首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Dendrochronologia》2014,32(3):230-236
Three tree-ring width chronologies were developed from 75 Picea schrenkiana trees ranging from low- to high-elevation in the mountains surrounding the Issyk-Kul Lake, Northeast Kyrgyzstan. The reliable chronologies extend back to the mid-18th and late-19th centuries. Spatial correlation analysis indicates that the chronologies for the relatively high-elevation trees contain large-scale climatic signals, while the chronology at relatively low elevation may reflect the local climate variability. The results of the response of tree growth to climate show that these chronologies contain an annual precipitation signal. Furthermore, the influence of temperature indicates mainly moisture stress that is enhanced with rising elevation. The tree-ring records also captured a wetting trend in eastern Central Asia over the past decades. These new tree-ring width chronologies provide reliable proxies of precipitation variability in Central Asia and contribute to the International Tree-Ring Data Bank.  相似文献   

2.
For a better understanding of forest ecology, tree-ring studies can provide information on climate sensitivity, tree growth patterns and population age structure that can inform about stand dynamics such as recruitment of new individuals, and other interspecific interactions related to competition and facilitation. Little is known about the ecology of the recently identified high Andean tree species Polylepis rodolfo-vasquezii. Here, we analyzed the relationship between tree size and age of two P. rodolfo-vasquezii forest stands located in the central Peruvian Andes at 11°S in latitude, and compared their growth patterns and climate sensitivity. We measured the height and diameter of each individual tree and collected tree core samples of living trees and cross sections of dead standing trees to generate two centennial tree-ring chronology at Toldopampa (1825–2015 CE) and at Pomamanta (1824–2014 CE) sites. The dendrochronological dates were evaluated by 14C analysis using the bomb-pulse methods analyzing a total of 9 calendar years that confirm the annual periodicity of this tree species. At the Toldopampa stand most trees ranged from 70 to 80 years old, with a 190-year old individual, being an older and better preserve forest than Pomamanta, with younger trees, probably because more human disturbances due to closer village proximity. No significant relationships were found between tree age and size in the oldest stand alerting that tree diameter should not be used as a metric for estimating tree ages as a general rule. The distinct growth patterns and the size-age relationship observed at the two forests may reflect distinct histories regarding human activities such as fire and logging. Nevertheless, both the Toldopampa and the Pomamanta tree-ring width chronologies exhibited common growth patterns and shared a similar positive response to temperature of the current growing season. Overall, our study confirmed the annual radial growth periodicity in P. rodofolfo-vasquezii trees using an independent method such as 14C analyses and a strong climate sensitivity of this tree species. These findings encourage the development of an extensive P. rodolfo-vasquezii tree-ring network for ecological and paleoclimate studies in the tropical Andes in South America.  相似文献   

3.
In this study, we developed the tree-ring width chronology for the period of 1404 BCE to 2015 CE using Qilian juniper (Sabina przewalskii Kom.) trees collected from the Buerhanbuda Mts. in the southeastern Qaidam Basin (QB) near Nuomuhong Village, Qinghai Province. This is the first and longest chronology to date in this region. Based on the relationships between the tree-ring width chronology and climate data, the annual precipitation from previous July to current June (July-June) was reconstructed for the past 2917 years from 902 BCE to 2015 CE. This reconstruction accounted for 47.9% of the total variance in the actual July-June precipitation in the calibration period (1957–2015). The full reconstruction captured distinct wet and dry variability, and contained evidence of some low-frequency climate signals. We identified 13 wet and 12 dry periods, of which 1443–1503 CE and 1789–1836 CE were the two longest dry periods. General agreements in the low-frequency variations between the July-June precipitation and other moisture-sensitive records for the northeastern Tibetan Plateau (TP) suggested that the reconstruction in this study represented a regional signal. Spatial correlations with gridded precipitation data also indicated that the reconstructed July-June precipitation could adequately represent climate fluctuations over a large area of the northeastern TP. The new tree-ring width chronology and precipitation reconstruction are important for understanding natural climate change in the southeastern QB.  相似文献   

