC results with a four-fold reduction in computation time.  相似文献   

17.
A detailed 3D anatomical model of the patellofemoral joint was developed to study the tracking, force, contact and stability characteristics of the joint. The quadriceps was considered to include six components represented by 15 force vectors. The patellar tendon was modeled using four bundles of viscoelastic tensile elements. Each of the lateral and medial retinaculum was modeled by a three-bundle nonlinear spring. The femur and patella were considered as rigid bodies with their articular cartilage layers represented by an isotropic viscoelastic material. The geometrical and tracking data needed for model simulation, as well as validation of its results, were obtained from an in vivo experiment, involving MR imaging of a normal knee while performing isometric leg press against a constant 140 N force. The model was formulated within the framework of a rigid body spring model and solved using forth-order Runge-Kutta, for knee flexion angles between zero and 50 degrees. Results indicated a good agreement between the model predictions for patellar tracking and the experimental results with RMS deviations of about 2 mm for translations (less than 0.7 mm for patellar mediolateral shift), and 4 degrees for rotations (less than 3 degrees for patellar tilt). The contact pattern predicted by the model was also consistent with the results of the experiment and the literature. The joint contact force increased linearly with progressive knee flexion from 80 N to 210 N. The medial retinaculum experienced a peak force of 18 N at full extension that decreased with knee flexion and disappeared entirely at 20 degrees flexion. Analysis of the patellar time response to the quadriceps contraction suggested that the muscle activation most affected the patellar shift and tilt. These results are consistent with the recent observations in the literature concerning the significance of retinaculum and quadriceps in the patellar stability.  相似文献   

18.
In vivo muscle forces are typically estimated using literature-based or subject-specific moment arms (MAs) because it is not possible to measure in vivo muscle forces non-invasively. However, even subject-specific muscle-tendon MAs vary across contraction levels and are impossible to determine at high contraction levels without techniques that use ionized radiation. Therefore, different generic MA functions are often used to estimate in vivo muscle forces, which may alter force predictions and the shape of the muscle’s force-length relationship. The aim of this study was to examine the influence of different literature-based patella tendon MA functions on the vastus lateralis (VL) force-angle relationship. Participants (n = 11) performed maximum voluntary isometric knee extension contractions at six knee flexion angles, ranging from 40° to 90°. To estimate in vivo VL muscle force, the peak knee extension torque at each joint angle was multiplied by the VL’s physiological cross-sectional area (PCSA) relative to the quadriceps’ PCSA (34%) and then divided by the angle-specific patella tendon MA for 19 different functions. Maximum VL force was significantly different across MA functions (p ≤ 0.039) and occurred at different knee flexion angles. The shape of the VL force-angle relationship also differed significantly (p < 0.01) across MA functions. According to the maximum force generated by VL based on its literature-derived PSCA, only the VL force-angle relationships estimated using geometric imaging-based MA functions are feasible across the knee angles studied here. We therefore recommend that an average of these MA functions is calculated to estimate quadriceps muscle forces if subject-specific MAs cannot be determined.  相似文献   

19.
Novel conical beam CT-scanners offer high resolution imaging of knee structures with i.a. contrast media, even under weight bearing. With this new technology, we aimed to determine cartilage strains and meniscal movement in a human knee at 0, 1, 5, and 30 min of standing and compare them to the subject-specific 3D finite element (FE) model. The FE model of the volunteer?s knee, based on the geometry obtained from magnetic resonance images, was created to simulate the creep. The effects of collagen fibril network stiffness, nonfibrillar matrix modulus, permeability and fluid flow boundary conditions on the creep response in cartilage were investigated. In the experiment, 80% of the maximum strain in cartilage developed immediately, after which the cartilage continued to deform slowly until the 30 min time point. Cartilage strains and meniscus movement obtained from the FE model matched adequately with the experimentally measured values. Reducing the fibril network stiffness increased the mean strains substantially, while the creep rate was primarily influenced by an increase in the nonfibrillar matrix modulus. Changing the initial permeability and preventing fluid flow through noncontacting surfaces had a negligible effect on cartilage strains. The present results improve understanding of the mechanisms controlling articular cartilage strains and meniscal movements in a knee joint under physiological static loading. Ultimately a validated model could be used as a noninvasive diagnostic tool to locate cartilage areas at risk for degeneration.  相似文献   

20.
Patellar resurfacing during knee replacement is still under debate, with several studies reporting higher incidence of anterior knee pain in unresurfaced patellae. Congruency between patella and femur impacts the mechanics of the patellar cartilage and strain in the underlying bone, with higher stresses and strains potentially contributing to cartilage wear and anterior knee pain. The material properties of the articulating surfaces will also affect load transfer between femur and patella. The purpose of this study was to evaluate the mechanics of the unresurfaced patella and compare with natural and resurfaced conditions in a series of finite element models of the patellofemoral joint. In the unresurfaced analyses, three commercially available implants were compared, in addition to an 'ideal' femoral component which replicated the geometry, but not the material properties, of the natural femur. Hence, the contribution of femoral component material properties could be assessed independently from geometry changes. The ideal component tracked the kinematics and patellar bone strain of the natural knee, but had consistently inferior contact mechanics. In later flexion, compressive patellar bone strain in unresurfaced conditions was substantially higher than in resurfaced conditions. Understanding how femoral component geometry and material properties in unresurfaced knee replacement alters cartilage contact mechanics and bone strain may aid in explaining why the incidence of anterior knee pain is higher in the unresurfaced population, and ultimately contribute to identifying criteria to pre-operatively predict which patients are suited to an unresurfaced procedure and reducing the incidence of anterior knee pain in the unresurfaced patient population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号