4.
This study concerns dendrochronology and dendroclimatology of yew growing in Poland. The yew (Taxus baccata L.), a long-lived, slow-growing tree, is regarded as a species threatened with extinction. The eastern boundary of its range transects Poland. The analyses were performed on 34 yew populations which are protected as parts of nature reserves, as nature monuments, or which are planned to be protected. Samples were collected using Pressler borer from a total of 774 trees yielding 1307 profiles. Classical dating techniques (including cross-dating method) were subsequently used to reconstruct 34 local chronologies. Average tree-ring width was 0.84 mm and ranged from 0.27 to 1.47 mm. For most stands, the age of the yew trees is overestimated. The studied populations most frequently are 100–200 years old, and the oldest yew trees in Poland are growing in the KS population (age estimated at 500–600 years). Average tree-ring width was found to be strongly dependent on the chronology length/tree age. The 674 pointer years calculated for the local chronologies served as a basis for determining pointer years for the entire study area. Negative years include: 1862, 1865, 1917, 1927, 1940, 1947, 1956, 1963, 1969, 1976, 1979, 1993, 1996, and 2003. Positive years are: 1884, 1914, 1916, 1965, 1977, 1988, 1997, and 2007. Analysis of weather conditions in those years demonstrated a strong relationship between tree-ring width and air temperature in winter, pre-spring, and early spring. Higher-than-average temperatures during those seasons correlate positively with yew tree-ring width. Response function analysis performed for local and regional chronologies point to a dominant role of air temperature in December of the year preceding growth and in January, February, and March of the current year (linear relationships). June precipitation is an additional factor affecting tree-ring width in some areas of northern and northwestern Poland: the higher the precipitation, the wider the tree-rings. The results obtained, particularly those concerning growth-climate relationships and dendroclimatic regionalisation, can be used in the on-going programme of yew restitution in Poland.  相似文献   

5.
江西大岗山地区7-9月降水量的重建与分析   总被引:1,自引:0,他引:1  
根据江西大岗山地区4个采样点的马尾松年轮样本,建立了本地区的综合年轮年表,分析了马尾松径向生长与气候因子变化的相关及响应关系,发现大岗山地区树木径向生长受生长季7—9月降水量影响较显著,呈负相关关系。在响应分析的基础上,首次重建了大岗山地区1892年以来7—9月的降水量,交叉检验表明重建序列是可靠的。重建结果表明,大岗山地区7—9月份降水变化在过去的117年中总体经历了3个偏干时期:1895—1902年,1908—1926年和1944—1985年,和3个偏湿阶段:1903—1907年,1927—1943年及1986—2008年。重建的降水量序列在1921年,1937年及1977年发生明显的方差突变,表明百年以来该地区降水量变化趋势存在阶段性变化。  相似文献   

6.
Though the extraction of increment cores is common practice in tree-ring research, there is no standard for the number of samples per tree, or trees per site needed to accurately describe the common growth pattern of a discrete population of trees over space and time. Tree-ring chronologies composed of living, subfossil and archaeological material often combine an uneven distribution of increment cores and disc samples. The effects of taking one or two cores per tree, or even the inclusion of multiple radii measurements from entire discs, on chronology development and quality remain unreported. Here, we present four new larch (Larix cajanderi Mayr) ring width chronologies from the same 20 trees in northeastern Siberia that have been independently developed using different combinations of core and disc samples. Our experiment reveals: i) sawing is much faster than coring, with the latter not always hitting the pith; ii) the disc-based chronology contains fewer locally absent rings, extends further back in time and exhibits more growth coherency; iii) although the sampling design has little impact on the overall chronology behaviour, lower frequency information is more robustly obtained from the disc measurements that also tend to reflect a slightly stronger temperature signal. In quantifying the influence of sampling strategy on the quality of tree-ring width chronologies, and their suitability for climate reconstructions, this study provides useful insights for optimizing fieldwork campaigns, as well as for developing composite chronologies from different wood sources.  相似文献   

7.
Few Southern Hemisphere tree-ring chronologies exceed 1000 years in length. We present a ca. 1700 years of indexed values for the long-lived conifer Athrotaxis selaginoides at Cradle Mt in southeastern Australia and compare it with the only other published millennial-plus length tree-ring chronology for Australia: the nearby Mt Read Lagarostrobos franklinii. We use simple correlation function and pointer year analyses to compare the climate responses of the two species (temperature, precipitation and growing degree days). Both chronologies show accelerated growth at their modern ends, but this growth acceleration is not synchronous, beginning approximately a quarter of a century earlier at the Cradle Mt site. This discrepancy may highlight the relevance of chronology composition and/or physiological differences in the species. Although the seasonality of the climatic responses of the two species is similar, that of A. selaginoides is generally weaker than that of L. franklinii. Somewhat paradoxically, the only pointer years in common between the chronologies are 1898 and 1908 CE. The periods from 600 to 900 CE and ∼1200–1450 CE are conspicuous for their absence of positive pointer years while no negative pointer years occur for either site from ∼1200–1350 CE. It is possible that differing patterns of pointer years can be partially explained by a peak in establishment from ∼1150–1850 CE at the Mt Read L. franklinii site compared to continuous establishment at Cradle Mt. Although statistically significant and time-stable climate responses for the A. selaginoides chronology are too weak to base a single-chronology climate reconstruction on, the long chronology will likely make an important contribution to future multi-proxy temperature reconstructions for southeastern Australia.  相似文献   

8.
坡向对海拔梯度上祁连圆柏树木生长的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
选择青海省同德县南部河北林场的一个连续坡面,根据不同海拔和坡向设置4个采样点,采集祁连圆柏(Sabina przewalskii)树轮数据,分析不同海拔和坡向对树木生长的影响。结果表明:坡面上部3个采样点的树轮年表特征值均呈一定的变化规律——平均敏感值(MS)和标准差(SD)随海拔升高而增大,一阶自相关(AC)随海拔升高而递减,下限年表特征值均表现出与其他3点的不同,都是最值(MS和SD均最大,AC最小);年表间相关和主成分分析结果都显示出海拔梯度上的变化规律,但下限差异显著;树轮指数与当年6–8月平均气温的相关系数呈增强趋势,森林上限受当年7、8月平均气温影响较大,下限树轮指数不仅与当年6月和前一年11月的气温显著负相关,而且受前一年8月和当年5月的月降水量影响显著。与通常情况"下限树木生长受降水制约"比较,这里的温度作用增强而降水限制减弱。显然,坡向扭转是海拔梯度上影响祁连圆柏生长变化的重要因子。  相似文献   

9.
Knowledge of drought variability and their possible mechanisms during the past hundred years is still limited in the mountainous region of south-central Tibetan Plateau (TP). In this study, a long-term tree-ring width chronology dating back to 1190 CE was combined using 328 increment cores from the Nagqu region. Based on the relationships between this tree-ring width chronology and climate data, we reconstructed May–June self-calibrated Palmer Drought Severity Index (scPDSI) for the past 821 years (1190–2010 CE). Additional comparisons with other available precipitation or drought reconstructions were conducted. We further investigated the influence of the South Asian summer monsoon (SASM) on the drought variability in our study region. Results indicated that our tree-ring width chronology contained stable drought signal in the early summer season (May–June). During the past 821 years, the longest dry and wet periods lasted for 116 and 90 years, respectively, based on a 21-year Fast Fourier transform filter. Specifically, longer than ten years’ dry periods prevailed during 1211–1245 CE, 1280–1358, 1421–1471, 1500–1571, 1580–1598, 1650–1691, 1782–1807 and 1867–1982; while wet intervals occurred in 1190–1210 CE, 1246–1279, 1359–1420, 1472–1499, 1599–1649, 1692–1781, 1808–1866 and 1983–2010. Generally consistent dry and wet intervals across the southern TP were found by comparisons with other available datasets during their common periods. Interestingly, we detected an unstable influence of the SASM on the May–June drought variability in our study region, at least for the past three and a half centuries. This study therefore gives a new perspective of drought variability as well as their relationships with the SASM over a long-term period on the south-central TP.  相似文献   

10.
Fennoscandia is one of the most prominent regions in the world for dendroclimatological research. Yet, millennium-long tree-ring chronologies in this region have mainly been developed from Scots pine (Pinus sylvestris L.). To explore the possibility of building long-term chronologies using other dominating tree species in the region, this paper presents the first two millennia-long Norway spruce (Picea abies (L.) Karst.) ring-width chronology from Northern Europe. The chronology is composed of living trees and subfossil wood and covers the period from BCE 115 to 2012 CE. A sufficiently replicated and robust chronology is built for the past 360 years back to 1649 CE. Further back in time, the common growth signal is reduced, and hence the reliability of the earlier section of the chronology is lower. The climate calibration results show that the spruce ring-width correlation with June-July mean temperatures over the period 1901–2012 is positive and significant (r = 0.6, p < 0.01) and representing the temperature variability of a spatial domain covering west-central Scandinavia. These results show the ability of Norway spruce to serve as a proxy for paleoclimatic research and the possibility of extending the chronology far back in time in the region, and therefore present an opportunity for carrying out new inter-and intraregional proxy analyses.  相似文献   

11.
Individual tree-ring width chronologies and mean chronologies from Pinus tabuliformis Carr. (Chinese pine) and Sabina przewalskii Kom. (Qilian juniper) tree cores were collected and analyzed from two sites in the eastern Qilian Mountains of China. The chronologies were used to analyze individual and time-varying tree-ring growth to climate sensitivity with monthly mean air temperature and total precipitation data for the period 1958–2008. Climate–growth relationships were assessed with correlation functions and their stationarity and consistency over time were measured using moving correlation analysis. Individuals’ growth–climate correlations suggested increased percentages of individuals are correlated with certain variables (e.g., current June temperature at the P. tabuliformis site; previous June, December and current May temperature and May precipitation at the S. przewalskii site). These same climatic variables also correspond to the mean chronology correlations. A decreased percentage of individuals correlated with these climatic variables indicates a reduced sensitivity of the mean chronology. Moving correlation analysis indicated a significant change over time in the sensitivity of trees to climatic variability. Our results suggested: (1) that individual tree analysis might be a worthwhile tool to improve the quality and reliability of the climate signal from tree-ring series for dendroclimatology research; and (2) time-dependent fluctuations of climate growth relationships should be taken into account when assessing the quality and reliability of reconstructed climate signals.  相似文献   

12.
In spite of enormous diversity in tree species, dendrochronological records in the tropical Andes are very scarce. Therefore, it is necessary to increase the search for new tree species with high dendrochronological characteristics in the tropical Andes, including the humid Puna of Peru. We present the first tree-ring chronology from Polylepis rodolfo-vasquezii, a recently described tree species in the Central Andes of Peru between 4000 and 4400 m elevation. Fifty trees were sampled in the district of Comas, Peru. After establishing the anatomical characteristics that delimit the annual growth rings, we developed a ring-width chronology by applying conventional dendrochronological techniques. The chronology covers the period 1869–2015 (157 years) and is well replicated from 1920 to present (> 20 samples). The statistics used to evaluate the quality of the chronology indicate that the P. rodolfo-vasquezii has similar values of MS, RBAR and EPS to those shown by other Polylepis spp chronologies. To determine the main climatic factors controlling the growth of P. rodolfo-vasquezii, we compared our chronology with local and regional temperature and precipitation records. Growth season temperature (November to May) seems to be the main climatic factor modulating inter-annual variations in the growth of this species. The sensitivity to inter-annual temperature variations highlights the potential of P. rodolfo-vasquezii to provide climatically sensitive dendrochronological records in the Central Andes. To our knowledge, this is the first tree-ring record in South America displaying significant relationships with temperature over the tropical Atlantic Ocean.  相似文献   

13.
《Dendrochronologia》2014,32(2):97-106
The relationship of streamflow records of the Lachen River with tree-ring parameters of total tree-ring width (TRW), earlywood width (EWW) and latewood width (LWW) chronologies of Larix griffithiana from Lachen, North Sikkim, Eastern Himalaya was generated. These chronologies correlate significantly with the observed discharge of the Lachen River where the EWW chronology explains 61.2% of the streamflow variance. Based on this result, Lachen River discharge for the period of previous year March to current year February was reconstructed using EWW chronology, which extends back to AD 1790. In the smoothed reconstructed data the period of extreme low streamflows were during AD 1791–1805, 1813–1822 and 1914–1925 and the extreme highs were during AD 1823–1835, 1879–1890, 1926–1946 and 1980–1989. The streamflow is also found to be lower than average during the monsoon failure (or East India Drought) of AD 1792–1796 and past great droughts of AD 1876–1878. The lower tree growth during AD 1816–1822 is consistent with that of the Tambora volcanic eruption of Indonesia in AD 1815. High spectral power at 4–8 years in the reconstructed streamflow is similar to that of ENSO range.  相似文献   

14.
长白山北坡不同年龄红松年表及其对气候的响应   总被引:3,自引:0,他引:3  
王晓明  赵秀海  高露双  姜庆彪 《生态学报》2011,31(21):6378-6387
运用树木年轮气候学方法,研究了长白山北坡红松(Pinus koraiensis)不同年龄年表特征及其与气候因子间的关系,以期揭示年龄因素对年表的潜在影响。结果表明,平均年龄为63a的红松低龄年表与平均年龄为184a的高龄年表对气候的响应明显不同:低龄红松径向生长与当年1、2月月平均温度负相关(P<0.05),同时也受到上年及当年多个月份的月平均最高温度或最低温度的影响,但与降水的相关性未达到显著水平;高龄红松径向生长则与月平均温度间的关系不明显,而与当年1、2、4、6、7、9月的月平均最高温度正相关,与当年4月、9月的月平均最低温度负相关,同时受到上年5月及当年5月月总降水量的影响。因此,年龄因素对红松年表的气候响应方面存在一定影响,且高龄年表对气候响应的敏感性更高,包含有更多的气候信息。  相似文献   

15.
在芦芽山地区采集3个不同海拔的华北落叶松(Larix principis-rupprechtii),在传统去趋势的基础上,采用"signal-free"方法对拟合曲线进行修正,避免了中等频率的气候信息引起的拟合偏差,最终建立3个不同海拔树轮宽度标准年表(STD)。同时以10a为界对上述年表进行滤波处理,得到3个低频年表。年表特征值表明,随着海拔升高,年轮平均轮宽变窄,敏感性和高频信息增强,低频信息减弱,这可能与逐渐恶劣的生境有关。中、低海拔年表的低频信息更一致,中、高海拔的高频信息更接近,而高、低海拔无论是标准年表还是高频、低频年表相似性均较差。树轮气候响应分析显示,低海拔STD年表与5月最低温负相关最为显著,STD和低频年表均与5、6月份土壤温度显著负相关,说明生境暖干,树木主要受生长季的干旱胁迫;中海拔STD年表与当年5月最高温正相关最为显著,STD和低频年表与土壤温度相关均不显著,说明生境逐渐变得冷湿,生长季的低温成为树木生长的限制因子;高海拔STD年表与气象要素相关不显著,低频年表与当年4月土壤温度正相关,说明高海拔最为冷湿,并有季节性冻土分布,生长季的土壤低温成为树木生长的限制因子。因此,全球变暖的趋势将更有利于高海拔树木的生长,而低海拔树木的干旱胁迫进一步加剧。  相似文献   

16.
The spatial coverage of tree-ring chronologies in tropical South America is low compared to the extratropics, particularly in remote regions. Tree-ring dating from such tropical sites is limited by the generally weak temperature seasonality, complex coloration, and indistinct anatomical morphology in some tree species. As a result, there is a need to complement traditional methods of dendrochronology with innovative and independent approaches. Here, we supplement traditional tree-ring methods via the use of radiocarbon analyses to detect partial missing rings and/or false rings, and wood anatomical techniques to precisely delineate tree-ring boundaries. In so doing we present and confirm the annual periodicity of the first tree-ring width (TRW) chronology spanning from 1814 to 2017 for Juglans boliviana (‘nogal’), a tree species growing in a mid-elevation tropical moist forest in northern Bolivia. We collected 25 core samples and 4 cross-sections from living and recently harvested canopy-dominant trees, respectively. The sampled trees were growing in the Madidi National Park and had a mean age of 115 years old, with certain trees growing for over 200 years. Comparison of (residual and standard) TRW chronologies to monthly climate variables shows significant negative relationships to prior year May-August maximum temperatures (r = −0.54, p < 0.05) and positive relationships to dry season May-October precipitation (r = 0.60, p < 0.05) before the current year growing season. Additionally, the radial growth of Juglans boliviana shows a significant positive trend since 1979. Our findings describe a new and promising tree species for dendrochronology due to its longevity and highlight interdisciplinary techniques that can be used to expand the current tree-ring network in Bolivia and the greater South American tropics.  相似文献   

17.
Up to now, the development of dendrochronological records from tropical regions in South America has been limited to the lowlands with emphasis in the Amazon basin. In this contribution, we present the first chronology of Cedrela nebulosa, a species that develops in the tropical mountainous regions of South America. We collected samples from trees in Monobamba district in Peru, analysed the anatomical features that determine the growth rings, and processed following the methods commonly used in dendrochronology. The 133-years chronology covering the 1883–2015 period, showed large correlation between series. In order to determine the climatic variables that control tree growth, we performed correlation analyses between tree-growth and local and regional precipitation and temperature records. We found that precipitation triggers tree growth at the beginning of the spring season but temperature seems to be the main control in annual growth. Also, C. nebulosa chronology present coherent variations with Multivariate Enso Index (MEI) and Pacific Ocean sea surface temperatures during summer months. This climate-sensitive tree-ring record indicates good potential for dendroclimatic studies and provides an opportunity to reconstruct climatic variations in montane forests of the tropical Andes.  相似文献   

18.
利用采自和布克塞尔铁布克山二号沟的西伯利亚落叶松树轮样本,研制出树轮最大密度年表(MXD)和年轮宽度年表(TRW),分析了其年表特征和气候响应特点。结果表明,该样点的落叶松树轮最大密度年表与和布克塞尔气象站5-8月份平均温度和平均最高温度度均具有很好的正相关关系,最高单相关系数为0.660。用铁布克山二号沟的最大密度差值年表序列,可较好地重建和布克塞尔地区1795-2007年来春夏季平均最高温度距平,47 a重建值对实测值的解释方差达43.5%,且方程稳定。重建结果揭示,在和布克赛尔地区,20世纪平均最高温度距平要高于20世纪以前的平均最高温度距平,20世纪前中期平均最高温度距平出现了明显的上升,并且在重建的时段的末期,5-8月份平均最高温度距平表现出上升趋势。  相似文献   

19.
The Azores Archipelago, located in the North Atlantic Ridge, experiences heavy rainfall and mild temperatures with weak seasonal differences due to oceanic influence. To our knowledge, there have been no dendrochronological studies in the Azores. The aim of this study is to explore the dendrochronological potential of Pinus pinaster Ait. growing in this archipelago and to determine what limiting factor is regulating tree growth. To do so, we have sampled adult maritime pine trees growing in a plantation, in the Pico island of the Azores.Tree ring boundaries were not always easily distinguished, suggesting that in some years cambial activity did not stop during winter. Despite this, it was possible to successfully crossdate the tree-ring series and to establish a tree-ring width chronology with a strong common signal. Climatic correlations revealed a positive response to spring precipitation but no temperature signal in the tree-ring width chronology. Tree-ring width was also negatively correlated with the North Atlantic Oscillation (NAO) and the sea level pressure (SLP) in May − June.Intra-annual density fluctuations (IADFs), which are anatomical features formed in response to variations in environmental conditions during the growing season, were present in 85% of the tree rings. IADFs were identified based on its position within the ring: type E+, characterized as a transition wood from early- to latewood; type L, the most frequent, characterized as earlywood-like cells within latewood; and type L+, characterized as earlywood-like cells between latewood and earlywood of the next tree ring. Each IADF type presented a unique climatic signal: type E+ was positively correlated with early summer precipitation and early spring temperature; type L was positively correlated with early autumn precipitation and temperature; and type L+ was positively correlated with late autumn precipitation.In conclusion, the tree-ring width chronology established for maritime pine growing in the Pico Island of Azores contains a clear climatic signal for spring precipitation, whereas IADFs frequency correlated better with precipitation later in the growing season. For this reason, we suggest that IADFs should be included in future dendrochronological studies in the Macaronesia Biogeographical region since they can improve the climatic signal present in tree-ring width chronologies.  相似文献   

20.
We present a 523-year (A.D. 1481–2003) tree-ring width index chronology of Teak (Tectona grandis L.F.) from Kerala, Southern India, prepared from three forest sites. Dendroclimatological investigations indicate a significant positive relationship between the tree-ring index series and Indian summer monsoon rainfall (ISMR) and related global parameters like the Southern Oscillation Index (SOI). A higher frequency of occurrence of low tree growth is observed in years of deficient Indian monsoon rainfall (droughts) associated with El Niño since the late 18th century. Prior to that time, many low tree growth years are detected during known El Niño events, probably related to deficient Indian monsoon rainfall. The general relationship between ISMR and El Niño is known to be negative and the spatial correlations between our Kerala tree-ring chronology and sea surface temperatures (SSTs) over the Niño regions follow similar patterns as those for ISMR. This relationship indicates strong ENSO-related monsoon signals in the tree-ring records. These tree-ring chronologies with a high degree of sensitivity to monsoon climate are useful tools to understand the vagaries of monsoon rainfall prior to the period of recorded data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号